Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Photochem Photobiol Sci ; 23(2): 339-354, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38308169

RESUMEN

Ultraviolet radiation's germicidal efficacy depends on several parameters, including wavelength, radiant exposure, microbial physiology, biological matrices, and surfaces. In this work, several ultraviolet radiation sources (a low-pressure mercury lamp, a KrCl excimer, and four UV LEDs) emitting continuous or pulsed irradiation were compared. The greatest log reductions in E. coli cells and B. subtilis endospores were 4.1 ± 0.2 (18 mJ cm-2) and 4.5 ± 0.1 (42 mJ cm-2) with continuous 222 nm, respectively. The highest MS2 log reduction observed was 2.7 ± 0.1 (277 nm at 3809 mJ cm-2). Log reductions of SARS-CoV-2 with continuous 222 nm and 277 nm were ≥ 3.4 ± 0.7, with 13.3 mJ cm-2 and 60 mJ cm-2, respectively. There was no statistical difference between continuous and pulsed irradiation (0.83-16.7% [222 nm and 277 nm] or 0.83-20% [280 nm] duty rates) on E. coli inactivation. Pulsed 260 nm radiation (0.5% duty rate) at 260 nm yielded significantly greater log reduction for both bacteria than continuous 260 nm radiation. There was no statistical difference in SARS-CoV-2 inactivation between continuous and pulsed 222 nm UV-C radiation and pulsed 277 nm radiation demonstrated greater germicidal efficacy than continuous 277 nm radiation. Greater radiant exposure for all radiation sources was required to inactivate MS2 bacteriophage. Findings demonstrate that pulsed irradiation could be more useful than continuous UV radiation in human-occupied spaces, but threshold limit values should be respected. Pathogen-specific sensitivities, experimental setup, and quantification methods for determining germicidal efficacy remain important factors when optimizing ultraviolet radiation for surface decontamination or other applications.


Asunto(s)
COVID-19 , Rayos Ultravioleta , Humanos , SARS-CoV-2 , Escherichia coli/efectos de la radiación , Desinfección/métodos
2.
Crit Rev Food Sci Nutr ; 63(21): 5155-5193, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34904469

RESUMEN

Although containing significant levels of phenolic compounds (PCs), leaves biomass coming from either forest, agriculture, or the processing industry are considered as waste, which upon disposal, brings in environmental issues. As the demand for PCs in functional food, pharmaceutical, nutraceutical and cosmetic sector is escalating day by day, recovering PCs from leaves biomass would solve both the waste disposal problem while ensuring a valuable "societal health" ingredient thus highly contributing to a sustainable food chain from both economic and environmental perspectives. In our search for environmentally benign, efficient, and cost-cutting techniques for the extraction of PCs, green extraction (GE) is presenting itself as the best option in modern industrial processing. This current review aims to highlight the recent progress, constraints, legislative framework, and future directions in GE and characterization of PCs from leaves, concentrating particularly on five plant species (tea, moringa, stevia, sea buckthorn, and pistacia) based on the screened journals that precisely showed improvements in extraction efficiency along with maintaining extract quality. This overview will serve researchers and relevant industries engaged in the development of suitable techniques for the extraction of PCs with increasing yield.


Asunto(s)
Antioxidantes , Fenoles , Fenoles/análisis , Suplementos Dietéticos , Alimentos Funcionales , Hojas de la Planta/química
3.
Crit Rev Food Sci Nutr ; 63(14): 2004-2017, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34459296

RESUMEN

Fruits and vegetables (F&V) are the second highest recommended foods, rich in antioxidants, vitamins and minerals, vital for building immunity against chronic diseases. F&V processing involves particle size reduction, for which different types of homogenizers, categorized as mechanical homogenizers, pressure homogenizers and ultrasonic homogenizers are used. The review discusses different types of homogenizers, their working mechanism, and application in F&V processing. Among mechanical homogenizers, knife mills are used for primary size reduction, ball mills for the micronization of dried F&V and rotor-stator homogenizers for emulsification. Use of the ultrasonic homogenizer is limited to extraction of bioactive compounds or as a pre-treatment for dehydration of F&V. High-pressure homogenizers are most widely used and reported due to the synergistic effect of homogenization and temperature increase, resulting in longer shelf-life and better physicochemical properties of the product. Additionally, the review also explains the effect of homogenization on the physicochemical, sensory and nutraceutical properties of the product.


Asunto(s)
Frutas , Verduras , Antioxidantes , Vitaminas
4.
Molecules ; 28(2)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36677546

RESUMEN

This study presents modeling and optimization of ultrasound-assisted extraction (UAE) of Melastoma malabathricum with the objective of evaluating its phytochemical properties. This one-factor-at-a-time (OFAT) procedure was conducted to screen for optimization variables whose domains included extraction temperature (XET), ultrasonic time (XUT), solvent concentration (XSC), and sample-to-liquid ratio (XSLR). Response surface methodology (RSM) coupled with Box-Behnken design (BBD) was applied to establish optimum conditions for maximum antioxidant extraction. Modeling and optimization conditions of UAE at 37 kHz, XET 32 °C for XUT 16 min and dissolved in an XSC 70% ethanol concentration at a XSLR 1:10 ratio yielded scavenging effects on 2,2-diphenyl-1-picryl-hydrazyl (DPPH) at 96% ± 1.48 and recorded values of total phenolic content (TPC) and total flavonoid content (TFC) at 803.456 ± 32.48 mg GAE (gallic acid equivalents)/g, and 102.972 ± 2.51 mg QE (quercetin equivalents)/g, respectively. The presence of high flavonoid compounds was verified using TWIMS-QTOFMS. Chromatic evaluation of phytochemicals using gas chromatography-mass spectrometry (GC-MS) revealed the presence of 14 phytocompounds widely documented to play significant roles in human health. This study provides a comparative evaluation with other studies and may be used for validation of the species' potential for its much-acclaimed medicinal and cosmeceutical uses.


Asunto(s)
Antioxidantes , Fenoles , Humanos , Antioxidantes/farmacología , Antioxidantes/química , Fenoles/química , Flavonoides/química , Solventes , Extractos Vegetales/química , Etanol/química
5.
Appl Microbiol Biotechnol ; 106(11): 4029-4039, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35608668

RESUMEN

The use of waste stream residues as feedstock for material production simultaneously helps reduce dependence on fossil-based resources and to shift toward a circular economy. This study explores the conversion of food waste into valuable chemicals, namely, bio-pigments. Here, a simulated food waste feedstock was converted into pigments via solid-state fermentation with the filamentous fungus Talaromyces albobiverticillius (NRRL 2120). Pigments including monascorubrin, rubropunctatin, and 7-(2-hydroxyethyl)-monascorubramine were identified as products of the fermentation via ultra-performance liquid chromatography coupled with quadrupole-time-of-flight electrospray ionization mass spectrometry. Pigments were obtained at concentrations of 32.5, 20.9, and 22.4 AU/gram dry substrate for pigments absorbing at 400, 475, and 500 nm, respectively. Pigment production was further enhanced by co-culturing T. albobiverticillius with Trichoderma reesei (NRRL 3652), and ultimately yielded 63.8, 35.6, and 43.6 AU/gds at the same respective wavelengths. This represents the highest reported production of pigments via solid-state fermentation of a non-supplemented waste stream feedstock. KEY POINTS: • Simulated food waste underwent solid-state fermentation via filamentous fungi. • Bio-pigments were obtained from fermentation of the simulated food waste. • Co-culturing multiple fungal species substantially improved pigment production.


Asunto(s)
Alimentos , Eliminación de Residuos , Técnicas de Cocultivo , Fermentación , Hongos , Eliminación de Residuos/métodos
6.
Molecules ; 27(5)2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35268743

RESUMEN

Pisum sativum is a leguminous crop suitable for cultivation worldwide. It is used as a forage or dried seed supplement in animal feed and, more recently, as a potential non-traditional oilseed. This study aimed to develop a low-cost, rapid, and non-destructive method for analyzing pea lipids with no chemical modifications that would prove superior to existing destructive solvent extraction methods. Different pea accession seed samples, prepared as either small portions (0.5 mm2) of endosperm or ground pea seed powder for comparison, were subjected to HR-MAS NMR analyses and whole seed samples underwent NIR analyses. The total lipid content ranged between 0.57-3.45% and 1.3-2.6% with NMR and NIR, respectively. Compared to traditional extraction with butanol, hexane-isopropanol, and petroleum ether, correlation coefficients were 0.77 (R2 = 0.60), 0.56 (R2 = 0.47), and 0.78 (R2 = 0.62), respectively. Correlation coefficients for NMR compared to traditional extraction increased to 0.97 (R2 = 0.99) with appropriate correction factors. PLS regression analyses confirmed the application of this technology for rapid lipid content determination, with trends fitting models often close to an R2 of 0.95. A better robust NIR quantification model can be developed by increasing the number of samples with more diversity.


Asunto(s)
Pisum sativum
7.
Molecules ; 27(24)2022 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-36557913

RESUMEN

Efficient cannabis biomass extraction can increase yield while reducing costs and minimizing waste. Cold ethanol extraction was evaluated to maximize yield and concentrations of cannabinoids and terpenes at different temperatures. Central composite rotatable design was used to optimize two independent factors: sample-to-solvent ratio (1:2.9 to 1:17.1) and extraction time (5.7 min-34.1 min). With response surface methodology, predicted optimal conditions at different extraction temperatures were a cannabis-to-ethanol ratio of 1:15 and a 10 min extraction time. With these conditions, yields (g 100 g dry matter-1) were 18.2, 19.7, and 18.5 for -20 °C, -40 °C and room temperature, respectively. Compared to the reference ground sample, tetrahydrocannabinolic acid changed from 17.9 (g 100 g dry matter-1) to 15, 17.5, and 18.3 with an extraction efficiency of 83.6%, 97.7%, 102.1% for -20 °C, -40 °C, and room temperature, respectively. Terpene content decreased by 54.1% and 32.2% for extraction at -20 °C and room temperature, respectively, compared to extraction at -40 °C. Principal component analysis showed that principal component 1 and principal component 2 account for 88% and 7.31% of total variance, respectively, although no significant differences in cold ethanol extraction at different temperatures were observed.


Asunto(s)
Cannabinoides , Cannabis , Alucinógenos , Terpenos , Etanol , Agonistas de Receptores de Cannabinoides
8.
Molecules ; 27(24)2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36557949

RESUMEN

Limited studies have explored different extraction techniques that improve cannabis extraction with scale-up potential. Ultrasound-assisted and microwave-assisted extraction were evaluated to maximize the yield and concentration of cannabinoids and terpenes. A central composite rotatable design was used to optimize independent factors (sample-to-solvent ratio, extraction time, extraction temperature, and duty cycle). The optimal conditions for ultrasound- and microwave-assisted extraction were the sample-to-solvent ratios of 1:15 and 1:14.4, respectively, for 30 min at 60 °C. Ultrasound-assisted extraction yielded 14.4% and 14.2% more oil and terpenes, respectively, compared with microwave-assisted extracts. Ultrasound-assisted extraction increased cannabinoid concentration from 13.2−39.2%. Considering reference ground samples, tetrahydrocannabinolic acid increased from 17.9 (g 100 g dry matter−1) to 28.5 and 20 with extraction efficiencies of 159.2% and 111.4% for ultrasound-assisted and microwave-assisted extraction, respectively. Principal component analyses indicate that the first two principal components accounted for 96.6% of the total variance (PC1 = 93.2% and PC2 = 3.4%) for ultrasound-assisted extraction and 92.4% of the total variance (PC1 = 85.4% and PC2 = 7%) for microwave-assisted extraction. Sample-to-solvent ratios significantly (p < 0.05) influenced the secondary metabolite profiles and yields for ultrasound-assisted extracts, but not microwave-assisted extracts.


Asunto(s)
Cannabinoides , Cannabis , Alucinógenos , Terpenos , Extractos Vegetales , Solventes , Agonistas de Receptores de Cannabinoides
9.
Plant Foods Hum Nutr ; 76(2): 161-169, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33715102

RESUMEN

Processing of Russian olive water kefir (RWK), as a fermented functional drink made with Russian olive juice and water kefir grains with high antioxidant activity, into powder is crucial for improving its stability for the commercialization of this product. For the first time, this study aimed to encapsulate water kefir microorganisms and bioactive compounds in RWK using carrier materials to develop a synbiotic functional powder using spray drying as an encapsulation method. The goal was maximizing antioxidant activity, product yield, and survival rate of water kefir microorganisms in the produced Russian olive water kefir powder. The optimal spray drying conditions were observed to be at an inlet air temperature of 120ºC, 35 % feed flow rate, and 7 % concentration of drying aid. The effects of spray drying conditions on the quality of microcapsules were assessed and modeled, and the validity of the model was verified. Also, the spray-dried powder's physicochemical properties were assessed and showed promising microbial and physicochemical characteristics compared with the freeze-dried powder.


Asunto(s)
Elaeagnaceae , Kéfir , Antioxidantes , Liofilización , Kéfir/análisis , Agua
10.
Bioprocess Biosyst Eng ; 43(8): 1445-1455, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32270294

RESUMEN

The effect of light wavelengths on the physiological, biochemical and lutein content of the microalgal consortia Chlorella variabilis and Scenedesmus obliquus was evaluated using different light sources. Among different light treatments, cool-white fluorescent light produced the highest biomass of 673 mg L-1 with a specific growth rate of 0.75 day-1 followed by blue (500 mg L-1; 0.73 day-1). The chlorophyll content was enhanced under blue light (10.7 mg L-1) followed by cool fluorescent light (9.3 mg L-1), whereas the lutein productivity was enhanced under cool fluorescent light (7.22 mg g-1). Protein content of the microalgal consortia was enhanced under all light treatments with the highest protein accumulation under cool-white fluorescent light (~56% of dry mass) closely followed by amber light (52% of dry mass), whereas the carbohydrate content was higher under amber light (~35% of dry mass). The results revealed that the consortia could grow well on diluted dairy wastewater thereby reducing the cost of algal production when compared with the use of inorganic media and a two-phase culture process utilizing cool fluorescent and amber light could be employed for maximizing algal biomass and nutrient composition with enhanced lutein production. The study also emphasizes on the economic efficiency of LED lights in terms of biomass produced based on the modest electricity consumed and the importance of using amber light for cultivating microalgae for its nutrient content which has seldom been studied.


Asunto(s)
Chlorella/crecimiento & desarrollo , Iluminación , Microalgas/crecimiento & desarrollo , Consorcios Microbianos , Scenedesmus/crecimiento & desarrollo , Aguas Residuales/microbiología , Biocombustibles , Biomasa , Industria Lechera
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA