Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 237
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 611(7936): 532-539, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36323788

RESUMEN

Neuropsychiatric disorders classically lack defining brain pathologies, but recent work has demonstrated dysregulation at the molecular level, characterized by transcriptomic and epigenetic alterations1-3. In autism spectrum disorder (ASD), this molecular pathology involves the upregulation of microglial, astrocyte and neural-immune genes, the downregulation of synaptic genes, and attenuation of gene-expression gradients in cortex1,2,4-6. However, whether these changes are limited to cortical association regions or are more widespread remains unknown. To address this issue, we performed RNA-sequencing analysis of 725 brain samples spanning 11 cortical areas from 112 post-mortem samples from individuals with ASD and neurotypical controls. We find widespread transcriptomic changes across the cortex in ASD, exhibiting an anterior-to-posterior gradient, with the greatest differences in primary visual cortex, coincident with an attenuation of the typical transcriptomic differences between cortical regions. Single-nucleus RNA-sequencing and methylation profiling demonstrate that this robust molecular signature reflects changes in cell-type-specific gene expression, particularly affecting excitatory neurons and glia. Both rare and common ASD-associated genetic variation converge within a downregulated co-expression module involving synaptic signalling, and common variation alone is enriched within a module of upregulated protein chaperone genes. These results highlight widespread molecular changes across the cerebral cortex in ASD, extending beyond association cortex to broadly involve primary sensory regions.


Asunto(s)
Trastorno del Espectro Autista , Corteza Cerebral , Variación Genética , Transcriptoma , Humanos , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/patología , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Neuronas/metabolismo , ARN/análisis , ARN/genética , Transcriptoma/genética , Autopsia , Análisis de Secuencia de ARN , Corteza Visual Primaria/metabolismo , Neuroglía/metabolismo
2.
PLoS Pathog ; 20(3): e1012079, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38466743

RESUMEN

Macrophages can undergo M1-like proinflammatory polarization with low oxidative phosphorylation (OXPHOS) and high glycolytic activities or M2-like anti-inflammatory polarization with the opposite metabolic activities. Here we show that M1-like macrophages induced by hepatitis B virus (HBV) display high OXPHOS and low glycolytic activities. This atypical metabolism induced by HBV attenuates the antiviral response of M1-like macrophages and is mediated by HBV e antigen (HBeAg), which induces death receptor 5 (DR5) via toll-like receptor 4 (TLR4) to induce death-associated protein 3 (DAP3). DAP3 then induces the expression of mitochondrial genes to promote OXPHOS. HBeAg also enhances the expression of glutaminases and increases the level of glutamate, which is converted to α-ketoglutarate, an important metabolic intermediate of the tricarboxylic acid cycle, to promote OXPHOS. The induction of DR5 by HBeAg leads to apoptosis of M1-like and M2-like macrophages, although HBeAg also induces pyroptosis of the former. These findings reveal novel activities of HBeAg, which can reprogram mitochondrial metabolism and trigger different programmed cell death responses of macrophages depending on their phenotypes to promote HBV persistence.


Asunto(s)
Virus de la Hepatitis B , Hepatitis B , Humanos , Virus de la Hepatitis B/genética , Antígenos e de la Hepatitis B/metabolismo , Macrófagos/metabolismo , Apoptosis
3.
FASEB J ; 38(7): e23592, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38581243

RESUMEN

Vascular calcification is an actively regulated biological process resembling bone formation, and osteogenic differentiation of vascular smooth muscle cells (VSMCs) plays a crucial role in this process. 1-Palmitoyl-2-(5'-oxo-valeroyl)-sn-glycero-3-phosphocholine (POVPC), an oxidized phospholipid, is found in atherosclerotic plaques and has been shown to induce oxidative stress. However, the effects of POVPC on osteogenic differentiation and calcification of VSMCs have yet to be studied. In the present study, we investigated the role of POVPC in vascular calcification using in vitro and ex vivo models. POVPC increased mineralization of VSMCs and arterial rings, as shown by alizarin red staining. In addition, POVPC treatment increased expression of osteogenic markers Runx2 and BMP2, indicating that POVPC promotes osteogenic transition of VSMCs. Moreover, POVPC increased oxidative stress and impaired mitochondria function of VSMCs, as shown by increased ROS levels, impairment of mitochondrial membrane potential, and decreased ATP levels. Notably, ferroptosis triggered by POVPC was confirmed by increased levels of intracellular ROS, lipid ROS, and MDA, which were decreased by ferrostatin-1, a ferroptosis inhibitor. Furthermore, ferrostatin-1 attenuated POVPC-induced calcification of VSMCs. Taken together, our study for the first time demonstrates that POVPC promotes vascular calcification via activation of VSMC ferroptosis. Reducing the levels of POVPC or inhibiting ferroptosis might provide a novel strategy to treat vascular calcification.


Asunto(s)
Ciclohexilaminas , Ferroptosis , Fenilendiaminas , Calcificación Vascular , Humanos , Músculo Liso Vascular/metabolismo , Fosfolípidos/metabolismo , Fosforilcolina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Osteogénesis , Calcificación Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Células Cultivadas
4.
Immunity ; 44(5): 1204-14, 2016 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-27156385

RESUMEN

In contrast to horizontal transmission of hepatitis B virus (HBV) between adults, which often leads to self-limited acute infection, vertical transmission of HBV from mother to child often leads to chronic infection. However, the mechanisms linking vertical transmission with chronic infection are not known. We developed a mouse model to study the effect of maternal HBV infection on HBV persistence in offspring and found that HBV carried by the mother impaired CD8(+) T cell responses to HBV in her offspring, resulting in HBV persistence. This impairment of CD8(+) T cell responses was mediated by hepatic macrophages, which were predisposed by maternal HBV e antigen (HBeAg) to support HBV persistence by upregulation of inhibitory ligand PD-L1 and altered polarization upon restimulation with HBeAg. Depletion of hepatic macrophages led to CD8(+) T cell activation and HBV clearance in the offspring, raising the possibility of targeting macrophages to treat chronic HBV patients.


Asunto(s)
Antígeno B7-H1/metabolismo , Linfocitos T CD8-positivos/inmunología , Virus de la Hepatitis B/fisiología , Hepatitis B/inmunología , Transmisión Vertical de Enfermedad Infecciosa , Macrófagos/inmunología , Efectos Tardíos de la Exposición Prenatal/inmunología , Animales , Animales Modificados Genéticamente , Antígeno B7-H1/genética , Linfocitos T CD8-positivos/virología , Femenino , Regulación de la Expresión Génica , Hepatitis B/transmisión , Antígenos e de la Hepatitis B/inmunología , Humanos , Activación de Linfocitos , Macrófagos/virología , Ratones , Ratones Endogámicos C57BL , Embarazo , Carga Viral
5.
Mol Cell ; 68(2): 281-292.e5, 2017 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-29033320

RESUMEN

Autophagy is required for benign hepatic tumors to progress into malignant hepatocellular carcinoma. However, the mechanism is unclear. Here, we report that mitophagy, the selective removal of mitochondria by autophagy, positively regulates hepatic cancer stem cells (CSCs) by suppressing the tumor suppressor p53. When mitophagy is enhanced, p53 co-localizes with mitochondria and is removed by a mitophagy-dependent manner. However, when mitophagy is inhibited, p53 is phosphorylated at serine-392 by PINK1, a kinase associated with mitophagy, on mitochondria and translocated into the nucleus, where it binds to the NANOG promoter to prevent OCT4 and SOX2 transcription factors from activating the expression of NANOG, a transcription factor critical for maintaining the stemness and the self-renewal ability of CSCs, resulting in the reduction of hepatic CSC populations. These results demonstrate that mitophagy controls the activities of p53 to maintain hepatic CSCs and provide an explanation as to why autophagy is required to promote hepatocarcinogenesis.


Asunto(s)
Neoplasias Hepáticas/metabolismo , Mitofagia , Células Madre Neoplásicas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Proteína Homeótica Nanog/biosíntesis , Proteína Homeótica Nanog/genética , Células Madre Neoplásicas/patología , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Fosforilación/genética , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Proteína p53 Supresora de Tumor/genética
6.
Proc Natl Acad Sci U S A ; 119(30): e2201927119, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35858426

RESUMEN

Hepatitis B virus (HBV) DNA replication takes place inside the viral core particle and is dependent on autophagy. Here we show that HBV core particles are associated with autophagosomes and phagophores in cells that productively replicate HBV. These autophagic membrane-associated core particles contain almost entirely the hypophosphorylated core protein and are DNA replication competent. As the hyperphosphorylated core protein can be localized to phagophores and the dephosphorylation of the core protein is associated with the packaging of viral pregenomic RNA (pgRNA), these results are in support of the model that phagophores can serve as the sites for the packaging of pgRNA. In contrast, in cells that replicate HBV, the precore protein derivatives, which are related to the core protein, are associated with autophagosomes but not with phagophores via a pathway that is independent of its signal peptide. Interestingly, when the core protein is expressed by itself, it is associated with phagophores but not with autophagosomes. These observations indicate that autophagic membranes are differentially involved in the trafficking of precore and core proteins. HBV induces the fusion of autophagosomes and multivesicular bodies and the silencing of Rab11, a regulator of this fusion, is associated with the reduction of release of mature HBV particles. Our studies thus indicate that autophagic membranes participate in the assembly of HBV nucleocapsids, the trafficking of HBV precore and core proteins, and likely also the egress of HBV particles.


Asunto(s)
Autofagosomas , Virus de la Hepatitis B , Nucleocápside , Empaquetamiento del Genoma Viral , Replicación Viral , Autofagosomas/fisiología , ADN Viral/metabolismo , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/fisiología , Humanos , Nucleocápside/genética , Nucleocápside/fisiología , Transporte de Proteínas , ARN Viral/metabolismo , Replicación Viral/genética
7.
J Mol Cell Cardiol ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39089571

RESUMEN

Acute lung injury (ALI) including acute respiratory distress syndrome (ARDS) is a major complication and increase the mortality of patients with cardiac surgery. We previously found that the protein cargoes enriched in circulating extracellular vesicles (EVs) are closely associated with cardiopulmonary disease. We aimed to evaluate the implication of EVs on cardiac surgery-associated ALI/ARDS. The correlations between "oncoprotein-induced transcript 3 protein (OIT3) positive" circulating EVs and postoperative ARDS were assessed. The effects of OIT3-overexpressed EVs on the cardiopulmonary bypass (CPB) -induced ALI in vivo and inflammation of human bronchial epithelial cells (BEAS-2B) were detected. OIT3 enriched in circulating EVs is reduced after cardiac surgery with CPB, especially with postoperative ARDS. The "OIT3 positive" EVs negatively correlate with lung edema, hypoxemia and CPB time. The OIT3-overexpressed EVs can be absorbed by pulmonary epithelial cells and OIT3 transferred by EVs triggered K48- and K63-linked polyubiquitination to inactivate NOD-like receptor protein 3 (NLRP3) inflammasome, and restrains pro-inflammatory cytokines releasing and immune cells infiltration in lung tissues, contributing to the alleviation of CPB-induced ALI. Overexpression of OIT3 in human bronchial epithelial cells have similar results. OIT3 promotes the E3 ligase Cbl proto-oncogene B associated with NLRP3 to induce the ubiquitination of NLRP3. Immunofluorescence tests reveal that OIT3 is reduced in the generation from the liver sinusoids endothelial cells (LSECs) and secretion in liver-derived EVs after CPB. In conclusion, OIT3 enriched in EVs is a promising biomarker of postoperative ARDS and a therapeutic target for ALI after cardiac surgery.

8.
J Lipid Res ; 65(2): 100499, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38218337

RESUMEN

Ferroptosis is a novel cell death mechanism that is mediated by iron-dependent lipid peroxidation. It may be involved in atherosclerosis development. Products of phospholipid oxidation play a key role in atherosclerosis. 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine (PGPC) is a phospholipid oxidation product present in atherosclerotic lesions. It remains unclear whether PGPC causes atherosclerosis by inducing endothelial cell ferroptosis. In this study, human umbilical vein endothelial cells (HUVECs) were treated with PGPC. Intracellular levels of ferrous iron, lipid peroxidation, superoxide anions (O2•-), and glutathione were detected, and expression of fatty acid binding protein-3 (FABP3), glutathione peroxidase 4 (GPX4), and CD36 were measured. Additionally, the mitochondrial membrane potential (MMP) was determined. Aortas from C57BL6 mice were isolated for vasodilation testing. Results showed that PGPC increased ferrous iron levels, the production of lipid peroxidation and O2•-, and FABP3 expression. However, PGPC inhibited the expression of GPX4 and glutathione production and destroyed normal MMP. These effects were also blocked by ferrostatin-1, an inhibitor of ferroptosis. FABP3 silencing significantly reversed the effect of PGPC. Furthermore, PGPC stimulated CD36 expression. Conversely, CD36 silencing reversed the effects of PGPC, including PGPC-induced FABP3 expression. Importantly, E06, a direct inhibitor of the oxidized 1-palmitoyl-2-arachidonoyl-phosphatidylcholine IgM natural antibody, inhibited the effects of PGPC. Finally, PGPC impaired endothelium-dependent vasodilation, ferrostatin-1 or FABP3 inhibitors inhibited this impairment. Our data demonstrate that PGPC impairs endothelial function by inducing endothelial cell ferroptosis through the CD36 receptor to increase FABP3 expression. Our findings provide new insights into the mechanisms of atherosclerosis and a therapeutic target for atherosclerosis.


Asunto(s)
Aterosclerosis , Ciclohexilaminas , Ferroptosis , Fenilendiaminas , Animales , Ratones , Humanos , Fosfolípidos , Fosforilcolina , Éteres Fosfolípidos/metabolismo , Éteres Fosfolípidos/farmacología , Ratones Endogámicos C57BL , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Endotelio/metabolismo , Glutatión/metabolismo , Hierro/metabolismo , Proteína 3 de Unión a Ácidos Grasos
9.
Circulation ; 148(7): 589-606, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37203562

RESUMEN

BACKGROUND: Aortic dissection (AD) is a fatal cardiovascular disorder without effective medications due to unclear pathogenic mechanisms. Bestrophin3 (Best3), the predominant isoform of bestrophin family in vessels, has emerged as critical for vascular pathological processes. However, the contribution of Best3 to vascular diseases remains elusive. METHODS: Smooth muscle cell-specific and endothelial cell-specific Best3 knockout mice (Best3SMKO and Best3ECKO, respectively) were engineered to investigate the role of Best3 in vascular pathophysiology. Functional studies, single-cell RNA sequencing, proteomics analysis, and coimmunoprecipitation coupled with mass spectrometry were performed to evaluate the function of Best3 in vessels. RESULTS: Best3 expression in aortas of human AD samples and mouse AD models was decreased. Best3SMKO but not Best3ECKO mice spontaneously developed AD with age, and the incidence reached 48% at 72 weeks of age. Reanalysis of single-cell transcriptome data revealed that reduction of fibromyocytes, a fibroblast-like smooth muscle cell cluster, was a typical feature of human ascending AD and aneurysm. Consistently, Best3 deficiency in smooth muscle cells decreased the number of fibromyocytes. Mechanistically, Best3 interacted with both MEKK2 and MEKK3, and this interaction inhibited phosphorylation of MEKK2 at serine153 and MEKK3 at serine61. Best3 deficiency induced phosphorylation-dependent inhibition of ubiquitination and protein turnover of MEKK2/3, thereby activating the downstream mitogen-activated protein kinase signaling cascade. Furthermore, restoration of Best3 or inhibition of MEKK2/3 prevented AD progression in angiotensin II-infused Best3SMKO and ApoE-/- mice. CONCLUSIONS: These findings unveil a critical role of Best3 in regulating smooth muscle cell phenotypic switch and aortic structural integrity through controlling MEKK2/3 degradation. Best3-MEKK2/3 signaling represents a novel therapeutic target for AD.


Asunto(s)
Disección Aórtica , Músculo Liso Vascular , Animales , Humanos , Ratones , Disección Aórtica/genética , Sistema de Señalización de MAP Quinasas , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Fosforilación
10.
Hum Brain Mapp ; 44(2): 484-495, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36111884

RESUMEN

The ascending arousal system plays a crucial role in individuals' consciousness. Recently, advanced functional magnetic resonance imaging (fMRI) has made it possible to investigate the ascending arousal network (AAN) in vivo. However, the role of AAN in the neuropathology of human insomnia remains unclear. Our study aimed to explore alterations in AAN and its connections with cortical networks in chronic insomnia disorder (CID). Resting-state fMRI data were acquired from 60 patients with CID and 60 good sleeper controls (GSCs). Changes in the brain's functional connectivity (FC) between the AAN and eight cortical networks were detected in patients with CID and GSCs. Multivariate pattern analysis (MVPA) was employed to differentiate CID patients from GSCs and predict clinical symptoms in patients with CID. Finally, these MVPA findings were further verified using an external data set (32 patients with CID and 33 GSCs). Compared to GSCs, patients with CID exhibited increased FC within the AAN, as well as increased FC between the AAN and default mode, cerebellar, sensorimotor, and dorsal attention networks. These AAN-related FC patterns and the MVPA classification model could be used to differentiate CID patients from GSCs with 88% accuracy in the first cohort and 77% accuracy in the validation cohort. Moreover, the MVPA prediction models could separately predict insomnia (data set 1, R2  = .34; data set 2, R2  = .15) and anxiety symptoms (data set 1, R2  = .35; data set 2, R2  = .34) in the two independent cohorts of patients. Our findings indicated that AAN contributed to the neurobiological mechanism of insomnia and highlighted that fMRI-based markers and machine learning techniques might facilitate the evaluation of insomnia and its comorbid mental symptoms.


Asunto(s)
Trastornos del Inicio y del Mantenimiento del Sueño , Humanos , Trastornos del Inicio y del Mantenimiento del Sueño/diagnóstico por imagen , Mapeo Encefálico/métodos , Estado de Conciencia , Cerebelo , Imagen por Resonancia Magnética/métodos , Nivel de Alerta , Encéfalo/diagnóstico por imagen
11.
Eur Radiol ; 33(2): 1378-1387, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36048206

RESUMEN

OBJECTIVE: To develop a novel logistic regression model based on liver/spleen volumes and portal vein diameter measured on magnetic resonance imaging (MRI) for predicting oesophagogastric variceal bleeding (OVB) secondary to HBV cirrhosis. METHODS: One hundred eighty-five consecutive cirrhotic patients with hepatitis B undergoing abdominal contrast-enhanced MRI were randomly divided into training cohort (n = 130) and validation cohort (n = 55). Spleen volume, total liver volume, four liver lobe volumes, and diameters of portal venous system were measured on MRI. Ratios of spleen volume to total liver and to individual liver lobe volumes were calculated. In training cohort, univariate analyses and binary logistic regression analyses were to determine independent predictors. Performance of the model for predicting OVB constructed based on independent predictors from training cohort was evaluated by receiver operating characteristic (ROC) analysis, and was validated by Kappa test in validation cohort. RESULTS: OVB occurred in 42 and 18 individuals in training and validation cohorts during the 2 years' follow-up, respectively. An OVB prediction model was constructed based on the independent predictors including right liver lobe volume (RV), left gastric vein diameter (LGVD) and portal vein diameter (PVD) (odds ratio = 0.993, 2.202 and 1.613, respectively; p-values < 0.001 for all). The logistic regression model equation (-0.007 × RV + 0.79 × LGVD + 0.478 × PVD-6.73) for predicting OVB obtained excellent performance with an area under ROC curve of 0.907. The excellent performance was confirmed by Kappa test with K-value of 0.802 in validation cohort. CONCLUSION: The novel logistic regression model can be reliable for predicting OVB. KEY POINTS: • Patients with oesophagogastric variceal bleeding are mainly characterized by decreased right lobe volume, and increased spleen volume and diameters of portal vein system. • The right liver lobe volume, left gastric vein diameter and portal vein diameter are the independent predictors of oesophagogastric variceal bleeding. • The novel model developed based on the independent predictors performed well in predicting oesophagogastric variceal bleeding with an area under the receiver operating characteristic curve of 0.907.


Asunto(s)
Várices Esofágicas y Gástricas , Vena Porta , Humanos , Vena Porta/diagnóstico por imagen , Virus de la Hepatitis B , Várices Esofágicas y Gástricas/complicaciones , Várices Esofágicas y Gástricas/diagnóstico por imagen , Bazo/diagnóstico por imagen , Hemorragia Gastrointestinal/diagnóstico por imagen , Hemorragia Gastrointestinal/etiología , Cirrosis Hepática/complicaciones , Cirrosis Hepática/diagnóstico por imagen , Imagen por Resonancia Magnética
12.
J Pathol ; 258(3): 213-226, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35894849

RESUMEN

Vascular calcification is an actively regulated process resembling bone formation and contributes to the cardiovascular morbidity and mortality of chronic kidney disease (CKD). However, an effective therapy for vascular calcification is still lacking. The ketone body ß-hydroxybutyrate (BHB) has been demonstrated to have health-promoting effects including anti-inflammation and cardiovascular protective effects. However, whether BHB protects against vascular calcification in CKD remains unclear. In this study, Alizarin Red staining and calcium content assay showed that BHB reduced calcification of vascular smooth muscle cells (VSMCs) and arterial rings. Of note, compared with CKD patients without thoracic calcification, serum BHB levels were lower in CKD patients with thoracic calcification. Supplementation with 1,3-butanediol (1,3-B), the precursor of BHB, attenuated aortic calcification in CKD rats and VitD3-overloaded mice. Furthermore, RNA-seq analysis revealed that BHB downregulated HDAC9, which was further confirmed by RT-qPCR and western blot analysis. Both pharmacological inhibition and knockdown of HDAC9 attenuated calcification of human VSMCs, while overexpression of HDAC9 exacerbated calcification of VSMCs and aortic rings, indicating that HDAC9 promotes vascular calcification under CKD conditions. Of note, BHB treatment antagonized HDAC9-induced vascular calcification. In addition, HDAC9 overexpression activated the NF-κB signaling pathway and inhibition of NF-κB attenuated HDAC9-induced VSMC calcification, suggesting that HDAC9 promotes vascular calcification via activation of NF-κB. In conclusion, our study demonstrates that BHB supplementation inhibits vascular calcification in CKD via modulation of the HDAC9-dependent NF-κB signaling pathway. Moreover, we unveil a crucial mechanistic role of HDAC9 in vascular calcification under CKD conditions; thus, nutritional intervention or pharmacological approaches to enhance BHB levels could act as promising therapeutic strategies to target HDAC9 for the treatment of vascular calcification in CKD. © 2022 The Pathological Society of Great Britain and Ireland.


Asunto(s)
Insuficiencia Renal Crónica , Calcificación Vascular , Ácido 3-Hidroxibutírico/metabolismo , Animales , Calcio/metabolismo , Células Cultivadas , Regulación hacia Abajo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Humanos , Cetonas/metabolismo , Ratones , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/patología , FN-kappa B/metabolismo , Ratas , Insuficiencia Renal Crónica/patología , Proteínas Represoras/metabolismo , Calcificación Vascular/genética , Calcificación Vascular/prevención & control
13.
BMC Pulm Med ; 23(1): 142, 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37106322

RESUMEN

BACKGROUND: Diabetes mellitus is a major cause of high mortality and poor prognosis in patients with pulmonary infections. However, limited data on the application of metagenomic next-generation sequencing (mNGS) are available for diabetic patients. This study aimed to evaluate the diagnostic performance of mNGS in diabetic patients with pulmonary infections. METHODS: We retrospectively reviewed 184 hospitalized patients with pulmonary infections at Guizhou Provincial People's Hospital between January 2020 to October 2021. All patients were subjected to both mNGS analysis of bronchoalveolar lavage fluid (BALF) and conventional testing. Positive rate by mNGS and the consistency between mNGS and conventional testing results were evaluated for diabetic and non-diabetic patients. RESULTS: A total of 184 patients with pulmonary infections were enrolled, including 43 diabetic patients and 141 non-diabetic patients. For diabetic patients, the microbial positive rate by mNGS was significantly higher than that detected by conventional testing methods, primarily driven by bacterial detection (microbes: 95.3% vs. 67.4%, P = 0.001; bacteria: 72.1% vs. 37.2%, P = 0.001). mNGS and traditional tests had similar positive rates with regard to fungal and viral detection in diabetic patients. Klebsiella pneumoniae was the most common pathogen identified by mNGS in patients with diabetes. Moreover, mNGS identified pathogens in 92.9% (13/14) of diabetic patients who were reported negative by conventional testing. No significant difference was found in the consistency of the two tests between diabetic and non-diabetic groups. CONCLUSIONS: mNGS is superior to conventional microbiological tests for bacterial detection in diabetic patients with pulmonary infections. mNGS is a valuable tool for etiological diagnosis of pulmonary infections in diabetic patients.


Asunto(s)
Diabetes Mellitus , Neumonía , Humanos , Estudios Retrospectivos , Secuenciación de Nucleótidos de Alto Rendimiento , Líquido del Lavado Bronquioalveolar , Klebsiella pneumoniae/genética , Sensibilidad y Especificidad
14.
J Mol Cell Cardiol ; 173: 154-168, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36367517

RESUMEN

Vascular calcification is an important risk factor for cardiovascular events, accompanied by DNA damage during the process. The sirtuin 6 (SIRT6) has been reported to alleviate atherosclerosis, which is related to the reduction of DNA damage. However, whether smooth muscle cell SIRT6 mediates vascular calcification involving DNA damage remains unclear. Western blot and immunofluorescence revealed that SIRT6 expression was decreased in human vascular smooth muscle cells (HVSMCs), human and mouse arteries during vascular calcification. Alizarin red staining and calcium content assay showed that knockdown or deletion of SIRT6 significantly promoted HVSMC calcification induced by high phosphorus and calcium, accompanied by upregulation of osteogenic differentiation markers including Runx2 and BMP2. By contrast, adenovirus-mediated SIRT6 overexpression attenuated osteogenic differentiation and calcification of HVSMCs. Moreover, ex vivo study revealed that SIRT6 overexpression inhibited calcification of mouse and human arterial rings. Of note, smooth muscle cell-specific knockout of SIRT6 markedly aggravated Vitamin D3-induced aortic calcification in mice. Mechanistically, overexpression of SIRT6 reduced DNA damage and upregulated p-ATM during HVSMCs calcification, whereas knockdown of SIRT6 showed the opposite effects. Knockdown of ATM in HVSMCs abrogated the inhibitory effect of SIRT6 overexpression on calcification and DNA damage. This study for the first time demonstrates that vascular smooth muscle cell-specific deletion of SIRT6 facilitates vascular calcification via suppression of DNA damage repair. Therefore, modulation of SIRT6 and DNA damage repair may represent a therapeutic strategy for vascular calcification.


Asunto(s)
Sirtuinas , Calcificación Vascular , Humanos , Calcio/metabolismo , Daño del ADN , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Osteogénesis/genética , Sirtuinas/genética , Sirtuinas/metabolismo , Calcificación Vascular/genética , Reparación del ADN
15.
Kidney Int ; 102(6): 1259-1275, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36063875

RESUMEN

Vascular calcification is a common pathologic condition in patients with chronic kidney disease (CKD). Cell death such as apoptosis plays a critical role in vascular calcification. Ferroptosis is a type of iron-catalyzed and regulated cell death resulting from excessive iron-dependent reactive oxygen species and lipid peroxidation. However, it is unclear whether ferroptosis of vascular smooth muscle cells (VSMCs) regulates vascular calcification in CKD. Our results showed that high calcium and phosphate concentrations induced ferroptosis in rat VSMCs in vitro. Inhibition of ferroptosis by ferrostatin-1 dose-dependently reduced mineral deposition in rat VSMCs under pro-osteogenic conditions, as indicated by alizarin red staining and quantification of calcium content. In addition, gene expression analysis revealed that ferrostatin-1 inhibited osteogenic differentiation of rat VSMCs. Similarly, ferrostatin-1 remarkably attenuated calcification of rat and human arterial rings ex vivo and aortic calcification in vitamin D3-overloaded mice in vivo. Moreover, inhibition of ferroptosis by either ferrostatin-1 or deferoxamine attenuated aortic calcification in rats with CKD. Mechanistically, high calcium and phosphate downregulated expression of SLC7A11 (a cystine-glutamate antiporter), and reduced glutathione (GSH) content in VSMCs. Additionally, GSH depletion induced by erastin (a small molecule initiating ferroptotic cell death) significantly promoted calcification of VSMCs under pro-osteogenic conditions, whereas GSH supplement by N-acetylcysteine reduced calcification of VSMCs. Consistently, knockdown of SLC7A11 by siRNA markedly promoted VSMC calcification. Furthermore, high calcium and phosphate downregulated glutathione peroxidase 4 (GPX4) expression, and reduced glutathione peroxidase activity. Inhibition of GPX4 by RSL3 promoted VSMC calcification. Thus, repression of the SLC7A11/GSH/GPX4 axis triggers ferroptosis of VSMCs to promote vascular calcification under CKD conditions, providing a novel targeting strategy for vascular calcification.


Asunto(s)
Ferroptosis , Insuficiencia Renal Crónica , Calcificación Vascular , Humanos , Ratas , Ratones , Animales , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Músculo Liso Vascular , Osteogénesis , Calcio/metabolismo , Antiportadores/metabolismo , Miocitos del Músculo Liso/metabolismo , Calcificación Vascular/genética , Calcificación Vascular/prevención & control , Hierro/metabolismo , Glutatión/metabolismo , Insuficiencia Renal Crónica/patología , Fosfatos/metabolismo , Sistema de Transporte de Aminoácidos y+/genética , Sistema de Transporte de Aminoácidos y+/metabolismo
16.
Adv Exp Med Biol ; 1377: 189-195, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35575931

RESUMEN

In addition to the well-known functions, plasma HDL also plays an important role in postsurgery periods. In this chapter, we summarized the changes of HDL after surgery like bariatric surgery and cardiac surgery. Not only the amount of HDL changed, the HDL components or functions have also been altered after various surgeries. Furthermore, a few HDL-related indexes have been recognized as important clinical predictors after surgery, such as HDL cholesterol efflux capacity, HDL pro-inflammatory index, HDL cholesterol (HDL-C) concentration, and monocyte count to HDL ratio (MHR).


Asunto(s)
Cirugía Bariátrica , HDL-Colesterol
17.
Eur Heart J ; 42(47): 4847-4861, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34570211

RESUMEN

AIMS: Our previous study demonstrated that Ca2+ influx through the Orai1 store-operated Ca2+ channel in macrophages contributes to foam cell formation and atherosclerosis via the calcineurin-ASK1 pathway, not the classical calcineurin-nuclear factor of activated T-cell (NFAT) pathway. Moreover, up-regulation of NFATc3 in macrophages inhibits foam cell formation, suggesting that macrophage NFATc3 is a negative regulator of atherogenesis. Hence, this study investigated the precise role of macrophage NFATc3 in atherogenesis. METHODS AND RESULTS: Macrophage-specific NFATc3 knockout mice were generated to determine the effect of NFATc3 on atherosclerosis in a mouse model of adeno-associated virus-mutant PCSK9-induced atherosclerosis. NFATc3 expression was decreased in macrophages within human and mouse atherosclerotic lesions. Moreover, NFATc3 levels in peripheral blood mononuclear cells from atherosclerotic patients were negatively associated with plaque instability. Furthermore, macrophage-specific ablation of NFATc3 in mice led to the atherosclerotic plaque formation, whereas macrophage-specific NFATc3 transgenic mice exhibited the opposite phenotype. NFATc3 deficiency in macrophages promoted foam cell formation by potentiating SR-A- and CD36-meditated lipid uptake. NFATc3 directly targeted and transcriptionally up-regulated miR-204 levels. Mature miR-204-5p suppressed SR-A expression via canonical regulation. Unexpectedly, miR-204-3p localized in the nucleus and inhibited CD36 transcription. Restoration of miR-204 abolished the proatherogenic phenotype observed in the macrophage-specific NFATc3 knockout mice, and blockade of miR-204 function reversed the beneficial effects of NFATc3 in macrophages. CONCLUSION: Macrophage NFATc3 up-regulates miR-204 to reduce SR-A and CD36 levels, thereby preventing foam cell formation and atherosclerosis, indicating that the NFATc3/miR-204 axis may be a potential therapeutic target against atherosclerosis.


Asunto(s)
Aterosclerosis , MicroARNs , Animales , Aterosclerosis/genética , Células Espumosas , Humanos , Leucocitos Mononucleares , Ratones , MicroARNs/genética , Factores de Transcripción NFATC/genética , Proproteína Convertasa 9
18.
J Lipid Res ; 62: 100066, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33711324

RESUMEN

Endothelial-to-mesenchymal transition (EndMT), the process by which an endothelial cell (EC) undergoes a series of molecular events that result in a mesenchymal cell phenotype, plays an important role in atherosclerosis. 1-Palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (POVPC), derived from the oxidation of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphatidylcholine, is a proinflammatory lipid found in atherosclerotic lesions. Whether POVPC promotes EndMT and how simvastatin influences POVPC-mediated EndMT remains unclear. Here, we treated human umbilical vein ECs with POVPC, simvastatin, or both, and determined their effect on EC viability, morphology, tube formation, proliferation, and generation of NO and superoxide anion (O2•-). Expression of specific endothelial and mesenchymal markers was detected by immunofluorescence and immunoblotting. POVPC did not affect EC viability but altered cellular morphology from cobblestone-like ECs to a spindle-like mesenchymal cell morphology. POVPC increased O2- generation and expression of alpha-smooth muscle actin, vimentin, Snail-1, Twist-1, transforming growth factor-beta (TGF-ß), TGF-ß receptor II, p-Smad2/3, and Smad2/3. POVPC also decreased NO production and expression of CD31 and endothelial NO synthase. Simvastatin inhibited POVPC-mediated effects on cellular morphology, production of O2•- and NO, and expression of specific endothelial and mesenchymal markers. These data demonstrate that POVPC induces EndMT by increasing oxidative stress, which stimulates TGF-ß/Smad signaling, leading to Snail-1 and Twist-1 activation. Simvastatin inhibited POVPC-induced EndMT by decreasing oxidative stress, suppressing TGF-ß/Smad signaling, and inactivating Snail-1 and Twist-1. Our findings reveal a novel mechanism of atherosclerosis that can be inhibited by simvastatin.


Asunto(s)
Fosforilcolina
19.
Recent Results Cancer Res ; 217: 47-70, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33200361

RESUMEN

Hepatitis B virus (HBV) is a major cause of hepatocellular carcinoma (HCC). There are approximately 250 million people in the world that are chronically infected by this virus, resulting in nearly 1 million deaths every year. Many of these patients die from severe liver diseases, including HCC. HBV may induce HCC through the induction of chronic liver inflammation, which can cause oxidative stress and DNA damage. However, many studies also indicated that HBV could induce HCC via the alteration of hepatocellular physiology that may involve genetic and epigenetic changes of the host DNA, the alteration of cellular signaling pathways, and the inhibition of DNA repair mechanisms. This alteration of cellular physiology can lead to the accumulation of DNA damages and the promotion of cell cycles and predispose hepatocytes to oncogenic transformation.


Asunto(s)
Carcinoma Hepatocelular , Virus de la Hepatitis B , Hepatitis B , Neoplasias Hepáticas , Carcinoma Hepatocelular/virología , Reparación del ADN , Hepatitis B/complicaciones , Hepatitis B/genética , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/patogenicidad , Humanos , Neoplasias Hepáticas/virología , Oncogenes
20.
BMC Infect Dis ; 21(1): 840, 2021 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-34412585

RESUMEN

BACKGROUND: Tuberculosis (TB) is caused by a bacterium called Mycobacterium tuberculosis (Mtb). China is the third in top 8 high TB burden countries and Guangxi is one of the high incidence areas in South China. Determine bacterial factors that affected TB incidence rate is a step toward Ending the TB epidemic. RESULTS: Genomes of M. tuberculosis cultures from a relatively high and low incidence region in Guangxi have been sequenced. 347 of 358(96.9%) were identified as M. tuberculosis. All the strains belong to Lineage 2 and Lineage 4, except for one in Lineage 1. We found that the genetic structure of the M. tuberculosis population in each county varies enormously. Low incidence rate regions have a lower prevalence of Beijing genotypes than other regions. Four isolates which harbored mutT4-48 also had mutT2-58 mutations. It is suggested that strains from the ancestors of modern Beijing lineage is circulating in Guangxi. Strains of modern Beijing lineage (OR=2.04) were more likely to acquire drug resistances than Lineage 4. Most of the lineage differentiation SNPs are related to cell wall biosynthetic pathways. CONCLUSIONS: These results provided a higher resolution to better understand the history of transmission of M. tuberculosis from/to South China. And the incidence rate of tuberculosis might be affected by bacterial population structure shaped by demographic history. Our findings also support the hypothesis that Modern Beijing lineage originated in South China.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Tuberculosis , Antituberculosos/uso terapéutico , China/epidemiología , Genotipo , Humanos , Incidencia , Mycobacterium tuberculosis/genética , Tuberculosis/tratamiento farmacológico , Tuberculosis/epidemiología , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA