Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 152(1-2): 82-96, 2013 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-23313552

RESUMEN

The induction of pluripotency or trans-differentiation of one cell type to another can be accomplished with cell-lineage-specific transcription factors. Here, we report that repression of a single RNA binding polypyrimidine-tract-binding (PTB) protein, which occurs during normal brain development via the action of miR-124, is sufficient to induce trans-differentiation of fibroblasts into functional neurons. Besides its traditional role in regulated splicing, we show that PTB has a previously undocumented function in the regulation of microRNA functions, suppressing or enhancing microRNA targeting by competitive binding on target mRNA or altering local RNA secondary structure. A key event during neuronal induction is the relief of PTB-mediated blockage of microRNA action on multiple components of the REST complex, thereby derepressing a large array of neuronal genes, including miR-124 and multiple neuronal-specific transcription factors, in nonneuronal cells. This converts a negative feedback loop to a positive one to elicit cellular reprogramming to the neuronal lineage.


Asunto(s)
Diferenciación Celular , Fibroblastos/citología , MicroARNs/genética , Neuronas/citología , Proteína de Unión al Tracto de Polipirimidina/metabolismo , Animales , Línea Celular , Linaje de la Célula , Regulación hacia Abajo , Humanos , Ratones , MicroARNs/metabolismo , Proteína de Unión al Tracto de Polipirimidina/genética , Empalme del ARN , Sinapsis
2.
J Biol Chem ; 300(7): 107448, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38844135

RESUMEN

O-linked ß-N-acetylglucosamine (O-GlcNAc) transferase (OGT) is the sole enzyme that catalyzes all O-GlcNAcylation reactions intracellularly. Previous investigations have found that OGT levels oscillate during the cell division process. Specifically, OGT abundance is downregulated during mitosis, but the underlying mechanism is lacking. Here we demonstrate that OGT is ubiquitinated by the ubiquitin E3 ligase, anaphase promoting complex/cyclosome (APC/C)-cell division cycle 20 (Cdc20). We show that APC/CCdc20 interacts with OGT through a conserved destruction box (D-box): Arg-351/Leu-354, the abrogation of which stabilizes OGT. As APC/CCdc20-substrate binding is often preceded by a priming ubiquitination event, we also used mass spectrometry and mapped OGT Lys-352 to be a ubiquitination site, which is a prerequisite for OGT association with APC/C subunits. Interestingly, in The Cancer Genome Atlas, R351C is a uterine carcinoma mutant, suggesting that mutations of the D-box are linked with tumorigenesis. Paradoxically, we found that both R351C and the D-box mutants (R351A/L354A) inhibit uterine carcinoma in mouse xenograft models, probably due to impaired cell division and proliferation. In sum, we propose a model where OGT Lys-352 ubiquitination primes its binding with APC/C, and then APC/CCdc20 partners with OGT through the D-box for its mitotic destruction. Our work not only highlights the key mechanism that regulates OGT during the cell cycle, but also reveals the mutual coordination between glycosylation and the cell division machinery.

3.
J Proteome Res ; 23(5): 1788-1800, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38619924

RESUMEN

As people age, their ability to resist injury and repair damage decreases significantly. Platelet-rich plasma (PRP) has demonstrated diverse therapeutic effects on tissue repair. However, the inconsistency of patient outcomes poses a challenge to the practical application of PRP in clinical practice. Furthermore, a comprehensive understanding of the specific impact of aging on PRP requires a systematic investigation. We derived PRP from 6 young volunteers and 6 elderly volunteers, respectively. Subsequently, 95% of high-abundance proteins were removed, followed by mass spectrometry analysis. Data are available via ProteomeXchange with the identifier PXD050061. We detected a total of 739 proteins and selected 311 proteins that showed significant differences, including 76 upregulated proteins in the young group and 235 upregulated proteins in the elderly group. Functional annotation and enrichment analysis unveiled upregulation of proteins associated with cell apoptosis, angiogenesis, and complement and coagulation cascades in the elderly. Conversely, IGF1 was found to be upregulated in the young group, potentially serving as the central source of enhanced cell proliferation ability. Our investigation not only provides insights into standardizing PRP preparation but also offers novel strategies for augmenting the functionality of aging cells or tissues.


Asunto(s)
Envejecimiento , Factor I del Crecimiento Similar a la Insulina , Plasma Rico en Plaquetas , Proteómica , Humanos , Plasma Rico en Plaquetas/metabolismo , Plasma Rico en Plaquetas/química , Proteómica/métodos , Anciano , Adulto , Factor I del Crecimiento Similar a la Insulina/metabolismo , Masculino , Femenino , Proteoma/análisis , Proteoma/metabolismo , Adulto Joven , Regulación hacia Arriba , Apoptosis , Factores de Edad
4.
Biochem Biophys Res Commun ; 710: 149883, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38588611

RESUMEN

Congenital heart diseases are the most common birth defects around the world. Emerging evidence suggests that mitochondrial homeostasis is required for normal heart development. In mitochondria, a series of molecular chaperones including heat shock protein 60 (HSP60) are engaged in assisting the import and folding of mitochondrial proteins. However, it remains largely obscure whether and how these mitochondrial chaperones regulate cardiac development. Here, we generated a cardiac-specific Hspd1 deletion mouse model by αMHC-Cre and investigated the role of HSP60 in cardiac development. We observed that deletion of HSP60 in embryonic cardiomyocytes resulted in abnormal heart development and embryonic lethality, characterized by reduced cardiac cell proliferation and thinner ventricular walls, highlighting an essential role of cardiac HSP60 in embryonic heart development and survival. Our results also demonstrated that HSP60 deficiency caused significant downregulation of mitochondrial ETC subunits and induced mitochondrial stress. Analysis of gene expression revealed that P21 that negatively regulates cell proliferation is significantly upregulated in HSP60 knockout hearts. Moreover, HSP60 deficiency induced activation of eIF2α-ATF4 pathway, further indicating the underlying mitochondrial stress in cardiomyocytes after HSP60 deletion. Taken together, our study demonstrated that regular function of mitochondrial chaperones is pivotal for maintaining normal mitochondrial homeostasis and embryonic heart development.


Asunto(s)
Chaperonina 60 , Cardiopatías Congénitas , Animales , Ratones , Chaperonina 60/genética , Chaperonina 60/metabolismo , Cardiopatías Congénitas/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Miocitos Cardíacos/metabolismo
5.
PLoS Genet ; 17(9): e1009785, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34506481

RESUMEN

Dysregulation of cardiac transcription programs has been identified in patients and families with heart failure, as well as those with morphological and functional forms of congenital heart defects. Mediator is a multi-subunit complex that plays a central role in transcription initiation by integrating regulatory signals from gene-specific transcriptional activators to RNA polymerase II (Pol II). Recently, Mediator subunit 30 (MED30), a metazoan specific Mediator subunit, has been associated with Langer-Giedion syndrome (LGS) Type II and Cornelia de Lange syndrome-4 (CDLS4), characterized by several abnormalities including congenital heart defects. A point mutation in MED30 has been identified in mouse and is associated with mitochondrial cardiomyopathy. Very recent structural analyses of Mediator revealed that MED30 localizes to the proximal Tail, anchoring Head and Tail modules, thus potentially influencing stability of the Mediator core. However, in vivo cellular and physiological roles of MED30 in maintaining Mediator core integrity remain to be tested. Here, we report that deletion of MED30 in embryonic or adult cardiomyocytes caused rapid development of cardiac defects and lethality. Importantly, cardiomyocyte specific ablation of MED30 destabilized Mediator core subunits, while the kinase module was preserved, demonstrating an essential role of MED30 in stability of the overall Mediator complex. RNAseq analyses of constitutive cardiomyocyte specific Med30 knockout (cKO) embryonic hearts and inducible cardiomyocyte specific Med30 knockout (icKO) adult cardiomyocytes further revealed critical transcription networks in cardiomyocytes controlled by Mediator. Taken together, our results demonstrated that MED30 is essential for Mediator stability and transcriptional networks in both developing and adult cardiomyocytes. Our results affirm the key role of proximal Tail modular subunits in maintaining core Mediator stability in vivo.


Asunto(s)
Complejo Mediador/metabolismo , Miocitos Cardíacos/metabolismo , Transcripción Genética , Animales , Femenino , Masculino , Complejo Mediador/genética , Complejo Mediador/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
6.
J Mol Cell Cardiol ; 175: 44-48, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36539111

RESUMEN

Mitochondrial dysfunction in heart triggers an integrated stress response (ISR) through phosphorylation of eIF2α and subsequent ATF4 activation. DAP3 Binding Cell Death Enhancer 1 (DELE1) is a mitochondrial protein recently found to be critical for mediating mitochondrial stress-triggered ISR (MSR)-induced eIF2α-ATF4 pathway activation. However, the specific role of DELE1 in heart at baseline or in response to mitochondrial stress remains largely unknown. In this study, we report that DELE1 is dispensable for cardiac development and function under baseline conditions. Conversely, DELE1 is essential for mediating an adaptive response to mitochondrial dysfunction-triggered stress in the heart, playing a protective role in mitochondrial cardiomyopathy.


Asunto(s)
Cardiomiopatías , Mitocondrias , Humanos , Fosforilación , Mitocondrias/genética , Mitocondrias/metabolismo , Cardiomiopatías/genética , Cardiomiopatías/metabolismo
7.
Biomacromolecules ; 24(9): 4240-4252, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37585281

RESUMEN

Bionic mimics using natural cartilage matrix molecules can modulate the corresponding metabolic activity by improving the microenvironment of chondrocytes. A bionic brush polymer, HA/PX, has been found to reverse the loss of cartilage extracellular matrix (ECM) and has promising applications in the clinical treatment of osteoarthritis (OA). However, the unknown bioremediation mechanism of HA/PX severely hinders its clinical translation. In OA, the massive loss of the ECM may be attributed to a decrease in transient receptor potential vanilloid 4 (TRPV4) activity, which affects reactive oxygen species (ROS) clearance and [Ca2+]i signaling, initiating downstream catabolic pathways. In this study, we investigated the bioremediation mechanism of HA/PX in a model of interleukin 1ß (IL-1ß)-induced inflammation. Through TRPV4, HA/PX reduced ROS accumulation in chondrocytes and enhanced [Ca2+]i signaling, reflecting a short-term protection capacity for chondrocytes. In addition, HA/PX balanced the metabolic homeostasis of chondrocytes via TRPV4, including promoting the secretion of type II collagen (Col-II) and aggrecan, the major components of the ECM, and reducing the expression of matrix metal-degrading enzyme (MMP-13), exerting long-term protective effects on chondrocytes. Molecular dynamics (MD) simulations showed that HA/PX could act as a TRPV4 activator. Our results suggest that HA/PX can regulate chondrocyte homeostasis via ROS/Ca2+/TRPV4, thereby improving cartilage regeneration. Because the ECM is a prevalent feature of various cell types, HA/PX holds promising potential for improving regeneration and disease modification for not only cartilage-related healthcare but many other tissues and diseases.


Asunto(s)
Antineoplásicos , Cartílago Articular , Osteoartritis , Humanos , Condrocitos/metabolismo , Ácido Hialurónico/farmacología , Canales Catiónicos TRPV/metabolismo , Canales Catiónicos TRPV/farmacología , Especies Reactivas de Oxígeno/metabolismo , Biomimética , Osteoartritis/tratamiento farmacológico , Interleucina-1beta/metabolismo , Antineoplásicos/farmacología , Homeostasis , Cartílago Articular/metabolismo , Células Cultivadas
8.
Cell ; 134(2): 279-90, 2008 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-18662543

RESUMEN

In quiescent cells, mitochondria are the primary source of reactive oxygen species (ROS), which are generated by leakiness of the electron transport chain (ETC). High levels of ROS can trigger cell death, whereas lower levels drive diverse and important cellular functions. We show here by employing a newly developed mitochondrial matrix-targeted superoxide indicator, that individual mitochondria undergo spontaneous bursts of superoxide generation, termed "superoxide flashes." Superoxide flashes occur randomly in space and time, exhibit all-or-none properties, and provide a vital source of superoxide production across many different cell types. Individual flashes are triggered by transient openings of the mitochondrial permeability transition pore stimulating superoxide production by the ETC. Furthermore, we observe a flurry of superoxide flash activity during reoxygenation of cardiomyocytes after hypoxia, which is inhibited by the cardioprotective compound adenosine. We propose that superoxide flashes could serve as a valuable biomarker for a wide variety of oxidative stress-related diseases.


Asunto(s)
Mitocondrias/metabolismo , Superóxidos/metabolismo , Adenoviridae/genética , Animales , Hipoxia de la Célula , Línea Celular Tumoral , Células Cultivadas , Humanos , Proteínas Luminiscentes/metabolismo , Células Musculares/metabolismo , Miocitos Cardíacos/metabolismo , Neuronas/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
9.
PLoS Genet ; 16(4): e1008739, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32320395

RESUMEN

Inositol 1,4,5-trisphosphate receptors (IP3Rs) are a family of intracellular Ca2+ release channels located on the ER membrane, which in mammals consist of 3 different subtypes (IP3R1, IP3R2, and IP3R3) encoded by 3 genes, Itpr1, Itpr2, and Itpr3, respectively. Studies utilizing genetic knockout mouse models have demonstrated that IP3Rs are essential for embryonic survival in a redundant manner. Deletion of both IP3R1 and IP3R2 has been shown to cause cardiovascular defects and embryonic lethality. However, it remains unknown which cell types account for the cardiovascular defects in IP3R1 and IP3R2 double knockout (DKO) mice. In this study, we generated conditional IP3R1 and IP3R2 knockout mouse models with both genes deleted in specific cardiovascular cell lineages. Our results revealed that deletion of IP3R1 and IP3R2 in cardiomyocytes by TnT-Cre, in endothelial / hematopoietic cells by Tie2-Cre and Flk1-Cre, or in early precursors of the cardiovascular lineages by Mesp1-Cre, resulted in no phenotypes. This demonstrated that deletion of both IP3R genes in cardiovascular cell lineages cannot account for the cardiovascular defects and embryonic lethality observed in DKO mice. We then revisited and performed more detailed phenotypic analysis in DKO embryos, and found that DKO embryos developed cardiovascular defects including reduced size of aortas, enlarged cardiac chambers, as well as growth retardation at embryonic day (E) 9.5, but in varied degrees of severity. Interestingly, we also observed allantoic-placental defects including reduced sizes of umbilical vessels and reduced depth of placental labyrinth in DKO embryos, which could occur independently from other phenotypes in DKO embryos even without obvious growth retardation. Furthermore, deletion of both IP3R1 and IP3R2 by the epiblast-specific Meox2-Cre, which targets all the fetal tissues and extraembryonic mesoderm but not extraembryonic trophoblast cells, also resulted in embryonic lethality and similar allantoic-placental defects. Taken together, our results demonstrated that IP3R1 and IP3R2 play an essential and redundant role in maintaining the integrity of fetal-maternal connection and embryonic viability.


Asunto(s)
Retardo del Crecimiento Fetal/genética , Corazón Fetal/metabolismo , Cardiopatías Congénitas/genética , Receptores de Inositol 1,4,5-Trifosfato/genética , Placenta/metabolismo , Animales , Células Progenitoras Endoteliales/metabolismo , Femenino , Corazón Fetal/embriología , Eliminación de Gen , Masculino , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Placenta/embriología , Embarazo
10.
Int J Mol Sci ; 24(2)2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36674797

RESUMEN

Heart failure is the final stage of various cardiovascular diseases and seriously threatens human health. Increasing mediators have been found to be involved in the pathogenesis of heart failure, including the RNA binding protein RBFox2. It participates in multiple aspects of the regulation of cardiac function and plays a critical role in the process of heart failure. However, how RBFox2 itself is regulated remains unclear. Here, we dissected transcriptomic signatures, including mRNAs and miRNAs, in a mouse model of heart failure after TAC surgery. A global analysis showed that an asymmetric alternation in gene expression and a large-scale upregulation of miRNAs occurred in heart failure. An association analysis revealed that the latter not only contributed to the degradation of numerous mRNA transcripts, but also suppressed the translation of key proteins such as RBFox2. With the aid of Ago2 CLIP-seq data, luciferase assays verified that RBFox2 was targeted by multiple miRNAs, including Let-7, miR-16, and miR-200b, which were significantly upregulated in heart failure. The overexpression of these miRNAs suppressed the RBFox2 protein and its downstream effects in cardiomyocytes, which was evidenced by the suppressed alternative splicing of the Enah gene and impaired E-C coupling via the repression of the Jph2 protein. The inhibition of Let-7, the most abundant miRNA family targeting RBFox2, could restore the RBFox2 protein as well as its downstream effects in dysfunctional cardiomyocytes induced by ISO treatment. In all, these findings revealed the molecular mechanism leading to RBFox2 depression in heart failure, and provided an approach to rescue RBFox2 through miRNA inhibition for the treatment of heart failure.


Asunto(s)
Insuficiencia Cardíaca , MicroARNs , Ratones , Animales , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Factores de Empalme de ARN/genética , Insuficiencia Cardíaca/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Empalme Alternativo , ARN Mensajero/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
11.
Genesis ; 59(3): e23412, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33547760

RESUMEN

The atypical PKC (aPKC) subfamily constitutes PKCζ and PKCλ in mice, and both aPKC isoforms have been proposed to be involved in regulating various endothelial cell (EC) functions. However, the physiological function of aPKC in ECs during embryonic development has not been well understood. To address this question, we utilized Tie2-Cre to delete PKCλ alone (PKCλ-SKO) or both PKCλ and PKCζ (DKO) in ECs, and found that all DKO mice died at around the embryonic day 11.5 (E11.5), whereas a small proportion of PKCλ-SKO mice survived till birth. PKCλ-SKO embryos also exhibited less phenotypic severity than DKO embryos at E10.5 and E11.5, suggesting a potential compensatory role of PKCζ for PKCλ in embryonic ECs. We then focused on DKO embryos and investigated the effects of aPKC deficiency on embryonic vascular development. At E9.5, deletion of both aPKC isoforms reduced the diameters of vitelline artery and vein, and decreased branching from both vitelline vessels in yolk sac. Ablation of both aPKC isoforms also disrupted embryonic angiogenesis in head and trunk at the same stage, increasing apoptosis of both ECs and non-ECs. Taken together, our results demonstrated that aPKC in ECs plays an essential role in regulating cell apoptosis, angiogenesis, and embryonic survival.


Asunto(s)
Inductores de la Angiogénesis/metabolismo , Desarrollo Embrionario , Células Endoteliales/metabolismo , Proteína Quinasa C/fisiología , Saco Vitelino/embriología , Saco Vitelino/metabolismo , Animales , Apoptosis , Femenino , Regulación del Desarrollo de la Expresión Génica , Ratones , Embarazo , Eliminación de Secuencia
12.
Biochem Biophys Res Commun ; 552: 98-105, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33743353

RESUMEN

SET domain-containing 2 (SETD2), the primary methyltransferase for histone 3 lysine-36 trimethylation (H3K36me3) in mammals, is associated with many hematopoietic diseases when mutated. Previous works have emphasized its role in maintaining adult hematopoietic stem cells or tumorigenesis, however, whether and how SETD2 regulates erythropoiesis during embryonic development is relatively unexplored. In this study, using a conditional SETD2 knockout (KO) mouse model, we reveal that SETD2 plays an essential role in fetal erythropoiesis. Loss of Setd2 in hematopoietic cells ablates H3K36me3, and leads to anemia with a significant decrease in erythroid cells in the peripheral blood at E18.5. This is due to impaired erythroblast differentiation in both spleen and liver. We also find increased proportions of nucleated erythrocytes in the blood of Setd2 KO embryos. Lastly, we ascribe embryonic erythropoiesis-related genes Vegfc, Vegfr3, and Prox1, as likely downstream targets of SETD2 regulation. Our study reveals a critical role of SETD2 in fetal erythropoiesis that precedes adult hematopoiesis, and provide unique insights into the defects in erythroid lineages, such as anemia.


Asunto(s)
Diferenciación Celular/genética , Eritroblastos/metabolismo , Eritropoyesis/genética , Feto/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Animales , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Eritroblastos/citología , Eritrocitos/citología , Eritrocitos/metabolismo , Feto/embriología , Regulación del Desarrollo de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Ratones Noqueados , Ratones Transgénicos , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Factor C de Crecimiento Endotelial Vascular/genética , Factor C de Crecimiento Endotelial Vascular/metabolismo , Receptor 3 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo
13.
Basic Res Cardiol ; 116(1): 30, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33893593

RESUMEN

Appropriately manipulating macrophage M1/M2 phenotypic transition is a promising therapeutic strategy for tissue repair after myocardial infarction (MI). Here we showed that gene ablation of hypoxia-induced mitogenic factor (HIMF) in mice (Himf-/- and HIMFflox/flox;Lyz2-Cre) attenuated M1 macrophage-dominated inflammatory response and promoted M2 macrophage accumulation in infarcted hearts. This in turn reduced myocardial infarct size and improved cardiac function after MI. Correspondingly, expression of HIMF in macrophages induced expression of pro-inflammatory cytokines; the culturing medium of HIMF-overexpressing macrophages impaired the cardiac fibroblast viability and function. Furthermore, macrophage HIMF was found to up-regulate C/EBP-homologous protein (CHOP) expression, which exaggerated the release of pro-inflammatory cytokines via activating signal transducer of activator of transcription 1 (STAT1) and 3 (STAT3) signaling. Together these data suggested that HIMF promotes M1-type and prohibits M2-type macrophage polarization by activating the CHOP-STAT1/STAT3 signaling pathway to negatively regulate myocardial repair. HIMF might thus constitute a novel target to treat MI.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/deficiencia , Macrófagos/metabolismo , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Regeneración , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Fibroblastos/patología , Eliminación de Gen , Mediadores de Inflamación/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocardio/patología , Fenotipo , Células RAW 264.7 , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Factor de Transcripción CHOP/genética , Factor de Transcripción CHOP/metabolismo
14.
Circ Res ; 124(5): 712-726, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30566039

RESUMEN

RATIONALE: SPEG (Striated muscle preferentially expressed protein kinase) has 2 kinase-domains and is critical for cardiac development and function. However, it is not clear how these 2 kinase-domains function to maintain cardiac performance. OBJECTIVE: To determine the molecular functions of the 2 kinase-domains of SPEG. METHODS AND RESULTS: A proteomics approach identified SERCA2a (sarcoplasmic/endoplasmic reticulum calcium ATPase 2a) as a protein interacting with the second kinase-domain but not the first kinase-domain of SPEG. Furthermore, the second kinase-domain of SPEG could phosphorylate Thr484 on SERCA2a, promote its oligomerization and increase calcium reuptake into the sarcoplasmic/endoplasmic reticulum in culture cells and primary neonatal rat cardiomyocytes. Phosphorylation of SERCA2a by SPEG enhanced its calcium-transporting activity without affecting its ATPase activity. Depletion of Speg in neonatal rat cardiomyocytes inhibited SERCA2a-Thr484 phosphorylation and sarcoplasmic reticulum calcium reuptake. Moreover, overexpression of SERCA2aThr484Ala mutant protein also slowed sarcoplasmic reticulum calcium reuptake in neonatal rat cardiomyocytes. In contrast, domain mapping and phosphorylation analysis revealed that the first kinase-domain of SPEG interacted and phosphorylated its recently identified substrate JPH2 (junctophilin-2). An inducible heart-specific Speg knockout mouse model was generated to further study this SPEG-SERCA2a signal nexus in vivo. Inducible deletion of Speg decreased SERCA2a-Thr484 phosphorylation and its oligomerization in the heart. Importantly, inducible deletion of Speg inhibited SERCA2a calcium-transporting activity and impaired calcium reuptake into the sarcoplasmic reticulum in cardiomyocytes, which preceded morphological and functional alterations of the heart and eventually led to heart failure in adult mice. CONCLUSIONS: Our data demonstrate that the 2 kinase-domains of SPEG may play distinct roles to regulate cardiac function. The second kinase-domain of SPEG is a critical regulator for SERCA2a. Our findings suggest that SPEG may serve as a new target to modulate SERCA2a activation for treatment of heart diseases with impaired calcium homeostasis.


Asunto(s)
Señalización del Calcio , Cardiomiopatía Dilatada/enzimología , Insuficiencia Cardíaca/enzimología , Proteínas Musculares/metabolismo , Miocitos Cardíacos/enzimología , Quinasa de Cadena Ligera de Miosina/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Retículo Sarcoplasmático/enzimología , Animales , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/patología , Cardiomiopatía Dilatada/fisiopatología , Modelos Animales de Enfermedad , Células HEK293 , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Musculares/genética , Miocitos Cardíacos/patología , Quinasa de Cadena Ligera de Miosina/genética , Fosforilación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas , Ratas , Retículo Sarcoplasmático/patología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética
15.
Org Biomol Chem ; 19(15): 3469-3478, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33899896

RESUMEN

Hypoxia is a pathological hallmark of solid tumors. Detection of hypoxia is therefore of great interest for tumor diagnosis and treatment. As a well-established biomarker of hypoxia, nitroreductase (NTR) has been widely exploited in the development of hypoxia-responsive fluorescent probes on the basis of its enzymatic activity to reduce nitroaryl groups. However, studies on the relationship between the nitroaryl structure and the probe performance for optimal probe design are still rare. Here we report a comparative investigation of nitroaryl groups and identification of the optimal nitroaryl structure for developing new fluorescent probes with extremely high efficiency in the detection of NTR and the imaging of hypoxic tumor cells. Specifically, we synthesized a series of resorufin-based fluorescent probes containing different nitroaryl groups, compared their fluorescence responses to NTR, and identified 2-nitro-N-methyl-imidazolyl as the optimal nitroaryl group that is much more efficient than the most widely used 4-nitrophenyl for NTR detection. The structure-performance relationship was then studied by theoretical molecular docking, revealing the unique features of 2-nitro-N-methyl-imidazolyl in binding and reaction with NTR. We further incorporated the 2-nitro-N-methyl-imidazolyl group into a near-infrared (NIR) hemicyanine fluorophore and developed a NIR fluorescent probe NFP-7 for the detection of NTR and hypoxic tumor cells. NFP-7 exhibits a strong fluorescence increase toward NTR in vitro with an ultrafast (within 40 seconds to fluorescence maximum) and ultrasensitive (0.2 ng mL-1 detection limit) response. NFP-7 has also been demonstrated for imaging the degree of hypoxia in live tumor cells and, more importantly, in a murine tumor model. Our study provides important insights into hypoxia probe development and new tools for hypoxia imaging.


Asunto(s)
Descubrimiento de Drogas , Colorantes Fluorescentes/química , Nitrorreductasas/análisis , Imagen Óptica , Oxazinas/química , Animales , Colorantes Fluorescentes/síntesis química , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Microscopía Confocal , Simulación del Acoplamiento Molecular , Estructura Molecular , Nitrorreductasas/metabolismo , Oxazinas/síntesis química , Células Tumorales Cultivadas
16.
Circulation ; 140(1): 55-66, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-30982350

RESUMEN

BACKGROUND: Membrane contact sites are fundamental for transmission and translation of signals in multicellular organisms. The junctional membrane complexes in the cardiac dyads, where transverse (T) tubules are juxtaposed to the sarcoplasmic reticulum, are a prime example. T-tubule uncoupling and remodeling are well-known features of cardiac disease and heart failure. Even subtle alterations in the association between T-tubules and the junctional sarcoplasmic reticulum can cause serious cardiac disorders. NEXN (nexilin) has been identified as an actin-binding protein, and multiple mutations in the NEXN gene are associated with cardiac diseases, but the precise role of NEXN in heart function and disease is still unknown. METHODS: Nexn global and cardiomyocyte-specific knockout mice were generated. Comprehensive phenotypic and RNA sequencing and mass spectrometry analyses were performed. Heart tissue samples and isolated single cardiomyocytes were analyzed by electron and confocal microscopy. RESULTS: Global and cardiomyocyte-specific loss of Nexn in mice resulted in a rapidly progressive dilated cardiomyopathy. In vivo and in vitro analyses revealed that NEXN interacted with junctional sarcoplasmic reticulum proteins, was essential for optimal calcium transients, and was required for initiation of T-tubule invagination and formation. CONCLUSIONS: These results demonstrated that NEXN is a pivotal component of the junctional membrane complex and is required for initiation and formation of T-tubules, thus providing insight into mechanisms underlying cardiomyopathy in patients with mutations in NEXN.


Asunto(s)
Cardiomiopatía Dilatada/metabolismo , Membrana Celular/metabolismo , Uniones Intercelulares/metabolismo , Proteínas de Microfilamentos/deficiencia , Fibras Musculares Esqueléticas/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Canales de Calcio Tipo L/metabolismo , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/patología , Membrana Celular/genética , Membrana Celular/patología , Células Cultivadas , Uniones Intercelulares/genética , Uniones Intercelulares/patología , Ratones , Ratones Noqueados , Ratones Transgénicos , Proteínas de Microfilamentos/genética , Fibras Musculares Esqueléticas/patología , Miocitos Cardíacos/patología
17.
Glia ; 67(10): 1976-1989, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31348567

RESUMEN

The second messenger inositol 1,4,5-trisphosphate (IP3 ) is paramount for signal transduction in biological cells, mediating Ca2+ release from the endoplasmic reticulum. Of the three isoforms of IP3 receptors identified in the nervous system, Type 2 (IP3 R2) is the main isoform expressed by astrocytes. The complete lack of IP3 R2 in transgenic mice was shown to significantly disrupt Ca2+ signaling in astrocytes, while leaving neuronal intracellular pathways virtually unperturbed. Whether and how this predominantly nonneuronal receptor might affect long-term memory function has been a matter of intense debate. In this work, we found that the absence of IP3 R2-mediated signaling did not disrupt normal learning or recent (24-48 h) memory. Contrary to expectations, however, mice lacking IP3 R2 exhibited remote (2-4 weeks) memory deficits. Not only did the lack of IP3 R2 impair remote recognition, fear, and spatial memories, but it also prevented naturally occurring post-encoding memory enhancements consequent to memory consolidation. Consistent with the key role played by the downscaling of synaptic transmission in memory consolidation, we found that NMDAR-dependent long-term depression was abnormal in ex vivo hippocampal slices acutely prepared from IP3 R2-deficient mice, a deficit that could be prevented upon supplementation with D-serine - an NMDA-receptor co-agonist whose synthesis depends upon astrocytes' activity. Our results reveal that IP3 R2 activation, which in the brain is paramount for Ca2+ signaling in astrocytes, but not in neurons, can help shape brain plasticity by enhancing the consolidation of newly acquired information into long-term memories that can guide remote cognitive behaviors.


Asunto(s)
Receptores de Inositol 1,4,5-Trifosfato/deficiencia , Trastornos de la Memoria/metabolismo , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Miedo/fisiología , Femenino , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Aprendizaje/fisiología , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Depresión Sináptica a Largo Plazo/fisiología , Masculino , Consolidación de la Memoria/fisiología , Memoria a Largo Plazo/fisiología , Memoria a Corto Plazo/fisiología , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/metabolismo , Memoria Espacial/fisiología , Técnicas de Cultivo de Tejidos
18.
Am J Physiol Heart Circ Physiol ; 316(2): H392-H399, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30499714

RESUMEN

Bcl-2-associated athanogene 3 (BAG3) is a cochaperone protein and a central player of the cellular protein quality control system. BAG3 is prominently expressed in the heart and plays an essential role in cardiac protein homeostasis by interacting with chaperone heat shock proteins (HSPs) in large, functionally distinct multichaperone complexes. The BAG3 mutation of proline 209 to leucine (P209L), which resides in a critical region that mediates the direct interaction between BAG3 and small HSPs (sHSPs), is associated with cardiomyopathy in humans. However, the mechanism by which the BAG3 P209L missense mutation leads to cardiomyopathy remains unknown. To determine the molecular basis underlying the cardiomyopathy caused by the BAG3 P209L mutation, we generated a knockin (KI) mouse model in which the endogenous Bag3 gene was replaced with mutant Bag3 containing the P215L mutation, which is equivalent to the human P209L mutation. We performed physiological, histological, and biochemical analyses of Bag3 P209L KI mice to determine the functional, morphological, and molecular consequences of the P209L mutation. We found that Bag3 P209L KI mice exhibited normal cardiac function and morphology up to 16 mo of age. Western blot analysis further revealed that levels of sHSPs, stress-inducible HSPs, ubiquitinated proteins, and autophagy were unaffected in P209L mutant mouse hearts. In conclusion, the P209L mutation in Bag3 does not cause cardiomyopathy in mice up to 16 mo of age under baseline conditions. NEW & NOTEWORTHY Bcl-2-associated athanogene 3 (BAG3) P209L mutation is associated with human cardiomyopathy. A recent study reported that transgenic mice overexpressing human BAG3 P209L in cardiomyocytes have cardiac dysfunction. In contrast, our P209L mice that express mutant BAG3 at the same level as that of wild-type mice displayed no overt phenotype. Our results suggest that human cardiomyopathy may result from species-specific requirements for the conserved motif that is disrupted by P209L mutation or from genetic background-dependent effects.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Reguladoras de la Apoptosis/genética , Cardiomiopatías/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagia , Femenino , Proteínas de Choque Térmico/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación Missense , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología , Unión Proteica , Especificidad de la Especie , Ubiquitinación
19.
J Immunol ; 199(2): 570-580, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28615414

RESUMEN

Intracellular calcium (Ca2+) mobilization after engagement of the BCR has been proposed to play an important role in B cell development and function. BCR activation causes an initial Ca2+ release from the endoplasmic reticulum that is mediated by inositol 1,4,5-trisphosphate receptor (IP3R) and then triggers store-operated Ca2+ entry once endoplasmic reticulum Ca2+ store is depleted. Store-operated Ca2+ entry has been shown to regulate B cell function but is dispensable for B cell development. By contrast, the function of IP3R-mediated Ca2+ release in B cells remains to be determined. In this study, we generated a B cell-specific IP3R triple-knockout (IP3R-TKO) mouse model and revealed that loss of IP3Rs increased transitional B cell numbers and reduced recirculating mature B cell numbers in bone marrow. In the peripheral tissues, the numbers of conventional B2 B cells and B1 B cells were both significantly decreased in IP3R-TKO mice. Ablation of IP3Rs also dramatically reduced BCR-mediated B cell proliferation and survival. Furthermore, T cell-dependent and T cell-independent Ab responses were altered in IP3R-TKO mice. In addition, deletion of IP3Rs reduced IL-10-producing regulatory B cell numbers and led to defects in NFAT activation, which together resulted in decreased IL-10 secretion. Taken together, our study demonstrated for the first time, to our knowledge, that IP3R-mediated Ca2+ release plays an essential role in regulating B cell development, proliferation, Ab production, and B cell regulatory function in vivo.


Asunto(s)
Linfocitos B/inmunología , Linfocitos B/fisiología , Señalización del Calcio , Calcio/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Animales , Formación de Anticuerpos , Linfocitos B/citología , Médula Ósea/inmunología , Células de la Médula Ósea/inmunología , Calcio/química , Receptores de Inositol 1,4,5-Trifosfato/deficiencia , Receptores de Inositol 1,4,5-Trifosfato/genética , Interleucina-10/biosíntesis , Interleucina-10/inmunología , Interleucina-10/metabolismo , Activación de Linfocitos , Ratones , Ratones Noqueados , Linfocitos T/inmunología , Linfocitos T/metabolismo
20.
Nature ; 498(7455): 497-501, 2013 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-23783515

RESUMEN

Despite current treatment regimens, heart failure remains the leading cause of morbidity and mortality in the developed world due to the limited capacity of adult mammalian ventricular cardiomyocytes to divide and replace ventricular myocardium lost from ischaemia-induced infarct. Hence there is great interest to identify potential cellular sources and strategies to generate new ventricular myocardium. Past studies have shown that fish and amphibians and early postnatal mammalian ventricular cardiomyocytes can proliferate to help regenerate injured ventricles; however, recent studies have suggested that additional endogenous cellular sources may contribute to this overall ventricular regeneration. Here we have developed, in the zebrafish (Danio rerio), a combination of fluorescent reporter transgenes, genetic fate-mapping strategies and a ventricle-specific genetic ablation system to discover that differentiated atrial cardiomyocytes can transdifferentiate into ventricular cardiomyocytes to contribute to zebrafish cardiac ventricular regeneration. Using in vivo time-lapse and confocal imaging, we monitored the dynamic cellular events during atrial-to-ventricular cardiomyocyte transdifferentiation to define intermediate cardiac reprogramming stages. We observed that Notch signalling becomes activated in the atrial endocardium following ventricular ablation, and discovered that inhibiting Notch signalling blocked the atrial-to-ventricular transdifferentiation and cardiac regeneration. Overall, these studies not only provide evidence for the plasticity of cardiac lineages during myocardial injury, but more importantly reveal an abundant new potential cardiac resident cellular source for cardiac ventricular regeneration.


Asunto(s)
Transdiferenciación Celular , Reprogramación Celular , Corazón/fisiología , Miocardio/citología , Regeneración/fisiología , Pez Cebra/fisiología , Animales , Muerte Celular , Corazón/embriología , Atrios Cardíacos/citología , Atrios Cardíacos/embriología , Ventrículos Cardíacos/citología , Miocardio/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Receptor Notch1/metabolismo , Transducción de Señal , Pez Cebra/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA