Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Invest Ophthalmol Vis Sci ; 46(2): 487-96, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15671273

RESUMEN

PURPOSE: Corneal stromal myofibroblasts express the platelet-activating factor (PAF) receptor, but its role is unclear. In the present study, the effect of PAF on induction of metalloproteinases (MMPs) was investigated. METHODS: Rabbit corneal myofibroblasts were identified by immunodetection of alpha-smooth muscle (alpha-SM)-actin. MT1-MMP, MMP-2, MMP-9, and tissue inhibitor of matrix metalloproteinase (TIMP)-2 were detected by immunofluorescence. Cells were treated with 100 nM cPAF, with or without the PAF antagonist BN 50730 or the furin inhibitor nona-D-arg-NH(2). Gene-expression levels for furin, urokinase plasminogen activator, MMP-2, MMP-9, MT1-MMP, and TIMP-2 were determined by real-time PCR. Protein expression was assessed by Western blot. MMP-2 and -9 activity was determined by gelatin zymography. Active MT1-MMP levels were measured by ELISA. RESULTS: cPAF triggered significantly increased MT1-MMP, MMP-2, MMP-9, and TIMP-2 mRNA expression, followed by increased active MT1-MMP protein expression at 12 hours, whereas TIMP-2 protein increased at 24 hours. PAF also induced furin gene expression, followed by increased protein expression. Nona-D-arg-NH(2) blocked cPAF induction of MT1-MMP activity. PAF-treated myofibroblasts showed increased active MMP-9 protein, but unchanged MMP-2 activity. Pretreatment with BN 50730 blocked PAF-induced transcription and translation of these proteins. CONCLUSIONS: PAF, through a receptor-mediated mechanism, induces a specific pattern of furin, MMP, and TIMP-2 expression in corneal myofibroblasts. MMP-2 activity was unchanged by PAF treatment. These results suggest that in response to the inflammatory mediator PAF, induction of MT1-MMP is independent of MMP-2 activity in corneal myofibroblasts. Thus, PAF-mediated changes in extracellular matrix composition surrounding the myofibroblasts could be important in regulating the corneal scarring process. Moreover, PAF antagonists could be useful in maintaining corneal transparency.


Asunto(s)
Sustancia Propia/efectos de los fármacos , Furina/genética , Regulación Enzimológica de la Expresión Génica , Metaloproteinasa 2 de la Matriz/genética , Metaloendopeptidasas/genética , Factor de Activación Plaquetaria/farmacología , Actinas/metabolismo , Animales , Western Blotting , Sustancia Propia/enzimología , Activación Enzimática , Ensayo de Inmunoadsorción Enzimática , Fibroblastos/efectos de los fármacos , Fibroblastos/enzimología , Técnica del Anticuerpo Fluorescente Indirecta , Furina/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Metaloproteinasas de la Matriz Asociadas a la Membrana , Metaloendopeptidasas/metabolismo , ARN Mensajero/metabolismo , Conejos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Inhibidor Tisular de Metaloproteinasa-2/genética , Inhibidor Tisular de Metaloproteinasa-2/metabolismo
2.
Prog Retin Eye Res ; 21(5): 449-64, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12207945

RESUMEN

Platelet-activating factor (PAF) is a potent bioactive lipid that is generated in the cornea after injury and whose actions are mediated through specific receptors. Studies from our laboratory have shown that PAF interactions with its receptor activate several transmembrane signals involved in inflammation, wound healing, and apoptosis. The wide variety of responses to PAF implicate this lipid as a central player in many responses of the cornea after a pathologic stimulus. An exciting facet of PAF is that it induces the expression of specific genes involved in the remodeling of components of the extracellular matrix, such as some metalloproteinases, urokinase plasminogen activator, and selective inhibitors of metalloproteinases. These enzymes, when overexpressed, could lead to corneal ulceration. Continuous exposure to PAF during prolonged inflammation produces increase keratocyte apoptosis and inhibition of epithelial adhesion to the basement membrane. As a consequence, there is a marked delay in wound healing, which is not countered by the actions of growth factors. In this review, we present data mainly from our laboratory showing actions of PAF in corneal epithelium in vivo and in vitro in corneal models of injury as well as in cells in culture. We also discuss the signal-transduction mechanisms involved in the different actions of PAF. A therapeutic role for PAF antagonists in blocking the effects of PAF is guaranteed in the future.


Asunto(s)
Córnea/fisiopatología , Lesiones de la Cornea , Lesiones Oculares/fisiopatología , Factor de Activación Plaquetaria/metabolismo , Animales , Cicatrización de Heridas/genética
3.
FASEB J ; 18(3): 568-70, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-14715700

RESUMEN

Tumor-induced angiogenic responses lead to complex phenotypic changes in vascular endothelial cells, which must coordinate the expression of both proteases and protease inhibitors prior to the proliferation and invasion of surrounding stroma. Matrix metalloproteinase 2 (MMP2), which degrades Type IV collagen, is produced as proMMP2. proMMP2 is activated in part through its interactions with membrane Type 1 MMP (MT1-MMP) and tissue inhibitor of matrix metalloproteinase 2 (TIMP2). In this study, we demonstrate that platelet-activating factor (PAF) is a potent inducer of human umbilical vein endothelial cell (HUVEC) migration and invasion, which is attenuated by PAF receptor antagonists, and that PAF receptor antagonists inhibit the migration and invasion of HUVEC mediated by medium conditioned by a prostatic carcinoma cell line. We confirm that PAF receptor antagonists inhibit proliferation of HUVEC grown in rich growth medium. We show that PAF increases mRNA levels for MT1-MMP and TIMP2, followed by increased temporal conversion of latent proMMP2 to MMP2. Finally, we demonstrate that the ratio of MT1-MMP to TIMP2 in membrane preparations from PAF-stimulated HUVEC is 1.6:1, approximating the hypothesized ideal ratio of 2:1 necessary for the conversion of proMMP2 to MMP2. Our data support the involvement of PAF in vascular endothelial cell migration and invasion.


Asunto(s)
Células Endoteliales/efectos de los fármacos , Precursores Enzimáticos/efectos de los fármacos , Metaloproteinasa 2 de la Matriz/metabolismo , Factor de Activación Plaquetaria/farmacología , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Línea Celular Tumoral/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Células Cultivadas/efectos de los fármacos , Medios de Cultivo Condicionados/farmacología , Células Endoteliales/citología , Células Endoteliales/enzimología , Activación Enzimática/efectos de los fármacos , Precursores Enzimáticos/metabolismo , Regulación de la Expresión Génica , Sustancias de Crecimiento/farmacología , Humanos , Masculino , Metaloproteinasas de la Matriz Asociadas a la Membrana , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/genética , Metaloendopeptidasas/biosíntesis , Metaloendopeptidasas/genética , Factor de Activación Plaquetaria/fisiología , Glicoproteínas de Membrana Plaquetaria/antagonistas & inhibidores , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Sistemas de Mensajero Secundario/fisiología , Inhibidor Tisular de Metaloproteinasa-2/biosíntesis , Inhibidor Tisular de Metaloproteinasa-2/genética , Venas Umbilicales
4.
Invest Ophthalmol Vis Sci ; 45(9): 2915-21, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15326102

RESUMEN

PURPOSE: Platelet-activating factor (PAF) is a potent proinflammatory mediator that accumulates in the cornea after injury and induces the expression of genes related to inflammation and wound healing. The current study was conducted to investigate the direct effect of PAF on corneal neovascularization and on the expression of angiogenic growth factors in vascular endothelial cells. METHODS: Pellets containing carbamyl-PAF (cPAF) were implanted in corneas of wild-type or PAF-receptor (PAF-R)-knockout mice, and the progression of angiogenesis was monitored by microscope. In some experiments, mice were treated with a daily intraperitoneal injection of the PAF-R antagonist LAU8080. Migration assays of human umbilical cord vein endothelial cells (HUVECs) and human dermal microvascular endothelial cells (HMVECs) were performed in a Boyden chamber after addition of various concentrations of cPAF or bovine fibroblast growth factor (FGF-2). Cell proliferation was assessed by fluorescence-binding assay in the presence of cPAF or FGF-2 for 8 days. Vascular endothelial growth factor (VEGF) and FGF-2 expression was studied by RT-PCR and Northern- and Western-blot analyses in cells stimulated with cPAF at different concentrations and for different times. RESULTS: Six days after cPAF pellet implantation, there were new vessels growing from the limbus to the center of the cornea. The PAF-induced neovascularization was significantly reduced in PAF-R-knockout mice and in mice treated with the PAF antagonist. cPAF added to the lower well of the Boyden chamber produced a dose-dependent migration of HUVECs and HMVECs that was inhibited in cells preincubated with LAU8080 or with a VEGF-blocking antibody. In contrast, cPAF did not stimulate proliferation of endothelial cells. cPAF induced VEGF mRNA and protein expression but not FGF-2 expression in HUVECs and HMVECs. CONCLUSIONS: PAF stimulates corneal neovascularization by a receptor-mediated mechanism. Induction of VEGF expression and stimulation of vascular endothelial cell migration are initial events in PAF-promoted corneal angiogenesis.


Asunto(s)
Neovascularización de la Córnea/etiología , Células Endoteliales/metabolismo , Factor de Activación Plaquetaria/fisiología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Anticuerpos/farmacología , Azepinas/farmacología , Bovinos , División Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Neovascularización de la Córnea/inducido químicamente , Neovascularización de la Córnea/prevención & control , Relación Dosis-Respuesta a Droga , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Factor 2 de Crecimiento de Fibroblastos/farmacología , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microcirculación , Éteres Fosfolípidos/administración & dosificación , Glicoproteínas de Membrana Plaquetaria/antagonistas & inhibidores , ARN Mensajero/metabolismo , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Piel/irrigación sanguínea , Tienopiridinas , Triazoles/farmacología , Venas Umbilicales/citología , Venas Umbilicales/fisiología , Regulación hacia Arriba , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/inmunología
5.
Mol Vis ; 10: 341-50, 2004 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-15162095

RESUMEN

PURPOSE: To determine whether the gene expression of matrix metalloproteinases (MMPs) as well as that of the pro-angiogenic cytokine vascular endothelial growth factor (VEGF) and its receptors change in response to hypoxic exposure in a primate choroid-retinal endothelial cell line, and furthermore, whether cytosolic phospholipase A2 (cPLA2) plays a role in this process. METHODS: Rhesus macaque choroid-retinal endothelial (RF/6A) cells were incubated under hypoxic conditions for 1, 2, 4, or 8 h prior to RNA extraction. In some experiments cells were pretreated with the cPLA2 inhibitor AACOCF3 (10 microM) for 30 min prior to hypoxia. Changes in gene expression were determined by RT-PCR and quantified by real-time PCR for urokinase plasminogen activator (uPA), collagenase-1 (MMP-1), membrane type-1 metalloproteinase (MT1-MMP), gelatinases A and B (MMP-2, MMP-9), tissue inhibitor-2 (TIMP-2), VEGF and its receptors, Flt-1 (VEGFR-1), KDR (VEGFR-2), and neuropilin-1 (NP-1). MMP-2 secreted by the cells was evaluated by zymography. VEGF release was measured by ELISA. In tube-formation studies, endothelial cells (EC) were seeded into collagen gel, exposed to hypoxia for 4 h, then incubated under normoxic conditions for 72 h. RESULTS: Hypoxia triggered a three fold increase in the gene expression of MT1-MMP, MMP-2, and TIMP-2, and a ten fold increase in MMP-2 levels. Moreover it also induced tube formation in EC. Expression of uPA, MMP-1, and MMP-9 mRNA was not detected. Pretreatment with AACOCF3 abolished hypoxia-induced tube formation and MT1-MMP, MMP-2, and TIMP-2 transcription. Furthermore, hypoxia produced a significant, sustained increase in the gene expression and release of VEGF-165, the only VEGF-A isoform detected in these cells. AACOCF3 reduced the hypoxia-induced VEGF release at 8 h of hypoxia. VEGF receptors KDR and NP-1 were constitutively expressed in EC and up-regulated under hypoxic conditions. CONCLUSIONS: In monkey choroid-retinal EC, hypoxia selectively induces MMP-2 activity. This induction is preceded by MT1-MMP, MMP-2, and TIMP-2 mRNA expression, as well as that of the VEGF-165 isoform and its receptors KDR and NP1. These increases possibly result from hypoxia-induced activation of cPLA2 and subsequent release of arachidonic acid and its conversion to prostaglandins. These molecular changes in EC could, in part, contribute to the angiogenic response that occurs in the development of ischemic retinopathies and choroidal neovascularization.


Asunto(s)
Endotelio Vascular/metabolismo , Regulación Enzimológica de la Expresión Génica/fisiología , Hipoxia/metabolismo , Metaloproteinasas de la Matriz/genética , Fosfolipasas A/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Animales , Ácidos Araquidónicos/farmacología , Hipoxia de la Célula , Línea Celular , Coroides/irrigación sanguínea , Citosol/enzimología , Activación Enzimática , Inhibidores Enzimáticos/farmacología , Ensayo de Inmunoadsorción Enzimática , Macaca mulatta , Metaloproteinasas de la Matriz/metabolismo , Neovascularización Patológica/patología , Neuropilina-1/genética , Neuropilina-1/metabolismo , Fosfolipasas A/antagonistas & inhibidores , Fosfolipasas A2 , ARN Mensajero/metabolismo , Vasos Retinianos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
6.
Brain Res ; 1016(2): 195-200, 2004 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-15246855

RESUMEN

The response of the inducible isoform of the prostaglandin H2 synthase (COX-2) and the c-Jun N-terminal kinase (JNK) in post-ischemic neuronal damage was assessed in a model of ischemic tolerance in Mongolian Gerbils. After a single 6-min bilateral carotid occlusion, histological damage was evident in the CA1 region of hippocampus, correlated with a high expression of JNK and COX-2 mRNA. However, in the group of animals with a 2-min ischemia and the tolerance group, in which a 2-min bilateral carotid occlusion was followed 3 days later by a 6-min ischemia, no hippocampal or cortical damage was detected. Accordingly, the JNK and COX-2 mRNA levels remained unaffected. We suggest that the level of JNK and COX-2 expression may determine the outcome as either post-ischemic cell death or tolerance.


Asunto(s)
Regulación de la Expresión Génica , Ataque Isquémico Transitorio/metabolismo , Precondicionamiento Isquémico , Isoenzimas/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Prostaglandina-Endoperóxido Sintasas/metabolismo , Animales , Western Blotting/métodos , Recuento de Células/métodos , Muerte Celular/fisiología , Ciclooxigenasa 2 , Modelos Animales de Enfermedad , Femenino , Gerbillinae , Etiquetado Corte-Fin in Situ/métodos , Ataque Isquémico Transitorio/genética , Isoenzimas/genética , Proteínas Quinasas JNK Activadas por Mitógenos , Proteínas Quinasas Activadas por Mitógenos/genética , Prostaglandina-Endoperóxido Sintasas/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Factores de Tiempo
7.
J Biol Chem ; 280(9): 7917-24, 2005 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-15613483

RESUMEN

Activation of protein kinase C (PKC) involves its recruitment to the membrane, where it interacts with its activator(s). We expressed PKCalpha fused to green fluorescent protein and examined its real time translocation to the plasma membrane in living human corneal epithelial cells. Upon 10 min of stimulation with epidermal and hepatocyte growth factors (EGF and HGF), PKCalpha translocated to the plasma membrane. Keratinocyte growth factor did not stimulate PKCalpha translocation up to 1 h after stimulation. Pretreatment with the 15-lipoxygenase metabolite, 15(S)-hydroxyeicosatetraenoic acid (15(S)-HETE), followed by EGF or HGF, produced faster translocation of PKCalpha detectable at 2 min. However, the same concentration of 15(S)-HETE alone did not stimulate translocation. 15(S)-Hydroperoxyeicosatetraenoic acid and 5(S)-HETE did not affect growth factor-induced translocation of PKCalpha. PD153035, a specific inhibitor of tyrosine kinase activity of the EGF receptor, completely blocked PKCalpha translocation induced by EGF. PD98059, a specific MEK inhibitor, significantly inhibited EGF- and HGF-mediated PKCalpha translocation, which was reversed by addition of 15(S)-HETE. Phosphorylation of ERK1/2 by EGF was followed by phosphorylation of cytosolic phospholipase A(2) (cPLA(2)), and blocking ERK1/2 inhibited cPLA(2) activation. Immunofluorescence demonstrated translocation of p-cPLA(2) to plasma and nuclear membranes as early as 2 min. This may further increase arachidonic acid release from membrane phospholipid pools and increase the intracellular pool of HETEs. In fact, in cells prelabeled with [(3)H]arachidonic acid, EGF stimulated synthesis of 15(S)-HETE in the cytosolic fraction. 15(S)-HETE also reversed the effect of LOX inhibitor on EGF-mediated cell proliferation. Our results indicate that 15(S)-HETE is an intracellular second messenger that facilitates translocation of PKCalpha to the membrane and elucidate a mechanism that plays a regulatory role in cell proliferation crucial to corneal wound healing.


Asunto(s)
Factor de Crecimiento Epidérmico/fisiología , Factores de Crecimiento de Fibroblastos/metabolismo , Factor de Crecimiento de Hepatocito/fisiología , Proteína Quinasa C/metabolismo , Araquidonato 15-Lipooxigenasa/metabolismo , Western Blotting , Membrana Celular/metabolismo , Proliferación Celular , Células Cultivadas , Cromatografía Líquida de Alta Presión , Córnea/metabolismo , Citosol/enzimología , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Células Epiteliales/citología , Factor 7 de Crecimiento de Fibroblastos , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Ácidos Hidroxieicosatetraenoicos/química , Cinética , Lipooxigenasa/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Microscopía Fluorescente , Modelos Biológicos , Fosforilación , Proteína Quinasa C-alfa , Transporte de Proteínas , Quinazolinas/farmacología , Transducción de Señal , Factores de Tiempo , Transfección , Cicatrización de Heridas
8.
Exp Eye Res ; 74(3): 393-402, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12014920

RESUMEN

Previous studies in the laboratory have shown that platelet-activating factor (PAF), a potent inflammatory mediator that accumulates rapidly in the cornea after an injury, stimulates the expression of urokinase (uPA) and matrix metalloproteinase-1 (MMP-1) and -9 (MMP-9). Tissue inhibitors of MMPs (TIMPs) and plasminogen activator inhibitor (PAI-1) are produced in conjunction with these enzymes and are important regulators of their activity. Here, the authors investigated how PAF affects the expression of PAI-1, TIMP-1 and -2 relative to that of uPA, MMP-1, and -9 in rabbit corneal epithelial cells. Rabbit corneas were incubated in MEM medium containing 100 nM cPAF. To block the effects of PAF in some studies, corneas were preincubated for 1 hr in the presence of the PAF antagonist BN50730 (10 microM). At several time intervals, mRNA was extracted from epithelial cells and the levels of gene expression for the enzymes and their inhibitors were determined by real-time PCR. All quantitations were normalized to the 18s rRNA values (endogenous control) and changes in gene expression were reported as fold increase relative to untreated controls. PAF produced a 20-fold increase in the gene expression of PAI-1 at 8 hr, while similar fold increases in uPA mRNA expression occurred at 2 hr. PAF treatment also stimulated the expression of TIMP-1 and -2 genes, with a six-fold increase in TIMP-1 expression occurring at 36 hr and a four-fold increase in TIMP-2 expression at 24 hr. Maximal induction of MMP-1 and -9 mRNA, on the other hand, occurred at 4 and 8 hr, respectively. Induction of MMP-1 gene expression was similar to that of its inhibitors TIMP-1 and -2, while MMP-9 mRNA induction exceeded that of these inhibitors by 100-fold. The PAF-induced expression of PAI-1, TIMP-1 and -2 mRNAs was abolished by pre-treatment with BN50730. These data indicate that PAF activates the gene expression of TIMP-1, -2, and PAI-1 in corneal epithelium by a receptor-mediated mechanism. Furthermore, PAF induced overexpression of MMP-9 mRNA relative to that of TIMP-1 and -2, suggesting an imbalance between the expression of this proteolytic enzyme and its inhibitors, which may contribute to changes in the wound-healing process and ultimately lead to corneal ulcer development.


Asunto(s)
Epitelio Corneal/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Inhibidor 1 de Activador Plasminogénico/genética , Factor de Activación Plaquetaria/farmacología , Inhibidores Tisulares de Metaloproteinasas/genética , Animales , Epitelio Corneal/enzimología , Metaloproteinasa 9 de la Matriz/genética , Técnicas de Cultivo de Órganos , Reacción en Cadena de la Polimerasa/métodos , Conejos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Inhibidor Tisular de Metaloproteinasa-1/genética , Inhibidor Tisular de Metaloproteinasa-2/genética
9.
Exp Eye Res ; 76(5): 613-22, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12697425

RESUMEN

PURPOSE: Previous studies in our laboratory have shown that 12(S)-hydroxyeicosatetraenoic acid (12(S)-HETE), a product of 12-lipoxygenase (12-LOX) activity, is the predominant metabolite formed in rabbit corneas after injury. The present study was undertaken to investigate the effects of epidermal growth factor (EGF), hepatocyte growth factor (HGF), and keratinocyte growth factor (KGF) on 12-LOX expression and activity. We also investigated whether 12(S)-HETE mediated the growth factor-induced proliferation of corneal epithelial cells. METHODS: Rabbit corneas were stimulated with EGF, HGF, and KGF (10 ng ml(-1)) for different times. 12-LOX activity was assayed by incubating corneal microsomal preparations with radiolabeled arachidonic acid (AA) as substrate. For inhibitor studies, the microsomes were pretreated with 12-LOX-specific inhibitors baicalein (BC) or cinnamyl 3,4-dihydroxy-(alpha)-cyanocinnamate (CDC). Lipid extracts were injected onto an Ultramex 5 microm C(18) column and radioactivity was monitored online by a Radiomatic Flo-One Beta detector. Stereochemical analysis of 12-HETE product was determined by chiral-phase HPLC. To evaluate the effects of growth factors on 12-LOX mRNA expression, mRNA was extracted at several time points (12, 24, 36, 48 hr) and subjected to real-time PCR. For 12-LOX protein expression, microsomal preparations from 24- and 48-hr incubations were analyzed by Western blot. In cell-proliferation studies, epithelial cells treated with EGF, HGF, or KGF for 24, 48, and 72 hr were measured with a CyQUANT cell-proliferation assay kit. To determine the role of growth factor-induced 12(S)-HETE synthesis on corneal epithelial cell proliferation, cells were pretreated with 12-LOX-specific inhibitors BC or CDC prior to growth-factor supplementation. RESULTS: Stimulation with EGF, HGF, or KGF for 12 hr induced 12-LOX mRNA expression in rabbit corneal epithelial cells. This gene induction was followed by an increase in protein expression at 24 and 48 hr and a marked increase in 12(S)-HETE synthesis when compared to untreated controls. At 24-hr incubations, KGF showed a greater capacity than did EGF and HGF to stimulate microsomal 12-LOX activity, while at 48 hr 12(S)-HETE synthesis was significantly greater in EGF-treated cells as compared to that of HGF- and KGF-treated cells. Pretreatment with 12-LOX inhibitors blocked the growth factor-induced increase in 12(S)-HETE synthesis. Stimulation with growth factors or 12(S)-HETE for 24, 48, and 72hr produced a significant increase in corneal epithelial proliferation, which was partially inhibited by pretreatment of cells with 12-LOX-specific inhibitors. CONCLUSION: These findings suggest that EGF, HGF, and KGF stimulate 12(S)-HETE production in rabbit corneal epithelial cells through gene induction of 12-LOX. Furthermore, 12(S)-HETE may play a role in regulating epithelial cell proliferation and the rate of corneal re-epithelialization following an injury.


Asunto(s)
Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/fisiología , Epitelio Corneal/efectos de los fármacos , Sustancias de Crecimiento/farmacología , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/farmacología , Animales , Araquidonato 12-Lipooxigenasa/genética , Araquidonato 12-Lipooxigenasa/metabolismo , División Celular/fisiología , Células Cultivadas , Factor de Crecimiento Epidérmico/farmacología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Epitelio Corneal/citología , Epitelio Corneal/enzimología , Factor 7 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/farmacología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Factor de Crecimiento de Hepatocito/farmacología , Reacción en Cadena de la Polimerasa/métodos , ARN Mensajero/genética , Conejos , Activación Transcripcional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA