Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Environ Manage ; 224: 130-139, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-30036807

RESUMEN

Repparfjorden in northern Norway has been partly designated for submarine mine tailings disposal when the adjacent Cu mine re-opens in 2019. In order to increase sedimentation, the flocculant, Magnafloc10 is planned to be added to the mine tailings prior to discharge into the fjord. This study investigated the feasibility of reducing the Cu concentrations (375 mg/kg) in the mine tailings by applying electrodialytic extraction, including potential optimisation by adding Magnafloc10. In the acidic electrodialytic treatment (pH < 2), Magnafloc10 increased the extraction of Cu from the mine tailings particles from 76 to 86%, and the flocs with adsorbed metals were separated from the tailings solids by the electric field (1 mA/cm2). The electric energy consumption increased with the use of Magnafloc10 (from 17 to 30 kWh/g Cu extracted), due to lower conductivity in the liquid phase and clogging of the membrane by the flocs. In the alkaline electrodialytic treatment (pH > 12), Magnafloc10 reduced the extraction of Cu from 17% to 0.7%, due to the flocs remaining in the tailing slurries. The electric energy consumption per extracted Cu was similar in the acidic and alkaline electrodialytic treatments without the addition of Magnafloc10. In the alkaline electrodialytic treatment, the extraction of other metals was low (<2%), however longer treatment time is necessary to achieve similar Cu extraction as in the acidic electrodialysis. Depending on the target and timescale for treatment, acidic and alkaline electrodialysis can be employed to reduce the Cu concentration in the mine tailings thereby reducing the metal toxicity potential.


Asunto(s)
Cobre/química , Contaminantes Químicos del Agua/química , Cobre/aislamiento & purificación , Estuarios , Residuos Industriales , Metales , Minería , Noruega , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua
2.
J Environ Manage ; 198(Pt 1): 192-202, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28460326

RESUMEN

Contaminated sediments are remediated in order to protect human health and the environment, with the additional benefit of using the treated sediments for other activities. Common for many polluted sediments is the contamination with several different pollutants, making remediation challenging with the need of different remedial actions for each pollutant. In this study, electrodialytic remediation (EDR) of sediments was found effective for simultaneous removal of heavy metals and organic pollutants for sediments from Arctic regions - Sisimiut in Greenland and Hammerfest in Norway. The influence of sediment properties and experimental settings on the remediation process was studied by employing multivariate analysis. The importance of the variables studied varied with the pollutant and based on these results it was possible to assess removal processes for the different pollutants. Desorption was found to be important for the removal of heavy metals and TBT, while photolysis was significant for removal of PAH, PCB and TBT. In addition, dechlorination was found to be important for the removal of PCB. The highest removal efficiencies were found for heavy metals, TBT and PCB (>40%) and lower removal efficiencies for PAH (<35%).


Asunto(s)
Restauración y Remediación Ambiental , Metales Pesados , Contaminantes Químicos del Agua , Regiones Árticas , Sedimentos Geológicos , Noruega
3.
Water Sci Technol ; 75(5-6): 1251-1260, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28272054

RESUMEN

Incineration of sewage sludge is a common practice in many western countries. Gasification is an attractive option because of its high energy efficiency and flexibility in the usage of the produced gas. However, they both unavoidably produce sewage sludge ashes, a material that is rich in phosphorus, but which is commonly landfilled or used in construction materials. With current uncertainty in phosphate rock supply, phosphorus recovery from sewage sludge ashes has become interesting. In the present work, ashes from incineration and gasification of the same sewage sludge were compared in terms of phosphorus extractability using electrodialytic (ED) methods. The results show that comparable recovery rates of phosphorus were achieved with a single ED step for incineration ashes and a sequential combination of two ED steps for gasification ashes, which was due to a higher influence of iron and/or aluminium in phosphorus solubility for the latter. A product with lower level of metallic impurities and comparable to wet process phosphoric acid was eventually obtained from gasification ashes. Thus, gasification becomes an interesting alternative to incineration also in terms of phosphorus separation.


Asunto(s)
Gases/análisis , Incineración , Fósforo/aislamiento & purificación , Aguas del Alcantarillado/química , Diálisis , Conductividad Eléctrica , Electroquímica , Concentración de Iones de Hidrógeno
4.
J Environ Manage ; 151: 550-5, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25601386

RESUMEN

Contaminated soils and sediments with polychlorinated biphenyls (PCB) are an important environmental problem due to the persistence of these synthetic aromatic compounds and to the lack of a cost-effective and sustainable remediation technology. Recently, a new experimental setup has been proposed using electrodialytic remediation and iron nanoparticles. The current work compares the performance of this new setup (A) with conventional electrokinetics (setup B). An historically contaminated soil with an initial PCB concentration of 258 µg kg(-1) was treated during 5, 10, 20 and 45 d using different amounts of iron nanoparticles in both setups A and B. A PCB removal of 83% was obtained in setup A compared with 58% of setup B. Setup A also showed additional advantages, such as a higher PCB dechlorination, in a shorter time, with lower nZVI consumption, and with the use of half of the voltage gradient when compared with the traditional setup (B). Energy and nZVI costs for a full-scale reactor are estimated at 72 € for each cubic meter of PCB contaminated soil treated on-site, making this technology competitive when compared with average off-site incineration (885 € m(-3)) or landfilling (231 € m(-3)) cost in Europe and in the USA (327 USD m(-3)).


Asunto(s)
Técnicas Electroquímicas/métodos , Hierro , Nanopartículas del Metal/química , Bifenilos Policlorados/química , Contaminantes del Suelo/química , Técnicas Electroquímicas/instrumentación , Contaminación Ambiental/análisis , Suelo/química
5.
Artículo en Inglés | MEDLINE | ID: mdl-38627342

RESUMEN

Wood ashes can be used, e.g., as soil fertilizer or in construction materials; however, it is important to ensure that such use will not cause spreading of heavy metals and subsequent harm to the environment. Wood fly ashes (WFAs) generally have higher concentrations of heavy metals than wood bottom ashes. This paper focuses on the leaching of heavy metals from WFA, specifically identifying WFA characteristics that influence the leaching and changes in leaching caused by hydration and carbonation in ambient air. Chemometric modeling based on characteristics for eight different WFAs suggested that the leaching of Cr and Zn was associated with the concentration of K and the leaching of SO42-, indicating a connection to the soluble K2(SO4) commonly found in WFAs. During the aging, both pH and conductivity of the WFAs decreased showing the formation of new phases. The leaching of Cd, Cu, Ni, and Pb was low initially and decreased to non-measurable after the aging. So did the leaching of Zn except from one of the WFAs. Thus, the part of the heavy metals, which were leaching originally, was built into the newly formed phases. The Cr leaching also showed a general decrease during the aging, however, not to similarly low levels. This means that the leaching Cr fraction was either not influenced by the aging processes or the formed phases contained water-soluble Cr. The continued leaching of Cr needs more attention as it may be the toxic and carcinogenic Cr(IV). As the chemistry and mineralogy of WFAs, inclusive of the mobility of the heavy metals, are subject to changes, increased knowledge on the chemistry determining these changes is needed to choose environmentally sound recycling options.

6.
Artículo en Inglés | MEDLINE | ID: mdl-38877193

RESUMEN

Dredging eutrophic lake sediments can improve water quality, but it also requires dewatering and valorizing the dredged material to avoid wasting resources like phosphorus. This study experimentally investigated the basic mechanism and performance of electroosmotic dewatering of 1-L dredged sediments using different electric currents (20 mA, 40 mA, and 60 mA) after gravity filtration. The dewatering performance, moisture content and distribution, effect of electrochemical reaction on dewaterability, energy consumption, and changes in metals and phosphorus (P) distribution and pH values were analyzed. The results indicated that electroosmotic dewatering effectively decreased sediment mass by predominantly eliminating free and a portion of interstitial water, with reductions ranging from 7 to 20%. The optimal duration and current should, however, be considered to balance water removal and energy consumption. Higher moisture removal occurred with 40 mA for 24 h and 60 mA for 6 h, while the energy consumption obtained with 60 mA (0.201 kWh/kg water removed) was significantly lower than that of applying 40 mA for 24 h (0.473 kWh/kg water removed), with the assistance of ohmic heating, resulting in reduced viscosity and water release from capillaries. The tested conditions did not significantly extract heavy metals or P from the sediments, which may facilitate the disposal of the removed water back into the lake and the utilization of the treated sediments for different purposes. This technology is easy to operate and suitable for the treatment of dredged sediments, and the dewatering result is comparable to low pressurized filtration but at low energy consumption.

7.
Materials (Basel) ; 17(17)2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39274755

RESUMEN

Uplifted occurrences of fine-grained glaciogene marine sediments are found throughout the northern hemisphere. These sediments could be used to produce local construction materials, to rely less on imported construction materials from southern regions. In this study, a representative occurrence from Ilulissat, West Greenland, was investigated as a potential resource for local brick production. The study comprised three parts: (1) raw material characterization based on grain size distribution, major element chemistry, including total carbon, sulfur, and chloride concentrations, mineralogy, morphology, and Atterberg limits; (2) the production of test bricks at a Danish brickwork; and (3) testing of the bricks based on total shrinkage, water absorption, hygroscopic adsorption, open porosity, bulk density, compression strength, and mineralogy. The bricks produced proved to have excellent compression strength, low open porosity, and low water absorption. The shrinkage could be reduced by adding 10% chamotte to the marine sediment. Based on the investigated properties, this indicates that this type of clay is highly suitable as a resource for bricks.

8.
Materials (Basel) ; 17(15)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39124480

RESUMEN

Reuse in new buildings of structural concrete components from demolitions holds the potential for avoiding the use of raw materials to produce new components, including cement for new castings. Reuse rates are high in the circular economy; however, reusing structural components requires documentation of the properties to equate the safety of using reused and new components. Yet, there is no structured or recognized way to perform the documentation. This paper discusses a framework for the documentation requirements for structural concrete, stating the need for documenting the mechanical properties, concrete heterogeneity, and corrosion status of the reinforcement. The possibility is explored for documenting the required properties while the components are in the donor building by use of non-destructive test (NDT) methods. Such use of NDT methods is new. A comprehensive literature survey on the indirect literature, where NDT methods are used to demonstrate similar concrete properties though related to other purposes, is conducted. The overall conclusion is that the use of NDT methods has the potential to document the requested properties before reuse. The next steps towards implementation of NDT for documenting the properties of structural concrete components for reuse involve research in combined NDT methods and the development of AI systems for data interpretation.

9.
Environ Sci Pollut Res Int ; 30(55): 117881-117891, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37872344

RESUMEN

Two-compartment electrodialytic extraction (2C-ED) is a one-step process for the simultaneous phosphorous extraction and separation of heavy metals from sewage sludge ash (SSA). The process is driven by an applied electric DC field, which can be supplied from renewable sources. The proof-of-concept of the method was conducted in small laboratory cells; however, upscaling to a continuous 2C-ED process, which additionally can treat SSA suspensions at a low liquid-to-solid (L:S) ratio, requires a new design. This paper presents such a new design. In principle, ED consists of two compartments separated by a cation exchange membrane. One compartment contains a suspension of SSA in water and the anode. A cathode is placed in the other compartment. Electrolysis at the anode acidifies the suspension causing the dissolution of phosphorous and heavy metals. The heavy metals are separated from the suspension by electromigration into the catholyte, whereas the dissolved phosphorous remains in the dispersion solution. In the new design, the SSA was suspended in a tube-shaped reactor with the cation exchange membrane covering the outside. The reactor was placed in a container with the catholyte. Periodically turning off the reactor kept SSA in suspension even at a low L:S ratio without corners and pockets where the SSA otherwise tends to settle. Five 2C-ED experiments were conducted with 1.5 to 3 kg SSA at varying currents and durations. Up to 89% P was extracted. The extracted P was concentrated in the dispersion solution of the SSA suspension, where the obtained P-related concentrations of heavy metals were far below the limiting values for spreading on agricultural land. The experiments underlined that treating the SSA in a suspension with a low L:S ratio is advantageous. A comparison to previous laboratory experiments in small cells treating 50 g SSA shows a significantly more efficient use of the applied current in the new reactor setup. Thus, the new reactor design for 2C-ED fulfilled the set criteria for the operation and did additionally result in a higher efficiency than the laboratory setups, i.e., the design can be the first step towards an upscaling.


Asunto(s)
Metales Pesados , Aguas del Alcantarillado , Eliminación de Residuos Líquidos/métodos , Fósforo , Cationes
10.
Materials (Basel) ; 16(21)2023 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-37959544

RESUMEN

This review provides an overview of methods to extract valuable resources from the ash fractions of sewage sludge, municipal solid waste, and wood biomass combustion. The resources addressed here include critical raw materials, such as phosphorus, base and precious metals, and rare earth elements for which it is increasingly important to tap into secondary sources in addition to the mining of primary raw materials. The extraction technologies prioritized in this review are based on recycled acids or excess renewable energy to achieve an optimum environmental profile for the extracted resources and provide benefits in the form of local industrial symbioses. The extraction methods cover all scarce and valuable chemical elements contained in the ashes above certain concentration limits. Another important part of this review is defining potential applications for the mineral residues remaining after extraction. Therefore, the aim of this review is to combine the knowledge of resource extraction technology from ashes with possible applications of mineral residues in construction and related sectors to fully close material cycle loops.

11.
Membranes (Basel) ; 13(3)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36984650

RESUMEN

In copper smelting processes, acidic effluents are generated that contain inorganic contaminants such as arsenic and copper. Nowadays, the treatment of wastewater is done by physicochemical methods without copper recovery. Electrodialysis is an alternative process that can recover copper. Moreover, when electrocoagulation is applied to remove arsenic from wastewater, a more stable final sludge of less volume is obtained. The present research studies the application of a combined electrodialysis and electrocoagulation process to (1) recover Cu and (2) precipitate and remove arsenic simultaneously in the same batch reactor, using synthetic wastewater that simulates wastewater from a copper smelter. Copper and arsenic could be removed and separated by the electrodialysis part, and the electrocoagulation of arsenic was verified. With electrodialysis, the arsenic and copper removals were 67% and 100%, respectively, while 82% of the arsenic arriving at the electrocoagulation part of the cell could be precipitated and removed by this process. Initial concentrations were around 815 mg L-1 Cu and 7700 mg L-1 As. The optimal current was found to be 1.36 A due to the shorter treatment times necessary to get removal percentages, recovery percentages and energy/removed copper mass ratios in the same ranges as the values achieved with a current of 1.02 A. In summary, the combined process is a promising tool for simultaneous copper recovery and arsenic removal.

12.
J Environ Manage ; 95 Suppl: S110-5, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21167631

RESUMEN

Fly ashes from Municipal Solid Waste (MSW), straw (ST) and co-combustion of wood (CW) are here analyzed with the intent of reusing them. Two techniques are assessed, a remediation technique and a solidification/stabilization one. The removal of heavy metals from fly ashes through the electrodialytic process (EDR) has been tried out before. The goal of removing heavy metals has always been the reuse of fly ash, for instance in agricultural fields (BEK). The best removal rates are here summarized and some new results have been added. MSW fly ashes are still too hazardous after treatment to even consider application to the soil. ST ash is the only residue that gets concentrations low enough to be reused, but its fertilizing value might be questioned. An alternative reuse for the three ashes is here preliminary tested, the combination of fly ash with mortar. Fly ashes have been substituted by cement fraction or aggregate fraction. Surprisingly, better compressive strengths were obtained by replacing the aggregate fraction. CW ashes presented promising results for the substitution of aggregate in mortar and possibly in concrete.


Asunto(s)
Ceniza del Carbón/química , Materiales de Construcción , Metales Pesados/química , Eliminación de Residuos/métodos , Fuerza Compresiva , Electroquímica/métodos , Restauración y Remediación Ambiental/métodos , Metales Pesados/aislamiento & purificación , Madera
13.
Mar Pollut Bull ; 184: 114197, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36208554

RESUMEN

At present, there are no standardised tests to assess metal leaching during submarine tailings discharge. In this study the influence of variables known to affect metal mobility and availability (dissolved organic carbon (DOC), pH, salinity, temperature, aerated/anoxic conditions) along with variables affected by the discharge conditions (flocculant concentration, suspension) were studied in bench-scale experiments. The leaching tests were developed based on the case of a copper mine by Repparfjorden, northern Norway, which is planned to re-open in 2022. The experiments, which had three week duration, revealed low (<6 %) leaching of metals. Multivariate analysis showed that all variables, apart from DOC, highly influenced leaching and partitioning of at least one metal (Ba, Cr, Cu, and/or Mn). The high quantity of the planned annual discharge of mine tailings to the fjord (1-2 million tonnes) warranted estimation of the leached quantity of metals. Multivariate models, using present-day conditions in the fjord, estimated leaching of up to 124 kg Ba, 154 kg Cu and 2400 kg Mn per year during discharge of tailings. Future changes in the fjord conditions caused by climate change (decreased pH, increased temperature) was predicted by the multivariate models to increase the leaching up to 55 %, by the year 2065. The bench-scale experiments demonstrated the importance of including relevant variables (such as pH, salinity, and temperature) for metal leaching and -partitioning in leaching tests. The results showed that metal leaching during discharge is expected and will increase in the future due to the changed conditions caused by the foreseen climate change, and thereby underline the importance of monitoring metal concentrations in water during operations to determine the fate of metals in the fjord.


Asunto(s)
Cobre , Metales Pesados , Cobre/análisis , Monitoreo del Ambiente/métodos , Cambio Climático , Metales/análisis , Agua/análisis , Metales Pesados/análisis
14.
Chemosphere ; 243: 125340, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31760284

RESUMEN

Electrochemical removal of chlorinated ethenes in groundwater plumes may potentially overcome some of the challenges faced by current remediation technologies. So far, studies have been conducted in simplified settings of synthetic groundwater and inert porous matrices. This study is a stepwise investigation of the influence of field-extracted groundwater, sandy sediment and groundwater aquifer temperatures on the removal of an aged partially degraded contamination of tetrachloroethylene (PCE) at a typical groundwater flow rate. The aim is to assess the potential for applying electrochemistry at contaminated sites. At a constant current of 120 mA, pH and conductivity were unaffected downgradient the electrochemical zone. Major groundwater species were reduced and oxidized. Some minerals deposited, others dissolved. Hydrogen peroxide, a strong oxidant, was formed in levels up to 5 mg L-1 with a limited distribution into the sandy sediment. Trichloromethane was formed, supposedly by oxidation of organic matter in the sandy sediment in the presence of chloride. The more realistic the settings, the higher the PCE removal, bringing concentrations down to 7.8 ±â€¯2.3 µg L-1. A complete removal of trichloroethylene and cis-1,2-dichloroethylene was obtained. The results suggest that competing reactions related to the natural complex hydrogeochemistry are insignificant in terms of affecting the electrochemical degradation of PCE and chlorinated intermediates.


Asunto(s)
Restauración y Remediación Ambiental/métodos , Agua Subterránea/química , Tetracloroetileno/análisis , Contaminantes Químicos del Agua/análisis , Cloro/análisis , Dicloroetilenos , Etilenos , Halogenación , Peróxido de Hidrógeno , Tetracloroetileno/química , Tricloroetileno/metabolismo , Contaminantes Químicos del Agua/química
15.
Sci Total Environ ; 707: 135566, 2020 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-31767295

RESUMEN

Electrochemical transformation of harmful tetrachloroethylene (PCE) is evaluated as a method for management of groundwater plumes to protect the drinking water resource, its consumers and the environment. In contrast to previous work that reported transformation of trichloroethylene, a byproduct of PCE, this work focuses on transformation of PCE in a saturated porous matrix and the influence of design parameters on the removal performance. Design parameters investigated were electrode configuration, catalyst load, electrode spacing, current intensity, orientation of reactor and flow through a porous matrix. A removal of 86% was reached in the fully liquid-filled, horizontally oriented reactor at a current of 120 mA across a cathode → bipolar electrode → anode arrangement with a Darcy velocity of 0.03 cm/min (150 m/yr). The palladium load on the cathode significantly influenced the removal. Enhanced removal was observed with increased electrode spacing. Presence of an inert porous matrix improved PCE removal by 9%-point compared to a completely liquid-filled reactor. Normalization of the data indicated, that a higher charge transfer per contaminant mass is required for removal of low PCE concentrations. No chlorinated intermediates were formed. The results suggest, that PCE can be electrochemically transformed in reactor designs replicating that of a potential field-implementation. Further work is required to better understand the reduction and oxidation processes established and the parameters influencing such. This knowledge is essential for optimization towards testing in complex conditions and variations of contaminated sites.

16.
J Hazard Mater ; 368: 869-876, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30322811

RESUMEN

Multivariate analysis was applied to simultaneously evaluate the influence of soil properties and experimental variables on electrodialytic removal of Cu and Pb from three shooting range soils. Both stationary and stirred set-ups in laboratory scale were tested, representing in-situ and ex-situ remediation conditions, respectively. Within the same experimental space, higher removal of the targeted metals, Cu and Pb, were observed in the stirred set-up (9-81%) compared to the stationary set-up (0-41%). Multivariate analysis (projections onto latent structures) revealed that the influence of soil type on the remediation efficiency was dependent on the metal and varied in the stationary and stirred set-ups. Optimising the removal of Cu by adjusting the experimental settings was easier to achieve in the stirred set-up and could be done by increasing the current density. Optimising the removal of Pb could be done by prolonging the treatment and in the stirred set-up also by increasing the current density.

17.
J Hazard Mater ; 367: 68-76, 2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30594019

RESUMEN

Electrodialytic remediation can be applied to remove heavy metals from contaminated particulate materials in suspension. The applied electric current is the cleaning agent and the heavy metals are removed by electromigration. In this study, a two-compartment cell was compared to a three-compartment cell, for several contaminated materials such as soils, sediments, mine tailings and ashes and totally 20 experiments were conducted. The pH decrease was faster in the two-compartment cell, but the metal removal was higher in the three-compartment cell since anionic metal species are removed from the material suspension in this cell set-up. For materials with relatively high chloride content, fly ash and harbour sediments, up to 38% of the metals were found in the filtrate in the two-compartment cell. Up to 9% of the current was used to transport heavy metal ions in the experiments and the current was mainly carried by H+ and Ca2+. Even with the lower pH in the two-compartment cell experiments, there was little difference in the percentage of the current carried by the metal ions between the two set-ups. Multivariate analysis showed that the choice of cell set-up depends on the metals targeted by remediation and the material characteristics.

18.
Chemosphere ; 235: 113-125, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31255751

RESUMEN

Electrokinetics is being applied in combination with common insituremediation technologies, e.g. permeable reactive barriers, bioremediation and in-situ chemical oxidation, to overcome experienced limitations in remediation of chlorinated ethenes in low-permeable subsurface soils. The purpose of this review is to evaluate state-of-theart for identification of major knowledge gaps to obtain robust and successful field-implementations. Some of the major knowledge gaps include the behavior and influence of induced transient changes in soil systems, transport velocities of chlorinated ethenes, and significance of site-specific parameters on transport velocities, e.g. heterogeneous soils and hydrogeochemistry. Furthermore, the various ways of reporting voltage distribution and transport rates complicate the comparison of transport velocities across studies. It was found, that for the combined EK-techniques, it is important to control the pH and redox changes caused by electrolysis for steady transport, uniform distribution of the electric field etc. Specifically for electrokinetically enhanced bioremediation, delivery of lactate and biodegrading bacteria is of the same order of magnitude. This review shows that enhancement of remediation technologies can be achieved by electrokinetics, but major knowledge gaps must be examined to mature EK as robust methods for successful remediation of chlorinated ethene contaminated sites.


Asunto(s)
Electroforesis/métodos , Restauración y Remediación Ambiental/métodos , Etilenos/análisis , Hidrocarburos Clorados/análisis , Contaminantes del Suelo/análisis , Suelo/química , Bacterias/metabolismo , Biodegradación Ambiental , Oxidación-Reducción
19.
J Hazard Mater ; 368: 680-688, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30735892

RESUMEN

Establishment of electrochemical zones for remediation of dissolved chlorinated solvents in natural settings was studied. An undivided 1D-experimental column set-up was designed for the assessment of the influence of site-extracted contaminated groundwater flowing through a sandy aquifer material, on the execution of laboratory testing. A three-electrode system composed of palladium coated pure iron cathodes and a cast iron anode was operated at 12 mA under varying flow rates. The natural settings added complexity through a diverse groundwater chemistry and resistance in the sand. In addition, significant precipitation of iron released through anode corrosion was observed. Nevertheless, the complex system was successfully modelled with a simple geochemical model using PHREEQC. A ranking of the significances of system parameters on the laboratory execution of electrochemical remediation in natural settings was proposed: Geological properties > anode corrosion > site-extracted contaminated groundwater > the carbonate system > sulphate > hydrology > less significant unidentified parameters. This study provides insight in actual challenges that need to be overcome for in situ electrochemical remediation.

20.
J Hazard Mater ; 364: 78-81, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30339935

RESUMEN

In the present work, an electrocoagulation technique was tested as a possible technological alternative for the treatment of selenium in wastewater from a petroleum refinery. For this purpose, a batch airlift reactor with air stirring was used. The sacrificial electrodes were made of iron to generate the necessary ferrous ions for the process. The results indicated a selenium removal of 90% from the wastewater after 6 h of treatment, achieving a decrease in concentration from 0.30 mg L-1 to 0.03 mg L-1. The current density was found to be an important variable for the process. In conclusion, the electrocoagulation process seems to be a feasible selenium removal technique applied to petroleum refinery wastewater.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA