Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Intervalo de año de publicación
1.
Reproduction ; 165(4): 383-393, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36762768

RESUMEN

In brief: Mating shuts down the 2-methoxyestradiol (2ME) nongenomic pathway that accelerates oviductal egg transport in the rat. This study shows that sperm cells, but not vaginocervical stimulation, utilize TNF-α to shut down this 2ME nongenomic pathway. Abstract: The transport of oocytes or embryos throughout the oviduct to the implantation site in the uterus is defined as egg transport. In the rat, 2-methoxyestradiol (2ME) accelerates egg transport through the oviduct via a nongenomic pathway. Mating is known to shut down this 2ME pathway and then trigger an estradiol genomic pathway that accelerates egg transport. Here, we tested whether intrauterine insemination (IUI) or vaginocervical stimulation (VCS) shuts down the 2ME nongenomic pathway that accelerates egg transport, and if these mating components require tumor necrosis factor alpha (TNF-α). Levels of TNF-α and the mRNA for TNF-α receptors were measured in the oviduct of IUI or VCS rats. The tissue distribution of TNF-α receptor proteins and the concentration of the mRNA for catechol-O-methyl transferase (Comt) and 2ME were also analyzed in the oviduct. Finally, we assessed whether 2ME accelerates egg transport in IUI or VCS rats previously treated with the TNF-α antagonist W9P9QY. Results show that IUI, but not VCS, increased TNF-α and their receptors in the oviduct. IUI and VCS did not change the tissue distribution of TNF-α receptors; however, both decreased the oviductal concentration of Comt and 2ME. IUI and VCS each blocked the 2ME-induced egg transport acceleration; however, only the IUI was antagonized by the TNF-α antagonist. We concluded that IUI and VCS inhibit the 2ME nongenomic pathway that accelerates egg transport; however, the vias of action are distinct, with a TNF-α increase on spermatozoa presence being required for the shutdown of the 2ME pathway.


Asunto(s)
Catecol O-Metiltransferasa , Factor de Necrosis Tumoral alfa , Femenino , Humanos , Ratas , Masculino , Animales , 2-Metoxiestradiol/farmacología , 2-Metoxiestradiol/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Catecol O-Metiltransferasa/metabolismo , Ratas Sprague-Dawley , Semen/metabolismo , Oviductos/metabolismo , Estradiol/farmacología , Estradiol/metabolismo , Espermatozoides/metabolismo , ARN Mensajero/metabolismo
2.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37446151

RESUMEN

The estrogen metabolite 2-methoxyestradiol (2ME) is a promissory anticancer drug mainly because of its pro-apoptotic properties in cancer cells. However, the therapeutic use of 2ME has been hampered due to its low solubility and bioavailability. Thus, it is necessary to find new ways of administration for 2ME. Zeolites are inorganic aluminosilicates with a porous structure and are considered good adsorbents and sieves in the pharmaceutical field. Here, mordenite-type zeolite nanoparticles were loaded with 2ME to assess its efficiency as a delivery system for prostate cancer treatment. The 2ME-loaded zeolite nanoparticles showed an irregular morphology with a mean hydrodynamic diameter of 250.9 ± 11.4 nm, polydispersity index of 0.36 ± 0.04, and a net negative surface charge of -34 ± 1.73 meV. Spectroscopy with UV-vis and Attenuated Total Reflectance Infrared Fourier-Transform was used to elucidate the interaction between the 2ME molecules and the zeolite framework showing the formation of a 2ME-zeolite conjugate in the nanocomposite. The studies of adsorption and liberation determined that zeolite nanoparticles incorporated 40% of 2ME while the liberation of 2ME reached 90% at pH 7.4 after 7 days. The 2ME-loaded zeolite nanoparticles also decreased the viability and increased the mRNA of the 2ME-target gene F-spondin, encoded by SPON1, in the human prostate cancer cell line LNCaP. Finally, the 2ME-loaded nanoparticles also decreased the viability of primary cultures from mouse prostate cancer. These results show the development of 2ME-loaded zeolite nanoparticles with physicochemical and biological properties compatible with anticancer activity on the human prostate and highlight that zeolite nanoparticles can be a good carrier system for 2ME.


Asunto(s)
Nanopartículas , Neoplasias de la Próstata , Zeolitas , Masculino , Humanos , Animales , Ratones , Zeolitas/química , Próstata , Neoplasias de la Próstata/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Nanopartículas/química
3.
Reproduction ; 161(1): 43-59, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33112288

RESUMEN

During mating, males provide not only the spermatozoa to fertilize the oocyte but also other stimuli that are essential for initiating and maintaining the reproductive programme in females. In the mammalian oviduct, mating regulates sperm storage, egg transport, fertilization, early embryonic development, and oestradiol metabolism. However, the main molecules underlying these processes are poorly understood. Using microarray analyses, we identified 58 genes that were either induced or repressed by mating in the endosalpinx at 3 h post-stimulus. RT-qPCR confirmed that mating downregulated the expression of the Oas1h and Prim1 genes and upregulated the expression of the Ceacam1, Chad, Chst10, Slc5a3 and Slc26a4 genes. The functional category 'cell-to-cell signalling and interaction' was over-represented in this gene list. Network modelling identified TNF and all-trans retinoic acid (RA) as upstream regulators of the mating-induced transcriptional response, which was confirmed by intraoviductal injection of TNF or RA in unmated rats. It partially mimicked the transcriptional effect of mating in the rat endosalpinx. Furthermore, mating decreased RA levels in oviductal fluid, and RA-receptor-gamma (RARG) exhibited a nuclear location in oviductal epithelium in both unmated and mated rats, indicating RA-RARG transcriptional activity. In conclusion, the early transcriptional response regulated by mating in the rat endosalpinx is mediated by TNF and RA. These signalling molecules regulate a cohort of genes involved in 'cell-to-cell signalling and interactions' and merit further studies to understand the specific processes activated in the endosalpinx to sustain the events that occur in the mammalian oviduct early after mating.


Asunto(s)
Oviductos/metabolismo , Conducta Sexual Animal/fisiología , Transcriptoma , Tretinoina/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Femenino , Regulación de la Expresión Génica , Masculino , Membrana Mucosa/metabolismo , Ratas Sprague-Dawley , Receptores de Ácido Retinoico/metabolismo , Receptor de Ácido Retinoico gamma
4.
Reprod Fertil Dev ; 31(4): 689-697, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30449298

RESUMEN

The anti-implantation effects of high oestradiol (E2) concentrations could be mediated by E2 metabolites. Herein, we examined whether 2-methoxyoestradiol (2ME) impairs embryo implantation via its target protein F-spondin. Mice on Day 3 of pregnancy were treated with E2 concomitantly with the cathecol-O-methyl transferase inhibitor OR486 and the number of implanted embryos was recorded 5 days later. The effect of 2ME or 4-methoxyoestradiol (4ME) on embryo implantation was also investigated. Plasma and uterine levels of 2ME were measured 0.5, 1 or 3h after E2 treatment while the mRNA for spondin 1 (Spon1) and F-spondin were determined in the uterus 3, 6, 12 or 24h after 2ME treatment. Finally, the effect of a neutralising F-spondin antibody on the anti-implantation effect of 2ME was explored. OR486 blocked the anti-implantation effect of E2; 2ME, but not 4ME, affected embryo implantation. The 2ME concentration was increased after 0.5 and 1h in plasma and 3h in uterine fluid following E2 treatment. 2ME increased levels of Spon1 at 12 and 24h although F-spondin was increased at 12h. F-spondin antibody blocked the effect of 2ME on embryo implantation. We conclude that 2ME impairs mouse embryo implantation via activation of F-spondin in the uterus.


Asunto(s)
2-Metoxiestradiol/farmacología , Implantación del Embrión/efectos de los fármacos , Estradiol/farmacología , Proteínas de la Matriz Extracelular/metabolismo , Útero/efectos de los fármacos , Animales , Implantación del Embrión/fisiología , Estradiol/análogos & derivados , Femenino , Ratones , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Útero/metabolismo
5.
Int J Mol Sci ; 20(16)2019 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-31394756

RESUMEN

The metabolite 2-methoxyestradiol (2ME) is an endogenous estrogen metabolite with potential therapeutic properties in reproductive cancers. However, the molecular mechanisms by which 2ME exerts its anticancer activity are not well elucidated. The purpose of this study was to determine the molecular signals associated with the apoptotic effects of 2ME in a human endometrial cancer cell line. Ishikawa cells were treated with non-apoptotic (0.1 µM) or apoptotic concentrations (5 µM) of 2ME, and 12 hours later mRNA levels for Scd2, Snx6, and Spon1 were determined by real-time PCR. We then investigated by immunofluorescence and Western blot the expression and distribution of F-spondin, encoded by Spon1, in Ishikawa cells treated with 2ME 5 µM at 6, 12, or 24 h after treatment. The role of estrogen receptors (ER) in the effect of 2ME on the Spon1 level was also investigated. Finally, we examined whether 2ME 5 µM induces cell death in Ishikawa cells pre-incubated with a neutralizing F-spondin antibody. Non-apoptotic or apoptotic concentrations of 2ME decreased Scd2 and increased Snx6. However, Spon1 was only increased with the 2ME apoptotic concentration. F-spondin protein was also increased at 12 and 24 h after 2ME treatment, while 2ME-induced Spon1 increase was independent of ER. Neutralization of F-spondin blocked the effect of 2ME on the cell viability. These results show that F-spondin signaling is one of the components in the apoptotic effects of 2ME on Ishikawa cells and provide experimental evidence underlying the mechanism of action of this estrogen metabolite on cancer cells.


Asunto(s)
2-Metoxiestradiol/farmacología , Apoptosis/efectos de los fármacos , Neoplasias Endometriales/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Transducción de Señal/efectos de los fármacos , Biomarcadores , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Neoplasias Endometriales/genética , Neoplasias Endometriales/patología , Femenino , Humanos , Espacio Intracelular/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Estrógenos/metabolismo
6.
J Anat ; 233(1): 73-85, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29663371

RESUMEN

The uterine tube (UT) is an important and complex organ of the women's reproductive system. In general, the anatomy and basic histology of this organ are well-known. However, the composition and function of the extracellular matrix (ECM) of the UT is still poorly understood. The ECM is a complex supramolecular material produced by cells which is commonly restricted to the basement membrane and interstitial spaces. ECM molecules play not only a structural role, they are also important for cell growth, survival and differentiation in all tissues. In this context, the aim of this study was to evaluate the deposition and distribution of type I and III collagens and proteoglycans (decorin, biglycan, fibromodulin and versican) in human UT during the follicular and luteal phases by using histochemical and immunohistochemical techniques. Our results showed a broad synthesis of collagens (I and III) in the stroma of the UT. The analysis by regions showed, in the mucosa, a specific distribution of versican and fibromodulin in the epithelial surface, whereas decorin and fibromodulin were observed in the lamina propria. Versican and decorin were found in the stroma of the muscular layer, whereas all studied proteoglycans were identified in the serosa. Curiously, biglycan was restricted to the wall of the blood vessels of the serosa and muscular layers. Furthermore, there was an immunoreaction for collagens, decorin, versican and fibromodulin in the UT peripheral nerves. The differential distribution of these ECM molecules in the different layers of the UT could be related to specific structural and/or biomechanical functions needed for the oviductal transport, successful fertilization and early embryogenesis. However, further molecular studies under physiological and pathological conditions are still needed to elucidate the specific role of each molecule in the human UT.


Asunto(s)
Proteínas de la Matriz Extracelular/análisis , Matriz Extracelular/química , Trompas Uterinas/química , Ciclo Menstrual , Adulto , Colágeno/análisis , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Trompas Uterinas/metabolismo , Femenino , Humanos , Ciclo Menstrual/metabolismo , Persona de Mediana Edad , Miocitos del Músculo Liso/química , Miocitos del Músculo Liso/metabolismo , Proteoglicanos/análisis , Proteoglicanos/metabolismo
7.
Mol Reprod Dev ; 83(10): 875-883, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27371809

RESUMEN

The oviduct connects the ovary to the uterus, and is subject to changes that influence gamete transport, fertilization, and early embryo development. The ovarian steroids estradiol and progesterone are largely responsible for regulating oviduct function, although mating signals also affect the female reproductive tract, both indirectly, through sensory stimulation, and directly, through contact with seminal plasma or spermatozoa. The resulting alterations in gene and protein expression help establish a microenvironment that is appropriate for sperm storage and selection, embryo development, and gamete transport. Mating may also induce the switch from a non-genomic to a genomic pathway of estradiol-accelerated oviduct egg transport, reflecting a novel example of the functional plasticity in well-differentiated cells. This review highlights the physiological relevance of various aspects of mating to oviduct biology and reproductive success. Expanding our knowledge of the mating-associated molecular and cellular events in oviduct cells would undoubtedly facilitate new therapeutic strategies to treat infertility attributable to oviduct pathologies. Mol. Reprod. Dev. 83: 875-883, 2016 © 2016 Wiley Periodicals, Inc.


Asunto(s)
Coito/fisiología , Copulación/fisiología , Desarrollo Embrionario/fisiología , Fertilización/fisiología , Ovario/fisiología , Oviductos/fisiología , Animales , Femenino , Humanos , Masculino , Semen/metabolismo
8.
Reproduction ; 150(4): 331-41, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26159830

RESUMEN

Estradiol (E2) accelerates egg transport by a nongenomic action, requiring activation of estrogen receptor (ER) and successive cAMP and IP3 production in the rat oviduct. Furthermore, E2 increases IP3 production in primary cultures of oviductal smooth muscle cells. As smooth muscle cells are the mechanical effectors for the accelerated oocyte transport induced by E2 in the oviduct, herein we determined the mechanism by which E2 increases IP3 in these cells. Inhibition of protein synthesis by Actinomycin D did not affect the E2-induced IP3 increase, although this was blocked by the ER antagonist ICI182780 and the inhibitor of phospholipase C (PLC) ET-18-OCH3. Immunoelectron microscopy for ESR1 or ESR2 showed that these receptors were associated with the plasma membrane, indicating compatible localization with E2 nongenomic actions in the smooth muscle cells. Furthermore, ESR1 but not ESR2 agonist mimicked the effect of E2 on the IP3 level. Finally, E2 stimulated the activity of a protein associated with the contractile tone, calcium/calmodulin-dependent protein kinase II (CaMKII), in the smooth muscle cells. We conclude that E2 increases IP3 by a nongenomic action operated by ESR1 and that involves the activation of PLC in the smooth muscle cells of the rat oviduct. This E2 effect is associated with CaMKII activation in the smooth muscle cells, suggesting that IP3 and CaMKII are involved in the contractile activity necessary to accelerate oviductal egg transport.


Asunto(s)
Estradiol/farmacología , Inositol 1,4,5-Trifosfato/biosíntesis , Miocitos del Músculo Liso/metabolismo , Oviductos/metabolismo , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/antagonistas & inhibidores , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Antagonistas de Estrógenos/farmacología , Receptor alfa de Estrógeno/agonistas , Receptor alfa de Estrógeno/antagonistas & inhibidores , Receptor beta de Estrógeno/agonistas , Receptor beta de Estrógeno/antagonistas & inhibidores , Femenino , Técnicas In Vitro , Ratones , Contracción Muscular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Oviductos/efectos de los fármacos , Ratas Sprague-Dawley , Fosfolipasas de Tipo C/antagonistas & inhibidores
9.
Reproduction ; 148(3): 285-94, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25038866

RESUMEN

In the rat oviduct, estradiol (E2) accelerates egg transport by a nongenomic action that requires previous conversion of E2 to methoxyestrogens via catechol-O-methyltranferase (COMT) and activation of estrogen receptor (ER) with subsequent production of cAMP and inositol triphosphate (IP3). However, the role of the different oviductal cellular phenotypes on this E2 nongenomic pathway remains undetermined. The aim of this study was to investigate the effect of E2 on the levels of cAMP and IP3 in primary cultures of secretory and smooth muscle cells from rat oviducts and determine the mechanism by which E2 increases cAMP in the secretory cells. In the secretory cells, E2 increased cAMP but not IP3, while in the smooth muscle cells E2 decreased cAMP and increased IP3. Suppression of protein synthesis by actinomycin D did not prevent the E2-induced cAMP increase, but this was blocked by the ER antagonist ICI 182 780 and the inhibitors of COMT OR 486, G protein-α inhibitory (Gαi) protein pertussis toxin and adenylyl cyclase (AC) SQ 22536. Expression of the mRNA for the enzymes that metabolizes estrogens, Comt, Cyp1a1, and Cyp1b1 was found in the secretory cells, but this was not affected by E2. Finally, confocal immunofluorescence analysis showed that E2 induced colocalization between ESR1 (ERα) and Gαi in extranuclear regions of the secretory cells. We conclude that E2 differentially regulates cAMP and IP3 in the secretory and smooth muscle cells of the rat oviduct. In the secretory cells, E2 increases cAMP via a nongenomic action that requires activation of COMT and ER, coupling between ESR1 and Gαi, and stimulation of AC.


Asunto(s)
AMP Cíclico/metabolismo , Estradiol/farmacología , Oviductos/efectos de los fármacos , Receptores de Estrógenos/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Catecol O-Metiltransferasa/metabolismo , Dactinomicina/farmacología , Estradiol/análogos & derivados , Antagonistas del Receptor de Estrógeno/farmacología , Femenino , Fulvestrant , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Oviductos/metabolismo , Ratas , Transducción de Señal/fisiología
10.
Mol Reprod Dev ; 81(11): 1053-61, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25359088

RESUMEN

Mating shuts down a 2-methoxyestradiol (2ME)-dependent, non-genomic activity that is responsible for accelerating egg transport in the rat oviduct. The aims of this work were to investigate the role of TGFß1 in this 2ME-reduced activity and to determine the effect of mating on the expression and distribution of TGFß1 and its receptor TGFBR3 in the rat oviduct. We determined the level of TGFß1 in the plasma and oviductal fluid at 1, 3, or 6 hr during Day 1 of the oestrous cycle in unmated or mated animals. We then examined if 2ME accelerates oviductal egg transport in unmated rats that were previously treated with a neutralizing TGFß1 antibody. The expression of Tgfb1 and Tgfbr3 mRNA and the level and distribution of TGFBR3 protein in the oviduct were also determined at these time points. Mating decreased TGFß1 in the plasma, but not in the oviductal fluid, whereas antibody neutralization of circulating TGFß1 did not prevent the effect of 2ME on egg transport. Mating decreased Tgfb1 and hastened the increase in TGFBR3 abundance in the myosalpinx. These results indicate that mating decreased circulating levels of TGFß1 without shutting down the non-genomic 2ME response that normally accelerates egg transport. Levels of Tgfb1 transcript and TGFBR3 protein, however, changed in the myosalpinx of mated rats, suggesting a role for mating-associated factors in the autocrine and paracrine effects of TGFß in the oviduct.


Asunto(s)
Trompas Uterinas/metabolismo , Músculo Liso/metabolismo , Proteoglicanos/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Conducta Sexual Animal/fisiología , Factor de Crecimiento Transformador beta1/metabolismo , 2-Metoxiestradiol , Animales , Cartilla de ADN/genética , Ensayo de Inmunoadsorción Enzimática , Estradiol/análogos & derivados , Estradiol/metabolismo , Estradiol/farmacología , Femenino , Técnica del Anticuerpo Fluorescente , Immunoblotting , Ratas , Reacción en Cadena en Tiempo Real de la Polimerasa , Estadísticas no Paramétricas , Factor de Crecimiento Transformador beta1/sangre
11.
Int J Biol Macromol ; 273(Pt 1): 132891, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38848852

RESUMEN

Electrospun nanocomposite scaffolds with improved bioactive and biological properties were fabricated from a blend of polycaprolactone (PCL) and starch, and then combined with 5 wt% of calcium oxide (CaO) nanoparticles sourced from eggshells. SEM analyses showed scaffolds with fibrillar morphology and a three-dimensional structure. The hydrophilicity of scaffolds was improved with starch and CaO nanoparticles, which was evidenced by enhanced water absorption (3500 %) for 7 days. In addition, PCL/Starch/CaO scaffolds exhibited major degradation, with a mass loss of approximately 60 % compared to PCL/Starch and PCL/CaO. The PCL/Starch/CaO scaffolds decreased in crystallinity as intermolecular interactions between the nanoparticles retarded the mobility of the polymeric chains, leading to a significant increase in Young's modulus (ca. 60 %) and a decrease in tensile strength and elongation at break, compared to neat PCL. SEM-EDS, FT-IR, and XRD analyses indicated that PCL/Starch/CaO scaffolds presented a higher biomineralization capacity due to the ability to form hydroxyapatite (HA) in their surface after 28 days. The PCL/Starch/CaO scaffolds showed attractive biological performance, allowing cell adhesion and viability of M3T3-E1 preosteoblastic cells. In vivo analysis using a subdermal dorsal model in Wistar rats showed superior biocompatibility and improved resorption process compared to a pure PCL matrix. This biological analysis suggested that the PCL/Starch/CaO electrospun mats are suitable scaffolds for guiding the regeneration of bone tissue.

12.
Reproduction ; 145(2): 109-17, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23148087

RESUMEN

Mating shut down a 2-methoxyestradiol (2ME) nongenomic action necessary to accelerate egg transport in the rat oviduct. Herein, we investigated whether tumour necrosis factor-α (TNF-α) participates in this mating effect. In unmated and mated rats, we determined the concentration of TNF-α in the oviductal fluid and the level of the mRNA for Tnf-a (Tnf) and their receptors Tnfrsf1a and Tnfrsf1b in the oviduct tissues. The distribution of the TNFRSF1A and TNFRSF1B proteins in the oviduct of unmated and mated was also assessed. Finally, we examined whether 2ME accelerates oviductal egg transport in unmated rats that were previously treated with a rat recombinant TNF-α alone or concomitant with a selective inhibitor of the NF-κB activity. Mating increased TNF-α in the oviductal fluid, but Tnf transcript was not detected in the oviduct. The mRNA for TNF-α receptors as well as their distribution was not affected by mating, although they were mainly localized in the endosalpinx. Administration of TNF-α into the oviduct of unmated rats prevented the effect of 2ME on egg transport. However, the NF-κB activity inhibitor did not revert this effect of TNF-α. These results indicate that mating increased TNF-α in the oviductal fluid, although this not associated with changes in the expression and localization of TNF-α receptors in the oviductal cells. Furthermore, TNF-α mimicked the effect of mating on the 2ME-induced egg transport acceleration, independently of the activation of NF-κB in the oviduct. We concluded that TNF-α is the signal induced by mating to shut down a 2ME nongenomic action in the rat oviduct.


Asunto(s)
Estradiol/análogos & derivados , Trompas Uterinas/efectos de los fármacos , Transporte del Óvulo/efectos de los fármacos , Conducta Sexual Animal/fisiología , Factor de Necrosis Tumoral alfa/fisiología , 2-Metoxiestradiol , Aceleración , Animales , Líquidos Corporales/química , Líquidos Corporales/metabolismo , Estradiol/farmacología , Trompas Uterinas/metabolismo , Femenino , Genoma/efectos de los fármacos , Transporte del Óvulo/fisiología , Ratas , Ratas Sprague-Dawley , Transducción de Señal/fisiología , Factor de Necrosis Tumoral alfa/metabolismo , Regulación hacia Arriba/fisiología
14.
Sports (Basel) ; 11(11)2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37999436

RESUMEN

BACKGROUND AND AIMS: The worldwide aging population is expanding, with more individuals living into their 80s. Physiological functions decline gradually with age, compounded by sedentary lifestyles. Incorporating physical activity into daily routine is crucial for maintaining independence. This study aimed to assess a periodized high-intensity aerobic training program (PEZO-BT) in octogenarians, focusing on submaximal ergospirometry effects. METHODS: A total of 48 non-frail octogenarian subjects (12 females, 36 males) were randomized into control and intervention groups. All subjects underwent submaximal cardiopulmonary exercise testing with gas analysis at baseline, stopping after the respiratory compensation point (RCP). Our intervention group completed a 14-week PEZO-BT aerobic training program. The outcomes were oxygen consumption at first ventilatory threshold (VO2AT), ventilatory efficiency slope (VE/VCO2), oxygen uptake efficiency slope (OUES), cardiorespiratory optimal point (COP), oxygen pulse change (ΔVO2/HR) from anaerobic threshold (AT) to respiratory compensation point (RCP), and power output at anaerobic threshold (POAT). RESULTS: Mixed ANOVA examined time and treatment effects. If significance emerged, post hoc t-tests were used to compare significances between groups. The homogeneity of variance was assessed using Levene's test. Chi-square tests compared ergospirometry criteria and ventilatory performance within groups. The mean differences at post intervention were significant in VO2AT (p < 0.001), VE/VCO2 (p < 0.001), ΔVO2/HR (p < 0.05), and POAT (p < 0.001), while OUES and COP were not significant (p > 0.05). However, clinical effects were observed in the entire intervention group. CONCLUSIONS: Training improved exercise capacity and workload. Overall, this periodic aerobic and high-intensity interval training (HIIT) program yielded significant improvements in cardiorespiratory fitness (CRF) in previously untrained octogenarians with and without comorbidities. The findings suggest implications for promoting long-term healthy aging.

15.
Polymers (Basel) ; 15(5)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36904322

RESUMEN

The development of scaffolding obtained by electrospinning is widely used in tissue engineering due to porous and fibrous structures that can mimic the extracellular matrix. In this study, poly (lactic-co-glycolic acid) (PLGA)/collagen fibers were fabricated by electrospinning method and then evaluated in the cell adhesion and viability of human cervical carcinoma HeLa and NIH-3T3 fibroblast for potential application in tissue regeneration. Additionally, collagen release was assessed in NIH-3T3 fibroblasts. The fibrillar morphology of PLGA/collagen fibers was verified by scanning electron microscopy. The fiber diameter decreased in the fibers (PLGA/collagen) up to 0.6 µm. FT-IR spectroscopy and thermal analysis confirmed that both the electrospinning process and the blend with PLGA give structural stability to collagen. Incorporating collagen in the PLGA matrix promotes an increase in the material's rigidity, showing an increase in the elastic modulus (38%) and tensile strength (70%) compared to pure PLGA. PLGA and PLGA/collagen fibers were found to provide a suitable environment for the adhesion and growth of HeLa and NIH-3T3 cell lines as well as stimulate collagen release. We conclude that these scaffolds could be very effective as biocompatible materials for extracellular matrix regeneration, suggesting their potential applications in tissue bioengineering.

16.
Eur J Histochem ; 67(2)2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37052420

RESUMEN

In humans, even where millions of spermatozoa are deposited upon ejaculation in the vagina, only a few thousand enter the uterine tube (UT). Sperm transiently adhere to the epithelial cells lining the isthmus reservoir, and this interaction is essential in coordinating the availability of functional spermatozoa for fertilization. The binding of spermatozoa to the UT epithelium (mucosa) occurs due to interactions between cell-adhesion molecules on the cell surfaces of both the sperm and the epithelial cell. However, in humans, there is little information about the molecules involved. The aim of this study was to perform a histological characterization of the UT focused on determining the tissue distribution and deposition of some molecules associated with cell adhesion (F-spondin, galectin-9, osteopontin, integrin αV/ß3) and UT's contractile activity (TNFα-R1, TNFα-R2) in the follicular and luteal phases. Our results showed the presence of galectin-9, F-spondin, osteopontin, integrin αV/ß3, TNFα-R1, and TNFα-R2 in the epithelial cells in ampullar and isthmic segments during the menstrual cycle. Our results suggest that these molecules could form part of the sperm-UT interactions. Future studies will shed light on the specific role of each of the identified molecules.


Asunto(s)
Trompas Uterinas , Osteopontina , Femenino , Humanos , Masculino , Trompas Uterinas/metabolismo , Osteopontina/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Integrina alfaV/metabolismo , Semen , Espermatozoides/metabolismo
17.
Reprod Biol Endocrinol ; 10: 56, 2012 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-22897899

RESUMEN

BACKGROUND: One of the unique characteristics of the female genital tract is the extensive tissue remodeling observed throughout the menstrual cycle. Multiple components of the extracellular matrix take part in this tissue rebuilding; however, the individual components involved have not been identified. METHODS: In the present study, the expression of extracellular matrix proteins and selected matrix metalloproteinase (MMP) activities in Fallopian tubes (FT) throughout the menstrual cycle were examined by PCR array, immunocytochemistry, zymography and bioinformatics. RESULTS: Of the eighty-four genes analyzed, eighty-three were expressed in the FT during at least one stage of the menstrual cycle. We observed a significant increase (>/=2-fold) in ADAMTS1, ADAMTS13, COL7A1, MMP3, MMP9, PECAM1, and THBS3 in the periovulatory phase compared to the follicular phase. Meanwhile, we observed a significant decrease (>/= 2-fold) in COL7A1, ICAM1, ITGA8, MMP16, MMP9, CLEC3B, SELE and TIMP2 in the lutheal phase compared to the periovulatory phase. Immunocytochemistry showed that MMP-3 and MMP-9 were localized in the endosalpinx during all phases of the menstrual cycle. Gelatin zymograms detected non-cycle-dependent protease activity. CONCLUSIONS: Several extracellular matrix components were regulated throughout the menstrual cycle in a cyclic pattern, suggesting a possible steroid regulation and a role in tissue remodeling and FT functions.


Asunto(s)
Proteínas de la Matriz Extracelular/biosíntesis , Trompas Uterinas/metabolismo , Metaloproteinasas de la Matriz/biosíntesis , Ciclo Menstrual/metabolismo , Transcriptoma , Adulto , Biología Computacional , Femenino , Humanos , Metaloproteinasa 2 de la Matriz/biosíntesis , Metaloproteinasa 9 de la Matriz/biosíntesis
18.
J Biomed Biotechnol ; 2012: 491298, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22318778

RESUMEN

BACKGROUND: A role for pilus during attachment of Neisseria gonorrhoeae to epithelia of the female reproductive tract is currently assumed. However, Pil⁻ gonococci have been observed during infection of the reproductive tract, which prompted us to examine the effect of pili on the dynamics of infection and the inflammatory responses of mucosal explants of the human fallopian tube. METHODS: Mucosal explants were infected in vitro with Opa negative Pil⁻ and Pil⁺N. gonorrhoeae strains. RESULTS: Piliation enhanced gonococcal adherence to the epithelium within 3 h of infection (P < 0.05) but thereafter did not offer advantage to gonococci to colonize the epithelial cell surface (P > 0.05). No differences were found between the strains in numbers of gonococci inside epithelial cells. Pil⁻ bacteria induced higher levels (P < 0.05) of IL-1ß, TNF-α, GM-CSF, MCP-1, and MIP-1ß than Pil⁺ bacteria. There were no differences between both strains in LOS pattern, and Pil expression did not change after coincubation with mucosal strips. CONCLUSIONS: Results show that gonococcal invasion of the human fallopian tube can occur independently of pilus or Opa expression, and suggest that pilus, by inhibition of several key elements of the initial inflammatory response, facilitates sustained infection of this organ.


Asunto(s)
Epitelio/microbiología , Trompas Uterinas/microbiología , Fimbrias Bacterianas/genética , Neisseria gonorrhoeae/genética , Proteínas de la Membrana Bacteriana Externa/genética , Citocinas/genética , Citocinas/metabolismo , Femenino , Regulación Bacteriana de la Expresión Génica , Humanos , Inflamación/metabolismo , Inflamación/microbiología , Neisseria gonorrhoeae/crecimiento & desarrollo , Neisseria gonorrhoeae/patogenicidad , Técnicas de Cultivo de Órganos
19.
Reprod Biol Endocrinol ; 9: 69, 2011 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-21605449

RESUMEN

BACKGROUND: Mating changes the mechanism by which E2 regulates oviductal egg transport, from a non-genomic to a genomic mode. Previously, we found that E2 increased the expression of several genes in the oviduct of mated rats, but not in unmated rats. Among the transcripts that increased its level by E2 only in mated rats was the one coding for an s100 calcium binding protein G (s100 g) whose functional role in the oviduct is unknown. METHODS: Herein, we investigated the participation of s100 g on the E2 genomic effect that accelerates oviductal transport in mated rats. Thus, we determined the effect of E2 on the mRNA and protein level of s100 g in the oviduct of mated and unmated rats. Then, we explored the effect of E2 on egg transport in unmated and mated rats under conditions in which s100 g protein was knockdown in the oviduct by a morpholino oligonucleotide against s100 g (s100 g-MO). In addition, the localization of s100 g in the oviduct of mated and unmated rats following treatment with E2 was also examined. RESULTS: Expression of s100 g mRNA progressively increased at 3-24 h after E2 treatment in the oviduct of mated rats while in unmated rats s100 g increased only at 12 and 24 hours. Oviductal s100 g protein increased 6 h following E2 and continued elevated at 12 and 24 h in mated rats, whereas in unmated rats s100 g protein increased at the same time points as its transcript. Administration of a morpholino oligonucleotide against s100 g transcript blocked the effect of E2 on egg transport in mated, but not in unmated rats. Finally, immunoreactivity of s100 g was observed only in epithelial cells of the oviducts of mated and unmated rats and it was unchanged after E2 treatment. CONCLUSIONS: Mating affects the kinetic of E2-induced expression of s100 g although it not changed the cellular localization of s100 g in the oviduct after E2 . On the other hand, s100 g is a functional component of E2 genomic effect that accelerates egg transport. These findings show a physiological involvement of s100 g in the rat oviduct.


Asunto(s)
Blastocisto/efectos de los fármacos , Estradiol/farmacología , Trompas Uterinas/metabolismo , Genoma/efectos de los fármacos , Proteína G de Unión al Calcio S100/fisiología , Animales , Transporte Biológico/efectos de los fármacos , Blastocisto/metabolismo , Blastocisto/fisiología , Calbindinas , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Genoma/fisiología , Masculino , Embarazo , Ratas , Ratas Sprague-Dawley , Proteína G de Unión al Calcio S100/metabolismo , Conducta Sexual Animal/fisiología , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
20.
Biomed Res Int ; 2021: 3491831, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33575326

RESUMEN

We analysed whether the hydroethanolic extracts from leaves of Haplopappus baylahuen Remy (bailahuen) and Aloysia citriodora Palau (cedron) inhibit the growth and ability of Salmonella Enteritidis to form biofilms and to adhere to human intestinal epithelial cells. Herein, we first determined the total phenolic content and antioxidant and antibacterial activities of the extracts. Then, Salmonella Enteritidis was treated with the extracts to analyse biofilm formation by scanning electronic microscopy and the violet crystal test. We also measured the efflux pump activity of Salmonella Enteritidis since biofilm formation is associated with this phenomenon. Furthermore, the human intestinal cell line Caco-2 was infected with Salmonella Enteritidis pretreated with the extracts, and 30 min later, the number of bacteria that adhered to the cell surface was quantified. Finally, we determined by qPCR the expression of genes associated with biofilm formation, namely, the diguanilate cyclase AdrA protein gene (adrA) and the BapA protein gene (bapA), and genes associated with adhesion, namely, the transcriptional regulator HilA (hilA). The phenolic content and antioxidant and bactericide activities were higher in bailahuen than in the cedron extract. Biofilm formation was inhibited by the extracts in a dose-dependent manner, while the activity of efflux pumps was decreased only with the cedron extract. Adhesion to Caco-2 cells was also inhibited without differences between doses and extracts. The extracts decreased the expression of adrA; with the cedron extract being the most efficient. The expression of hilA is affected only with the cedron extract. We concluded that hydroethanolic extracts of bailahuen and cedron differentially inhibit the growth of Salmonella Enteritidis and affect its the ability to form biofilms and to adhere to human intestinal epithelial cells. These results highlight the presence of molecules in bailahuen and cedron with a high potential for the control of the Salmonella Enteritidis pathogenesis.


Asunto(s)
Antibacterianos/administración & dosificación , Biopelículas , Etanol/administración & dosificación , Intestinos/efectos de los fármacos , Extractos Vegetales/administración & dosificación , Salmonella enteritidis/efectos de los fármacos , Salmonella enteritidis/fisiología , Antioxidantes/administración & dosificación , Células CACO-2 , Células Cultivadas , Etanol/aislamiento & purificación , Haplopappus/química , Humanos , Fenoles/aislamiento & purificación , Verbenaceae/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA