Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Physiol ; 14: 1167449, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37113691

RESUMEN

High-level football (soccer) players face intense physical demands that result in acute and residual fatigue, impairing their physical performance in subsequent matches. Further, top-class players are frequently exposed to match-congested periods where sufficient recovery times are not achievable. To evaluate training and recovery strategies, the monitoring of players' recovery profiles is crucial. Along with performance and neuro-mechanical impairments, match-induced fatigue causes metabolic disturbances denoted by changes in chemical analytes that can be quantified in different body fluids such as blood, saliva, and urine, thus acting as biomarkers. The monitoring of these molecules might supplement performance, neuromuscular and cognitive measurements to guide coaches and trainers during the recovery period. The present narrative review aims to comprehensively review the scientific literature on biomarkers of post-match recovery in semi-professional and professional football players as well as provide an outlook on the role that metabolomic studies might play in this field of research. Overall, no single gold-standard biomarker of match-induced fatigue exists, and a range of metabolites are available to assess different aspects of post-match recovery. The use of biomarker panels might be suitable to simultaneously monitoring these broad physiological processes, yet further research on fluctuations of different analytes throughout post-match recovery is warranted. Although important efforts have been made to address the high interindividual heterogeneity of available markers, limitations inherent to these markers might compromise the information they provide to guide recovery protocols. Further research on metabolomics might benefit from evaluating the long-term recovery period from a high-level football match to shed light upon new biomarkers of post-match recovery.

2.
Nutrients ; 16(1)2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38201848

RESUMEN

Hypohydration can impair aerobic performance and deteriorate cognitive function during exercise. To minimize hypohydration, athletes are recommended to commence exercise at least euhydrated, ingest fluids containing sodium during long-duration and/or high-intensity exercise to prevent body mass loss over 2% and maintain elevated plasma osmolality, and rapidly restore and retain fluid and electrolyte homeostasis before a second exercise session. To achieve these goals, the compositions of the fluids consumed are key; however, it remains unclear what can be considered an optimal formulation for a hydration beverage in different settings. While carbohydrate-electrolyte solutions such as sports drinks have been extensively explored as a source of carbohydrates to meet fuel demands during intense and long-duration exercise, these formulas might not be ideal in situations where fluid and electrolyte balance is impaired, such as practicing exercise in the heat. Alternately, hypotonic compositions consisting of moderate to high levels of electrolytes (i.e., ≥45 mmol/L), mainly sodium, combined with low amounts of carbohydrates (i.e., <6%) might be useful to accelerate intestinal water absorption, maintain plasma volume and osmolality during exercise, and improve fluid retention during recovery. Future studies should compare hypotonic formulas and sports drinks in different exercise settings, evaluating different levels of sodium and/or other electrolytes, blends of carbohydrates, and novel ingredients for addressing hydration and rehydration before, during, and after exercise.


Asunto(s)
Bebidas , Ejercicio Físico , Humanos , Electrólitos , Carbohidratos , Sodio
3.
Nutrients ; 14(6)2022 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-35334960

RESUMEN

Catch-up growth is a process that promotes weight and height gains to recover normal growth patterns after a transient period of growth inhibition. Accelerated infant growth is associated with reduced bone mass and quality characterized by poor bone mineral density (BMD), content (BMC), and impaired microarchitecture. The present study evaluated the effects of a diet containing slow (SDC) or rapid (RDC) digestible carbohydrates on bone quality parameters during the catch-up growth period in a model of diet-induced stunted rats. The food restriction period negatively impacted BMD, BMC, and microarchitecture of appendicular and axial bones. The SDC diet was shown to improve BMD and BMC of appendicular and axial bones after a four-week refeeding period in comparison with the RDC diet. In the same line, the micro-CT analysis revealed that the trabecular microarchitecture of tibiae and vertebrae was positively impacted by the dietary intervention with SDC compared to RDC. Furthermore, features of the cortical microstructure of vertebra bones were also improved in the SDC group animals. Similarly, animals allocated to the SDC diet displayed modest improvements in growth plate thickness, surface, and volume compared to the RDC group. Diets containing the described SDC blend might contribute to an adequate bone formation during catch-up growth thus increasing peak bone mass, which could be linked to reduced fracture risk later in life in individuals undergoing transient undernutrition during early life.


Asunto(s)
Densidad Ósea , Huesos , Animales , Carbohidratos/farmacología , Dieta , Humanos , Ratas , Columna Vertebral
4.
Nutrients ; 14(7)2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35406056

RESUMEN

Extracellular vesicles are membrane-enclosed secreted vesicles involved in cell-to-cell communication processes, identified in virtually all body fluids. Among extracellular vesicles, exosomes have gained increasing attention in recent years as they have unique biological origins and deliver different cargos, such as nucleic acids, proteins, and lipids, which might mediate various health processes. In particular, milk-derived exosomes are proposed as bioactive compounds of breast milk, which have been reported to resist gastric digestion and reach systemic circulation, thus being bioavailable after oral intake. In the present manuscript, we critically discuss the available evidence on the health benefits attributed to milk exosomes, and we provide an outlook for the potential future uses of these compounds. The use of milk exosomes as bioactive ingredients represents a novel avenue to explore in the context of human nutrition, and they might exert important beneficial effects at multiple levels, including but not limited to intestinal health, bone and muscle metabolism, immunity, modulation of the microbiota, growth, and development.


Asunto(s)
Exosomas , Vesículas Extracelulares , MicroARNs , Microbiota , Animales , Exosomas/metabolismo , Vesículas Extracelulares/metabolismo , Femenino , Humanos , MicroARNs/metabolismo , Leche/metabolismo , Leche Humana/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA