Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Breast Cancer Res ; 26(1): 87, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816770

RESUMEN

BACKGROUND: Despite progress understanding the mechanisms underlying tumor spread, metastasis remains a clinical challenge. We identified the choline-producing glycerophosphodiesterase, EDI3 and reported its association with metastasis-free survival in endometrial cancer. We also observed that silencing EDI3 slowed cell migration and other cancer-relevant phenotypes in vitro. Recent work demonstrated high EDI3 expression in ER-HER2+ breast cancer compared to the other molecular subtypes. Silencing EDI3 in ER-HER2+ cells significantly reduced cell survival in vitro and decreased tumor growth in vivo. However, a role for EDI3 in tumor metastasis in this breast cancer subtype was not explored. Therefore, in the present work we investigate whether silencing EDI3 in ER-HER2+ breast cancer cell lines alters phenotypes linked to metastasis in vitro, and metastasis formation in vivo using mouse models of experimental metastasis. METHODS: To inducibly silence EDI3, luciferase-expressing HCC1954 cells were transduced with lentiviral particles containing shRNA oligos targeting EDI3 under the control of doxycycline. The effect on cell migration, adhesion, colony formation and anoikis was determined in vitro, and significant findings were confirmed in a second ER-HER2+ cell line, SUM190PT. Doxycycline-induced HCC1954-luc shEDI3 cells were injected into the tail vein or peritoneum of immunodeficient mice to generate lung and peritoneal metastases, respectively and monitored using non-invasive bioluminescence imaging. Metabolite levels in cells and tumor tissue were analyzed using targeted mass spectrometry and MALDI mass spectrometry imaging (MALDI-MSI), respectively. RESULTS: Inducibly silencing EDI3 reduced cell adhesion and colony formation, as well as increased susceptibility to anoikis in HCC1954-luc cells, which was confirmed in SUM190PT cells. No influence on cell migration was observed. Reduced luminescence was seen in lungs and peritoneum of mice injected with cells expressing less EDI3 after tail vein and intraperitoneal injection, respectively, indicative of reduced metastasis. Importantly, mice injected with EDI3-silenced cells survived longer. Closer analysis of the peritoneal organs revealed that silencing EDI3 had no effect on metastatic organotropism but instead reduced metastatic burden. Finally, metabolic analyses revealed significant changes in choline and glycerophospholipid metabolites in cells and in pancreatic metastases in vivo. CONCLUSIONS: Reduced metastasis upon silencing supports EDI3's potential as a treatment target in metastasizing ER-HER2+ breast cancer.


Asunto(s)
Neoplasias de la Mama , Receptor ErbB-2 , Receptores de Estrógenos , Animales , Femenino , Humanos , Ratones , Línea Celular Tumoral , Receptor ErbB-2/metabolismo , Receptor ErbB-2/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Receptores de Estrógenos/metabolismo , Modelos Animales de Enfermedad , Movimiento Celular , Técnicas de Silenciamiento del Gen , Carga Tumoral , Metástasis de la Neoplasia , Neoplasias Pulmonares/secundario , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Proliferación Celular
2.
J Hepatol ; 77(1): 71-83, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35131407

RESUMEN

BACKGROUND & AIMS: Acetaminophen (APAP) overdose remains a frequent cause of acute liver failure, which is generally accompanied by increased levels of serum bile acids (BAs). However, the pathophysiological role of BAs remains elusive. Herein, we investigated the role of BAs in APAP-induced hepatotoxicity. METHODS: We performed intravital imaging to investigate BA transport in mice, quantified endogenous BA concentrations in the serum of mice and patients with APAP overdose, analyzed liver tissue and bile by mass spectrometry and MALDI-mass spectrometry imaging, assessed the integrity of the blood-bile barrier and the role of oxidative stress by immunostaining of tight junction proteins and intravital imaging of fluorescent markers, identified the intracellular cytotoxic concentrations of BAs, and performed interventions to block BA uptake from blood into hepatocytes. RESULTS: Prior to the onset of cell death, APAP overdose causes massive oxidative stress in the pericentral lobular zone, which coincided with a breach of the blood-bile barrier. Consequently, BAs leak from the bile canaliculi into the sinusoidal blood, which is then followed by their uptake into hepatocytes via the basolateral membrane, their secretion into canaliculi and repeated cycling. This, what we termed 'futile cycling' of BAs, led to increased intracellular BA concentrations that were high enough to cause hepatocyte death. Importantly, however, the interruption of BA re-uptake by pharmacological NTCP blockage using Myrcludex B and Oatp knockout strongly reduced APAP-induced hepatotoxicity. CONCLUSIONS: APAP overdose induces a breach of the blood-bile barrier which leads to futile BA cycling that causes hepatocyte death. Prevention of BA cycling may represent a therapeutic option after APAP intoxication. LAY SUMMARY: Only one drug, N-acetylcysteine, is approved for the treatment of acetaminophen overdose and it is only effective when given within ∼8 hours after ingestion. We identified a mechanism by which acetaminophen overdose causes an increase in bile acid concentrations (to above toxic thresholds) in hepatocytes. Blocking this mechanism prevented acetaminophen-induced hepatotoxicity in mice and evidence from patients suggests that this therapy may be effective for longer periods after ingestion compared to N-acetylcysteine.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Sobredosis de Droga , Acetaminofén/metabolismo , Acetilcisteína/farmacología , Animales , Ácidos y Sales Biliares/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Hepatocitos/metabolismo , Humanos , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL
3.
Plant Physiol ; 182(2): 692-706, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31818904

RESUMEN

Photosynthesis in plant cells would not be possible without the supportive role of mitochondria. However, isolating mitochondria from plant cells for physiological and biochemical analyses is a lengthy and tedious process. Established isolation protocols require multiple centrifugation steps and substantial amounts of starting material. To overcome these limitations, we tagged mitochondria in Arabidopsis (Arabidopsis thaliana) with a triple hemagglutinin tag for rapid purification via a single affinity-purification step. This protocol yields a substantial quantity of highly pure mitochondria from 1 g of Arabidopsis seedlings. The purified mitochondria were suitable for enzyme activity analyses and yielded sufficient amounts of proteins for deep proteomic profiling. We applied this method for the proteomic analysis of the Arabidopsis bou-2 mutant deficient in the mitochondrial Glu transporter À BOUT DE SOUFFLE (BOU) and identified 27 differentially expressed mitochondrial proteins compared with tagged Col-0 controls. Our work sets the stage for the development of advanced mitochondria isolation protocols for distinct cell types.


Asunto(s)
Arabidopsis/metabolismo , Cromatografía de Afinidad/métodos , Mitocondrias , Plantones/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Glutamina/metabolismo , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Proteínas de Transporte de Membrana/genética , Microscopía Confocal , Mitocondrias/enzimología , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Fragmentos de Péptidos/genética , Plantas Modificadas Genéticamente , Proteoma/genética , Proteoma/metabolismo , Proteómica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
J Exp Clin Cancer Res ; 42(1): 25, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36670508

RESUMEN

BACKGROUND: Intrinsic or acquired resistance to HER2-targeted therapy is often a problem when small molecule tyrosine kinase inhibitors or antibodies are used to treat patients with HER2 positive breast cancer. Therefore, the identification of new targets and therapies for this patient group is warranted. Activated choline metabolism, characterized by elevated levels of choline-containing compounds, has been previously reported in breast cancer. The glycerophosphodiesterase EDI3 (GPCPD1), which hydrolyses glycerophosphocholine to choline and glycerol-3-phosphate, directly influences choline and phospholipid metabolism, and has been linked to cancer-relevant phenotypes in vitro. While the importance of choline metabolism has been addressed in breast cancer, the role of EDI3 in this cancer type has not been explored. METHODS: EDI3 mRNA and protein expression in human breast cancer tissue were investigated using publicly-available Affymetrix gene expression microarray datasets (n = 540) and with immunohistochemistry on a tissue microarray (n = 265), respectively. A panel of breast cancer cell lines of different molecular subtypes were used to investigate expression and activity of EDI3 in vitro. To determine whether EDI3 expression is regulated by HER2 signalling, the effect of pharmacological inhibition and siRNA silencing of HER2, as well as the influence of inhibiting key components of signalling cascades downstream of HER2 were studied. Finally, the influence of silencing and pharmacologically inhibiting EDI3 on viability was investigated in vitro and on tumour growth in vivo. RESULTS: In the present study, we show that EDI3 expression is highest in ER-HER2 + human breast tumours, and both expression and activity were also highest in ER-HER2 + breast cancer cell lines. Silencing HER2 using siRNA, as well as inhibiting HER2 signalling with lapatinib decreased EDI3 expression. Pathways downstream of PI3K/Akt/mTOR and GSK3ß, and transcription factors, including HIF1α, CREB and STAT3 were identified as relevant in regulating EDI3 expression. Silencing EDI3 preferentially decreased cell viability in the ER-HER2 + cells. Furthermore, silencing or pharmacologically inhibiting EDI3 using dipyridamole in ER-HER2 + cells resistant to HER2-targeted therapy decreased cell viability in vitro and tumour growth in vivo. CONCLUSIONS: Our results indicate that EDI3 may be a potential novel therapeutic target in patients with HER2-targeted therapy-resistant ER-HER2 + breast cancer that should be further explored.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Fosfatidilinositol 3-Quinasas , Línea Celular Tumoral , Colina/metabolismo , Colina/uso terapéutico , ARN Interferente Pequeño , Receptor ErbB-2/metabolismo , Resistencia a Antineoplásicos/genética , Fosfolipasas/genética
5.
Sci Rep ; 12(1): 4232, 2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35273305

RESUMEN

Treatment of bacterial infections is one of the major challenges of our time due to the evolved resistance mechanisms of pathogens against antibiotics. To circumvent this problem, it is necessary to understand the mode of action of the drug and the mechanism of resistance of the pathogen. One of the most potent antibiotic targets is peptidoglycan (PGN) biosynthesis, as this is an exclusively occurring and critical feature of bacteria. Lipid II is an essential PGN precursor synthesized in the cytosol and flipped into the outer leaflet of the membrane prior to its incorporation into nascent PGN. Antimicrobial peptides (AMPs), such as nisin and colistin, targeting PGN synthesis are considered promising weapons against multidrug-resistant bacteria. However, human pathogenic bacteria that were also resistant to these compounds evolved by the expression of an ATP-binding cassette transporter of the bacitracin efflux (BceAB) type localized in the membrane. In the human pathogen Streptococcus agalactiae, the BceAB transporter SaNsrFP is known to confer resistance to the antimicrobial peptide nisin. The exact mechanism of action for SaNsrFP is poorly understood. For a detailed characterization of the resistance mechanism, we heterologously expressed SaNsrFP in Lactococcus lactis. We demonstrated that SaNsrFP conferred resistance not only to nisin but also to a structurally diverse group of antimicrobial PGN-targeting compounds such as ramoplanin, lysobactin, or bacitracin/(Zn)-bacitracin. Growth experiments revealed that SaNsrFP-producing cells exhibited normal behavior when treated with nisin and/or bacitracin, in contrast to the nonproducing cells, for which growth was significantly reduced. We further detected the accumulation of PGN precursors in the cytoplasm after treating the cells with bacitracin. This did not appear when SaNsrFP was produced. Whole-cell proteomic protein experiments verified that the presence of SaNsrFP in L. lactis resulted in higher production of several proteins associated with cell wall modification. These included, for example, the N-acetylmuramic acid-6-phosphate etherase MurQ and UDP-glucose 4-epimerase. Analysis of components of the cell wall of SaNsrFP-producing cells implied that the transporter is involved in cell wall modification. Since we used an ATP-deficient mutant of the transporter as a comparison, we can show that SaNsrFP and its inactive mutant do not show the same phenotype, albeit expressed at similar levels, which demonstrates the ATP dependency of the mediated resistance processes. Taken together, our data agree to a target protection mechanism and imply a direct involvement of SaNsrFP in resistance by shielding the membrane-localized target of these antimicrobial peptides, resulting in modification of the cell wall.


Asunto(s)
Nisina , Adenosina Trifosfato , Antibacterianos/farmacología , Bacitracina/farmacología , Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana/genética , Proteínas de Transporte de Membrana/genética , Nisina/metabolismo , Nisina/farmacología , Proteómica
6.
Cancers (Basel) ; 12(4)2020 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-32272809

RESUMEN

Germ cell tumors (GCTs) are the most common solid malignancies found in young men. Although they generally have high cure rates, metastases, resistance to cisplatin-based therapy, and late toxicities still represent a lethal threat, arguing for the need of new therapeutic options. In a previous study, we identified downregulation of the chromatin-remodeling SWI/SNF complex member ARID1A as a key event in the mode of action of the histone deacetylase inhibitor romidepsin. Additionally, the loss-of-function mutations re-sensitize different tumor types to various drugs, like EZH2-, PARP-, HDAC-, HSP90- or ATR-inhibitors. Thus, ARID1A presents as a promising target for synthetic lethality and combination therapy. In this study, we deciphered the molecular function of ARID1A and screened for the potential of two pharmacological ARID1A inhibitors as a new therapeutic strategy to treat GCTs. By CRISPR/Cas9, we generated ARID1A-deficient GCT cells and demonstrate by mass spectrometry that ARID1A is putatively involved in regulating transcription, DNA repair and the epigenetic landscape via DNA Polymerase POLE and the DNA methyltransferase 1-associated protein DMAP1. Additionally, ARID1A/ARID1A deficiency or pharmacological inhibition increased the efficacy of romidepsin and considerably sensitized GCT cells, including cisplatin-resistant subclones, towards ATR inhibition. Thus, targeting ARID1A in combination with romidepsin and ATR inhibitors presents as a new putative option to treat GCTs.

7.
Cells ; 9(9)2020 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-32846968

RESUMEN

The stress-inducible and senescence-associated tumor suppressor SIRT4, a member of the family of mitochondrial sirtuins (SIRT3, SIRT4, and SIRT5), regulates bioenergetics and metabolism via NAD+-dependent enzymatic activities. Next to the known mitochondrial location, we found that a fraction of endogenous or ectopically expressed SIRT4, but not SIRT3, is present in the cytosol and predominantly localizes to centrosomes. Confocal spinning disk microscopy revealed that SIRT4 is found during the cell cycle dynamically at centrosomes with an intensity peak in G2 and early mitosis. Moreover, SIRT4 precipitates with microtubules and interacts with structural (α,ß-tubulin, γ-tubulin, TUBGCP2, TUBGCP3) and regulatory (HDAC6) microtubule components as detected by co-immunoprecipitation and mass spectrometric analyses of the mitotic SIRT4 interactome. Overexpression of SIRT4 resulted in a pronounced decrease of acetylated α-tubulin (K40) associated with altered microtubule dynamics in mitotic cells. SIRT4 or the N-terminally truncated variant SIRT4(ΔN28), which is unable to translocate into mitochondria, delayed mitotic progression and reduced cell proliferation. This study extends the functional roles of SIRT4 beyond mitochondrial metabolism and provides the first evidence that SIRT4 acts as a novel centrosomal/microtubule-associated protein in the regulation of cell cycle progression. Thus, stress-induced SIRT4 may exert its role as tumor suppressor through mitochondrial as well as extramitochondrial functions, the latter associated with its localization at the mitotic spindle apparatus.


Asunto(s)
Centrosoma/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Mitocondriales/metabolismo , Mitosis/genética , Sirtuinas/metabolismo , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA