Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Analyst ; 147(14): 3315-3327, 2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35762367

RESUMEN

The COVID-19 pandemic interrupted routine care for individuals living with HIV, putting them at risk of virologic failure and HIV-associated illness. Often this population is at high risk for exposure to SARS-CoV-2 infection, and once infected, for severe disease. Therefore, close monitoring of HIV plasma viral load (VL) and screening for SARS-CoV-2 infection are needed. We developed a non-proprietary method to isolate RNA from plasma, nasal secretions (NS), or both. The extracted RNA is then submitted to RT-qPCR to estimate the VL and classify HIV/SARS-CoV-2 status (i.e., HIV virologic failure or suppressed; SARS-CoV-2 as positive, presumptive positive, negative, or indeterminate). In contrived samples, the in-house RNA extraction workflow achieved a detection limit of 200-copies per mL for HIV RNA in plasma and 100-copies per mL for SARS-CoV-2 RNA in NS. Similar detection limits were observed for HIV and SARS-CoV-2 in pooled plasma/NS contrived samples. When comparing in-house with standard extraction methods, we found high agreement (>0.91) between input and measured RNA copies for HIV LTR in contrived plasma; SARS-CoV-2 N1/N2 in contrived NS; and LTR, N1, and N2 in pooled plasma/NS samples. We further evaluated this workflow on 133 clinical specimens: 40 plasma specimens (30 HIV-positive), 67 NS specimens (31 SARS-CoV-2-positive), and 26 combined plasma/NS specimens (26 HIV-positive with 10 SARS-CoV-2-positive), and compared the results obtained using the in-house RNA extraction to those using a commercial kit (standard extraction method). The in-house extraction and standard extraction of clinical specimens were positively correlated: plasma HIV VL (R2 of 0.81) and NS SARS-CoV-2 VL (R2 of 0.95 and 0.99 for N1 and N2 genes, respectively); and pooled plasma/NS HIV VL (R2 of 0.71) and SARS-CoV-2 VL (R2 of 1 both for N1 and N2 genes). Our low-cost molecular test workflow ($1.85 per pooled sample extraction) for HIV RNA and SARS-CoV-2 RNA could serve as an alternative to current standard assays ($12 per pooled sample extraction) for laboratories in low-resource settings.


Asunto(s)
COVID-19 , Infecciones por VIH , COVID-19/diagnóstico , Infecciones por VIH/diagnóstico , Humanos , Pandemias , ARN Viral/análisis , SARS-CoV-2/genética , Sensibilidad y Especificidad , Carga Viral/métodos , Flujo de Trabajo
2.
Microbiol Spectr ; 10(4): e0158321, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35708340

RESUMEN

The increasing prevalence of variant lineages during the COVID-19 pandemic has the potential to disrupt molecular diagnostics due to mismatches between primers and variant templates. Point-of-care molecular diagnostics, which often lack the complete functionality of their high-throughput laboratory counterparts, are particularly susceptible to this type of disruption, which can result in false-negative results. To address this challenge, we have developed a robust Loop Mediated Isothermal Amplification assay with single tube multiplexed multitarget redundancy and an internal amplification control. A convenient and cost-effective target-specific fluorescence detection system allows amplifications to be grouped by signal using adaptable probes for pooled reporting of SARS-CoV-2 target amplifications or differentiation of the Internal Amplification Control. Over the course of the pandemic, primer coverage of viral lineages by the three redundant sub-assays has varied from assay to assay as they have diverged from the Wuhan-Hu-1 isolate sequence, but aggregate coverage has remained high for all variant sequences analyzed, with a minimum of 97.4% (Variant of Interest: Eta). In three instances (Delta, Gamma, Eta), a high-frequency mismatch with one of the three sub-assays was observed, but overall coverage remained high due to multitarget redundancy. When challenged with extracted human samples the multiplex assay showed 87% or better sensitivity (of 30 positive samples), with 100% sensitivity for samples containing greater than 30 copies of viral RNA per reaction (of 21 positive samples), and 100% specificity (of 60 negative samples). These results are further evidence that conventional laboratory methodologies can be leveraged at the point of care for robust performance and diagnostic stability over time. IMPORTANCE The COVID-19 pandemic has had tremendous impact, and the ability to perform molecular diagnostics in resource limited settings has emerged as a key resource for mitigating spread of the disease. One challenge in COVID-19 diagnosis, as well as other viruses, is ongoing mutation that can allow viruses to evade detection by diagnostic tests. We developed a test that detects multiple parts of the virus genome in a single test to reduce the chance of missing a virus due to mutation, and it is designed to be simpler and faster than typical laboratory tests while maintaining high sensitivity. This capability is enabled by a novel fluorescent probe technology that works with a simple constant temperature reaction condition.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Prueba de COVID-19 , Técnicas de Laboratorio Clínico/métodos , Colorantes Fluorescentes , Humanos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico , Pandemias , SARS-CoV-2/genética , Sensibilidad y Especificidad
3.
medRxiv ; 2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34462755

RESUMEN

The increasing prevalence of variant lineages during the COVID-19 pandemic has the potential to disrupt molecular diagnostics due to mismatches between primers and variant templates. Point-of-care molecular diagnostics, which often lack the complete functionality of their high throughput laboratory counterparts, are particularly susceptible to this type of disruption, which can result in false negative results. To address this challenge, we have developed a robust Loop Mediated Isothermal Amplification assay with single tube multiplexed multi-target redundancy and an internal amplification control. A convenient and cost-effective target specific fluorescence detection system allows amplifications to be grouped by signal using adaptable probes for pooled reporting of SARS-COV-2 target amplifications or differentiation of the Internal Amplification Control. Over the course of the pandemic, primer coverage of viral lineages by the three redundant sub-assays has varied from assay to assay as they have diverged from the Wuhan-Hu-1 isolate sequence, but aggregate coverage has remained high for all variant sequences analyzed, with a minimum of 97.4% (Variant of Interest: Eta). In three instances (Delta, Gamma, Eta), a high frequency mismatch with one of the three sub-assays was observed, but overall coverage remained high due to multi-target redundancy. When challenged with extracted human samples the multiplexed assay showed 100% sensitivity for samples containing greater than 30 copies of viral RNA per reaction, and 100% specificity. These results are further evidence that conventional laboratory methodologies can be leveraged at the point-of-care for robust performance and diagnostic stability over time.

4.
medRxiv ; 2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34462759

RESUMEN

BACKGROUND: COVID-19 pandemic interrupted routine care for individuals living with HIV, putting them at risk of becoming virologically unsuppressed and ill. Often they are at high risk for exposure to SARS-CoV-2 infection and severe disease once infected. For this population, it is urgent to closely monitor HIV plasma viral load ( VL ) and screen for SARS-COV-2 infection. METHOD: We have developed a non-proprietary method to isolate RNA from plasma, nasal secretions ( NS ), or both. HIV, SARS-CoV-2, and human RP targets in extracted RNA are then RT-qPCR to estimate the VL and classify HIV/SARS-CoV-2 status ( i . e ., HIV as VL failure or suppressed; SARS-CoV-2 as positive, presumptive positive, negative, or indeterminate). We evaluated this workflow on 133 clinical specimens: 40 plasma specimens (30 HIV-seropositive), 67 NS specimens (31 SARS-CoV-2-positive), and 26 pooled plasma/NS specimens (26 HIV-positive with 10 SARS-CoV-2-positive), and compared the results obtained using the in-house extraction to those using a commercial extraction kit. RESULTS: In-house extraction had a detection limit of 200-copies/mL for HIV and 100-copies/mL for SARS-CoV-2. In-house and commercial methods yielded positively correlated HIV VL (R 2 : 0.98 for contrived samples; 0.81 for seropositive plasma). SARS-CoV-2 detection had 100% concordant classifications in contrived samples, and in clinical NS extracted by in-house method, excluding indeterminate results, was 95% concordant (25 positives, 6 presumptive positives, and 31 negatives) to those using the commercial method. Analysis of pooled plasma/NS showed R 2 of 0.91 (contrived samples) and 0.71 (clinical specimens) for HIV VL correlations obtained by both extraction methods, while SARS-CoV-2 detection showed 100% concordance in contrived and clinical specimens. INTERPRETATION: Our low-cost workflow for molecular testing of HIV and SARS-CoV-2 could serve as an alternative to current standard assays for laboratories in low-resource settings.

5.
EBioMedicine ; 64: 103236, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33582488

RESUMEN

BACKGROUND: Detection of SARS-CoV-2 infections is important for treatment, isolation of infected and exposed individuals, and contact tracing. RT-qPCR is the "gold-standard" method to sensitively detect SARS-CoV-2 RNA, but most laboratory-developed RT-qPCR assays involve complex steps. Here, we aimed to simplify RT-qPCR assays by streamlining reaction setup, eliminating RNA extraction, and proposing reduced-cost detection workflows that avoid the need for expensive qPCR instruments. METHOD: A low-cost RT-PCR based "kit" was developed for faster turnaround than the CDC developed protocol. We demonstrated three detection workflows: two that can be deployed in laboratories conducting assays of variable complexity, and one that could be simple enough for point-of-care. Analytical sensitivity was assessed using SARS-CoV-2 RNA spiked in simulated nasal matrix. Clinical performance was evaluated using contrived human nasal matrix (n = 41) and clinical nasal specimens collected from individuals with respiratory symptoms (n = 110). FINDING: The analytical sensitivity of the lyophilised RT-PCR was 10 copies/reaction using purified SARS-CoV-2 RNA, and 20 copies/reaction when using direct lysate in simulated nasal matrix. Evaluation of assay performance on contrived human matrix showed 96.7-100% specificity and 100% sensitivity at ≥20 RNA copies. A head-to-head comparison with the standard CDC protocol on clinical specimens showed 83.8-94.6% sensitivity and 96.8-100% specificity. We found 3.6% indeterminate samples (undetected human control), lower than 8.1% with the standard protocol. INTERPRETATION: This preliminary work should support laboratories or commercial entities to develop and expand access to Covid-19 testing. Software guidance development for this assay is ongoing to enable implementation in other settings. FUND: USA NIH R01AI140845 and Seattle Children's Research Institute.


Asunto(s)
Prueba de Ácido Nucleico para COVID-19 , COVID-19 , ARN Viral/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/genética , Humanos , Sensibilidad y Especificidad
6.
Sci Adv ; 7(51): eabj1281, 2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34910507

RESUMEN

RNA amplification tests sensitively detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, but their complexity and cost are prohibitive for expanding coronavirus disease 2019 (COVID-19) testing. We developed "Harmony COVID-19," a point-of-care test using inexpensive consumables, ready-to-use reagents, and a simple device. Our ready-to-use, multiplexed reverse transcription, loop-mediated isothermal amplification (RT-LAMP) can detect down to 0.38 SARS-CoV-2 RNA copies/µl and can report in 17 min for high­viral load samples (5000 copies/µl). Harmony detected 97 or 83% of contrived samples with ≥0.5 viral particles/µl in nasal matrix or saliva, respectively. Evaluation in clinical nasal specimens (n = 101) showed 100% detection of RNA extracted from specimens with ≥0.5 SARS-CoV-2 RNA copies/µl, with 100% specificity in specimens positive for other respiratory pathogens. Extraction-free analysis (n = 29) had 95% success in specimens with ≥1 RNA copies/µl. Usability testing performed first time by health care workers showed 95% accuracy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA