Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Environ Sci Technol ; 57(48): 19624-19636, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37934073

RESUMEN

Trace organic contaminants (TrOCs) present major removal challenges for wastewater treatment. TrOCs, such as perfluoroalkyl and polyfluoroalkyl substances (PFAS), are associated with chronic toxicity at ng L-1 exposure levels and should be removed from wastewater to enable safe reuse and release of treated effluents. Established adsorbents, such as granular activated carbon (GAC), exhibit variable TrOC removal and fouling by wastewater constituents. These shortcomings motivate the development of selective novel adsorbents that also maintain robust performance in wastewater. Cross-linked ß-cyclodextrin (ß-CD) polymers are promising adsorbents with demonstrated TrOC removal efficacy. Here, we report a simplified and potentially scalable synthesis of a porous polymer composed of styrene-linked ß-CD and cationic ammonium groups. Batch adsorption experiments demonstrate that the polymer is a selective adsorbent exhibiting complete removal for six out of 13 contaminants with less adsorption inhibition than GAC in wastewater. The polymer also exhibits faster adsorption kinetics than GAC and ion exchange (IX) resin, higher adsorption affinity for PFAS than GAC, and is regenerable by solvent wash. Rapid small-scale column tests show that the polymer exhibits later breakthrough times compared to GAC and IX resin. These results demonstrate the potential for ß-CD polymers to remediate TrOCs from complex water matrices.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Purificación del Agua , beta-Ciclodextrinas , Aguas Residuales , Polímeros , Contaminantes Químicos del Agua/análisis , Carbón Orgánico , Purificación del Agua/métodos , Adsorción
2.
Soft Matter ; 15(4): 575-586, 2019 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-30601536

RESUMEN

Biofilms are soft multicomponent biological materials composed of microbial communities attached to surfaces. Despite the crucial relevance of biofilms to diverse industrial, medical, and environmental applications, the mechanical properties of biofilms are understudied. Moreover, most of the available techniques for the characterization of biofilm mechanical properties are destructive. Here, we detail a model-based approach developed to characterize the viscoelastic properties of soft materials and bacterial biofilms based on experimental data obtained using the nondestructive dynamic optical coherence elastography (OCE) technique. The model predicted the frequency- and geometry-dependent propagation velocities of elastic waves in a soft viscoelastic plate supported by a rigid substratum. Our numerical calculations suggest that the dispersion curves of guided waves recorded in thin soft plates by the dynamic OCE technique are dominated by guided waves, whose phase velocities depend on the viscoelastic properties and plate thickness. The numerical model was validated against experimental measurements in agarose phantom samples with different thicknesses and concentrations. The model was then used to interpret guided wave dispersion curves obtained by the OCE technique in bacterial biofilms developed in a rotating annular reactor, which allowed the quantitative characterization of biofilm shear modulus and viscosity. This study is the first to employ measurements of elastic wave propagation to characterize biofilms, and it provides a novel framework combining a theoretical model and an experimental approach for studying the relationship between the biofilm internal physical structure and mechanical properties.


Asunto(s)
Biopelículas , Diagnóstico por Imagen de Elasticidad , Elasticidad , Fenómenos Ópticos , Modelos Teóricos , Sefarosa/química
3.
Soft Matter ; 15(28): 5562-5573, 2019 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-31282532

RESUMEN

Microbial granular biofilms are spherical, multi-layered aggregates composed of communities of bacterial cells encased in a complex matrix of hydrated extracellular polymeric substances (EPS). While granular aggregates are increasingly used for applications in industrial and municipal wastewater treatment, their underlying mechanical properties are poorly understood. The challenges of viscoelastic characterization for these structures are due to their spherical geometry, spatially heterogeneous properties, and their delicate nature. In this study, we report a model-based approach for nondestructive characterization of viscoelastic properties (shear modulus and shear viscosity) of alginate spheres with different concentrations, which was motivated by our measurements in granular biofilms. The characterization technique relies on experimental measurements of circumferential elastic wave speeds as a function of frequency in the samples using the Optical Coherence Elastography (OCE) technique. A theoretical model was developed to estimate the viscoelastic properties of the samples from OCE data through inverse analysis. This work represents the first attempt to explore elastic waves for mechanical characterization of granular biofilms. The combination of the OCE technique and the theoretical model presented in this paper provides a framework that can facilitate quantitative viscoelastic characterization of samples with curved geometries and the study of the relationships between morphology and mechanical properties in granular biofilms.

4.
J Environ Manage ; 246: 868-880, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31252249

RESUMEN

BACKGROUND: The increase in frequency and intensity of urban flooding is a global challenge. Flooding directly impacts residents of industrialized cities with aging combined sewer systems, as well as cities with less centralized infrastructure to manage stormwater, fecal sludge, and wastewater. Green infrastructure is growing in popularity as a sustainable strategy to mimic nature-based flood management. Although its technical performance has been extensively studied, little is known about the effects of green stormwater infrastructure on human health and social well-being. METHODS: We conducted a multidisciplinary systematic review of peer-reviewed and gray literature on the effects of green infrastructure for stormwater and flood management on individuals', households', and communities' a) physical health; b) mental health; c) economic well-being; and d) flood resilience and social acceptance of green infrastructure. We systematically searched databases such as PubMed, Web of Science, and Scopus; the first 300 results in Google Scholar; and websites of key organizations including the United States Environmental Protection Agency. Study quality and strength of evidence was assessed for included studies, and descriptive data were extracted for a narrative summary. RESULTS: Out of 21,213 initial results, only 18 studies reported health or social well-being outcomes. Seven of these studies used primary data, and none allowed for causal inference. No studies connected green infrastructure for stormwater and flood management to mental or physical health outcomes. Thirteen studies were identified on economic outcomes, largely reporting a positive association between green infrastructure and property values. Five studies assessed changes in perceptions about green infrastructure, but with mixed results. Nearly half of all included studies were from Portland, Oregon. CONCLUSIONS: This global systematic review highlights the minimal evidence on human health and social well-being relating to green infrastructure for stormwater and flood management. To enable scale-up of this type of infrastructure to reduce flooding and improve ecological and human well-being, widespread acceptance of green infrastructure will be essential. Policymakers and planners need evidence on the full range of benefits from different contexts to enable financing and implementation of instfrastructure options, especially in highly urbanized, flood-prone settings around the world. Therefore, experts in social science, public health, and program evaluation must be integrated into interdisciplinary green infrastructure research to better relate infrastructure design to tangible human outcomes.


Asunto(s)
Salud Ambiental , Inundaciones , Lluvia , Ciudades , Humanos , Oregon , Organizaciones , Condiciones Sociales , Abastecimiento de Agua
5.
Biotechnol Bioeng ; 115(9): 2268-2279, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29777596

RESUMEN

Morphological parameters are commonly used to predict transport and metabolic kinetics in biofilms. Yet, quantification of biofilm morphology remains challenging because of imaging technology limitations and lack of robust analytical approaches. We present a novel set of imaging and image analysis techniques to estimate internal porosity, pore size distributions, and pore network connectivity to a depth of 1 mm at a resolution of 10 µm in a biofilm exhibiting both heterotrophic and nitrifying activities. Optical coherence tomography (OCT) scans revealed an extensive pore network with diameters as large as 110 µm directly connected to the biofilm surface and surrounding fluid. Thin-section fluorescence in situ hybridization microscopy revealed that ammonia-oxidizing bacteria (AOB) distributed through the entire thickness of the biofilm. AOB were particularly concentrated in the biofilm around internal pores. Areal porosity values estimated from OCT scans were consistently lower than those estimated from multiphoton laser scanning microscopy, though the two imaging modalities showed a statistically significant correlation (r = 0.49, p < 0.0001). Estimates of areal porosity were moderately sensitive to gray-level threshold selection, though several automated thresholding algorithms yielded similar values to those obtained by manually thresholding performed by a panel of environmental engineering researchers (±25% relative error). These findings advance our ability to quantitatively describe the geometry of biofilm internal pore networks at length scales relevant to engineered biofilm reactors and suggest that internal pore structures provide crucial habitat for nitrifier growth.


Asunto(s)
Bacterias/crecimiento & desarrollo , Biopelículas/crecimiento & desarrollo , Procesamiento de Imagen Asistido por Computador/métodos , Técnicas Microbiológicas/métodos , Imagen Óptica/métodos , Porosidad
6.
Antimicrob Agents Chemother ; 60(5): 2993-3000, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26953206

RESUMEN

Ureolytic biomineralization induced by urease-producing bacteria, particularly Proteus mirabilis, is responsible for the formation of urinary tract calculi and the encrustation of indwelling urinary catheters. Such microbial biofilms are challenging to eradicate and contribute to the persistence of catheter-associated urinary tract infections, but the mechanisms responsible for this recalcitrance remain obscure. In this study, we characterized the susceptibility of wild-type (ure+) and urease-negative (ure-) P. mirabilis biofilms to killing by ciprofloxacin. Ure+ biofilms produced fine biomineral precipitates that were homogeneously distributed within the biofilm biomass in artificial urine, while ure- biofilms did not produce biomineral deposits under identical growth conditions. Following exposure to ciprofloxacin, ure+ biofilms showed greater survival (less killing) than ure- biofilms, indicating that biomineralization protected biofilm-resident cells against the antimicrobial. To evaluate the mechanism responsible for this recalcitrance, we observed and quantified the transport of Cy5-conjugated ciprofloxacin into the biofilm by video confocal microscopy. These observations revealed that the reduced susceptibility of ure+ biofilms resulted from hindered delivery of ciprofloxacin into biomineralized regions of the biofilm. Further, biomineralization enhanced retention of viable cells on the surface following antimicrobial exposure. These findings together show that ureolytic biomineralization induced by P. mirabilis metabolism strongly regulates antimicrobial susceptibility by reducing internal solute transport and increasing biofilm stability.


Asunto(s)
Biopelículas/efectos de los fármacos , Ciprofloxacina/farmacología , Proteus mirabilis/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Microscopía Confocal
7.
Appl Environ Microbiol ; 82(10): 2886-92, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-26944848

RESUMEN

Microbial biofilms and mineral precipitation commonly co-occur in engineered water systems, such as cooling towers and water purification systems, and both decrease process performance. Microbial biofilms are extremely challenging to control and eradicate. We previously showed that in situ biomineralization and the precipitation and deposition of abiotic particles occur simultaneously in biofilms under oversaturated conditions. Both processes could potentially alter the essential properties of biofilms, including susceptibility to biocides. However, the specific interactions between mineral formation and biofilm processes remain poorly understood. Here we show that the susceptibility of biofilms to chlorination depends specifically on internal transport processes mediated by biomineralization and the accumulation of abiotic mineral deposits. Using injections of the fluorescent tracer Cy5, we show that Pseudomonas aeruginosa biofilms are more permeable to solutes after in situ calcite biomineralization and are less permeable after the deposition of abiotically precipitated calcite particles. We further show that biofilms are more susceptible to chlorine killing after biomineralization and less susceptible after particle deposition. Based on these observations, we found a strong correlation between enhanced solute transport and chlorine killing in biofilms, indicating that biomineralization and particle deposition regulate biofilm susceptibility by altering biocide penetration into the biofilm. The distinct effects of in situ biomineralization and particle deposition on biocide killing highlight the importance of understanding the mechanisms and patterns of biomineralization and scale formation to achieve successful biofilm control.


Asunto(s)
Biopelículas/efectos de los fármacos , Cloro/farmacología , Desinfectantes/farmacología , Minerales/metabolismo , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/fisiología , Viabilidad Microbiana/efectos de los fármacos , Pseudomonas aeruginosa/metabolismo
8.
Environ Sci Technol ; 50(9): 4615-23, 2016 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-27054802

RESUMEN

Overlying hydrodynamics play critical roles in controlling surface-porewater exchanges in permeable sediments, but these effects have rarely been characterized in low-permeability sediments. We conducted a series of laboratory experiments to evaluate the effects of varied hydrodynamic conditions on the efflux of metals from low-permeability estuarine sediments. Two Cu-contaminated sediments obtained from the Piscataqua River were subject to controlled levels of hydrodynamic shear in Gust mesocosms, including episodic sediment resuspension. Overlying water and porewater samples were collected over the course of experiments and analyzed for metal concentrations. The two sediments had similar permeability (∼10(-15) m(2)), but different particle size distributions. Hydrodynamic forcing enhanced the mobilization and efflux of Cu from the coarser-grained sediments, but not the finer-grained sediments. Sediment resuspension caused additional transitory perturbations in Cu concentrations in the water column. Particulate metal concentrations increased significantly during resuspension, but then rapidly decreased to preresuspension levels following cessation of sediment transport. Overall, these results show that the mobility and efflux of metals are likely to be influenced by overlying hydrodynamics even in low-permeability sediments, and these effects are mediated by sediment heterogeneity and resuspension.


Asunto(s)
Sedimentos Geológicos , Hidrodinámica , Metales , Permeabilidad , Movimientos del Agua
9.
Environ Sci Technol ; 50(18): 10047-54, 2016 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-27529186

RESUMEN

Bioturbation is the dominant mode of sediment transport in many aquatic environments and strongly influences both sediment biogeochemistry and contaminant fate. Available bioturbation models rely on highly simplified biodiffusion formulations that inadequately capture the behavior of many benthic organisms. We present a novel experimental and modeling approach that uses time-lapse imagery to directly relate burrow formation to resulting sediment mixing. We paired white-light imaging of burrow formation with fluorescence imaging of tracer particle redistribution by the oligochaete Lumbriculus variegatus. We used the observed burrow formation statistics and organism density to parametrize a parsimonious model for sediment mixing based on fundamental random walk theory. Worms burrowed over a range of times and depths, resulting in homogenization of sediments near the sediment-water interface, rapid nonlocal transport of tracer particles to deep sediments, and large areas of unperturbed sediments. Our fundamental, parsimonious random walk model captures the central features of this highly heterogeneous sediment bioturbation, including evolution of the sediment-water interface coupled with rapid near-surface mixing and anomalous late-time mixing resulting from infrequent, deep burrowing events. This approach provides a general, transferable framework for explicitly linking sediment transport to governing biophysical processes.


Asunto(s)
Sedimentos Geológicos/química , Oligoquetos , Animales , Conducta Animal , Modelos Teóricos , Movimiento , Agua , Contaminantes Químicos del Agua
10.
Appl Environ Microbiol ; 81(21): 7403-10, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26276112

RESUMEN

Microbially catalyzed precipitation of carbonate minerals is an important process in diverse biological, geological, and engineered systems. However, the processes that regulate carbonate biomineralization and their impacts on biofilms are largely unexplored, mainly because of the inability of current methods to directly observe biomineralization within biofilms. Here, we present a method for in situ, real-time imaging of biomineralization in biofilms and use it to show that Pseudomonas aeruginosa biofilms produce morphologically distinct carbonate deposits that substantially modify biofilm structures. The patterns of carbonate biomineralization produced in situ were substantially different from those caused by accumulation of particles produced by abiotic precipitation. Contrary to the common expectation that mineral precipitation should occur at the biofilm surface, we found that biomineralization started at the base of the biofilm. The carbonate deposits grew over time, detaching biofilm-resident cells and deforming the biofilm morphology. These findings indicate that biomineralization is a general regulator of biofilm architecture and properties.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Carbonatos/metabolismo , Pseudomonas aeruginosa/fisiología , Imagen Óptica/métodos , Pseudomonas aeruginosa/crecimiento & desarrollo , Pseudomonas aeruginosa/metabolismo
12.
Environ Sci Technol ; 49(9): 5346-53, 2015 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-25875468

RESUMEN

Porewater transport and diagenetic reactions strongly regulate the mobility of metals in sediments. We executed a series of laboratory experiments in Gust chamber mesocosms to study the effects of hydrodynamics and biogeochemical transformations on the mobility and speciation of Zn in contaminated sediments from Lake DePue, IL. X-ray absorption spectroscopy (XAS) indicated that the oxidation of surficial sediments promoted the formation of more mobile Zn species. Bulk chemical measurements of porewater, overlying water, and sediment also suggested that this process liberated aqueous metals to porewater and facilitated Zn efflux to the overlying water. In addition, sediment resuspension events increased the release of aqueous metals to both surficial porewater and the overlying water column. XAS analysis indicated that resuspension increased dissolution of Zn-sequestering mineral phases. These results show that both steady slow porewater transport and rapid episodic resuspension are important to the release of metal from fine-grained, low-permeability contaminated sediments. Thus, information on metals speciation and mobility under time-varying overlying flow conditions is essential to understanding the long-term behavior of metals in contaminated sediments.


Asunto(s)
Sedimentos Geológicos/química , Hidrodinámica , Contaminantes Químicos del Agua/análisis , Zinc/análisis , Ácidos/química , Illinois , Porosidad , Espectrometría por Rayos X , Sulfuros/análisis , Volatilización , Zinc/aislamiento & purificación
13.
Environ Sci Technol ; 49(13): 7825-33, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26039244

RESUMEN

Long-term survival of pathogenic microorganisms in streams enables long-distance disease transmission. In order to manage water-borne diseases more effectively we need to better predict how microbes behave in freshwater systems, particularly how they are transported downstream in rivers. Microbes continuously immobilize and resuspend during downstream transport owing to a variety of processes including gravitational settling, attachment to in-stream structures such as submerged macrophytes, and hyporheic exchange and filtration within underlying sediments. We developed a stochastic model to describe these microbial transport and retention processes in rivers that also accounts for microbial inactivation. We used the model to assess the transport, retention, and inactivation of Escherichia coli in a small stream and the underlying streambed sediments as measured from multitracer injection experiments. The results demonstrate that the combination of laboratory experiments on sediment cores, stream reach-scale tracer experiments, and multiscale stochastic modeling improves assessment of microbial transport in streams. This study (1) demonstrates new observations of microbial dynamics in streams with improved data quality than prior studies, (2) advances a stochastic modeling framework to include microbial inactivation processes that we observed to be important in these streams, and (3) synthesizes new and existing data to evaluate seasonal dynamics.


Asunto(s)
Escherichia coli/fisiología , Viabilidad Microbiana , Modelos Teóricos , Ríos/microbiología , Simulación por Computador , Estaciones del Año , Procesos Estocásticos
14.
Biotechnol Bioeng ; 111(3): 597-607, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24038055

RESUMEN

We present two novel microfluidic flow cells developed to provide reliable control of flow distributions and chemical gradients in biofilm studies. We developed a single-inlet microfluidic flow cell to support biofilm growth under a uniform velocity field, and a double-inlet flow cell to provide a very smooth transverse concentration gradient. Both flow cells consist of a layer of polydimethylsiloxane (PDMS) bonded to glass cover slips and were fabricated using the replica molding technique. We demonstrate the capabilities of the flow cells by quantifying flow patterns before and after growth of Pseudomonas aeruginosa biofilms through particle imaging velocimetry, and by evaluating concentration gradients within the double-inlet microfluidic flow cell. Biofilm growth substantially increased flow complexity by diverting flow around biomass, creating high- and low-velocity regions and surface friction. Under a glucose gradient in the double-inlet flow cell, P. aeruginosa biofilms grew in proportion to the local glucose concentration, producing distinct spatial patterns in biofilm biomass relative to the imposed glucose gradient. When biofilms were subjected to a ciprofloxacin gradient, spatial patterns of fractions of dead cells were also in proportion to the local antibiotic concentration. These results demonstrate that the microfluidic flow cells are suitable for quantifying flow complexities resulting from flow-biofilm interactions and investigating spatial patterns of biofilm growth under chemical gradients. These novel microfluidic flow cells will facilitate biofilm research that requires flow control and in situ imaging, particularly investigations of biofilm-environment interactions.


Asunto(s)
Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Técnicas Analíticas Microfluídicas , Microfluídica/métodos , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/fisiología , Antibacterianos/metabolismo , Ciprofloxacina/metabolismo , Glucosa/metabolismo , Viabilidad Microbiana/efectos de los fármacos
15.
Water Res ; 252: 121178, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38309063

RESUMEN

As COVID-19 becomes endemic, public health departments benefit from improved passive indicators, which are independent of voluntary testing data, to estimate the prevalence of COVID-19 in local communities. Quantification of SARS-CoV-2 RNA from wastewater has the potential to be a powerful passive indicator. However, connecting measured SARS-CoV-2 RNA to community prevalence is challenging due to the high noise typical of environmental samples. We have developed a generalized pipeline using in- and out-of-sample model selection to test the ability of different correction models to reduce the variance in wastewater measurements and applied it to data collected from treatment plants in the Chicago area. We built and compared a set of multi-linear regression models, which incorporate pepper mild mottle virus (PMMoV) as a population biomarker, Bovine coronavirus (BCoV) as a recovery control, and wastewater system flow rate into a corrected estimate for SARS-CoV-2 RNA concentration. For our data, models with BCoV performed better than those with PMMoV, but the pipeline should be used to reevaluate any new data set as the sources of variance may change across locations, lab methods, and disease states. Using our best-fit model, we investigated the utility of RNA measurements in wastewater as a leading indicator of COVID-19 trends. We did this in a rolling manner for corrected wastewater data and for other prevalence indicators and statistically compared the temporal relationship between new increases in the wastewater data and those in other prevalence indicators. We found that wastewater trends often lead other COVID-19 indicators in predicting new surges.


Asunto(s)
COVID-19 , Salud Pública , SARS-CoV-2 , Tobamovirus , Animales , Bovinos , COVID-19/epidemiología , ARN Viral , Aguas Residuales , Monitoreo Epidemiológico Basado en Aguas Residuales
16.
Environ Microbiol ; 15(10): 2865-78, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23751003

RESUMEN

Biofilm cells are less susceptible to antimicrobials than their planktonic counterparts. While this phenomenon is multifactorial, the ability of the matrix to reduce antibiotic penetration into the biofilm is thought to be of limited importance studies suggest that antibiotics move fairly rapidly through biofilms. In this study, we monitored the transport of two clinically relevant antibiotics, tobramycin and ciprofloxacin, into non-mucoid Pseudomonas aeruginosa biofilms. To our surprise, we found that the positively charged antibiotic tobramycin is sequestered to the biofilm periphery, while the neutral antibiotic ciprofloxacin readily penetrated. We provide evidence that tobramycin in the biofilm periphery both stimulated a localized stress response and killed bacteria in these regions but not in the underlying biofilm. Although it is unclear which matrix component binds tobramycin, its penetration was increased by the addition of cations in a dose-dependent manner, which led to increased biofilm death. These data suggest that ionic interactions of tobramycin with the biofilm matrix limit its penetration. We propose that tobramycin sequestration at the biofilm periphery is an important mechanism in protecting metabolically active cells that lie just below the zone of sequestration.


Asunto(s)
Biopelículas , Matriz Extracelular/metabolismo , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/fisiología , Tobramicina/metabolismo , Tobramicina/farmacología , Antiinfecciosos/química , Antiinfecciosos/metabolismo , Antiinfecciosos/farmacología , Biopelículas/efectos de los fármacos , Ciprofloxacina/química , Ciprofloxacina/metabolismo , Ciprofloxacina/farmacología , Pseudomonas aeruginosa/metabolismo , Tobramicina/química
17.
Environ Sci Technol ; 46(17): 9491-500, 2012 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-22861686

RESUMEN

An extensive set of column experiments was performed with freshly harvested Cryptosporidium parvum oocysts to evaluate the effects of solution chemistry, surface coatings, interactions with other suspended particles, and pore fluid velocity on the fate and transport of this widely occurring waterborne pathogen in sandy porous media. We synthesized our data set with a comprehensive literature survey of similar experiments, to compute attachment (collision) efficiencies (α) used in colloid filtration theory (CFT) using three models for the single collector efficiency (η) across a wide range of experimental conditions. Most prior experiments have observed the transport of surface-treated, sterile C. parvum oocyst in porous media. Our column data confirm for freshly harvested oocysts that the presence of iron coatings on the sand medium and the presence of suspended illite clay drastically enhance oocyst deposition. Increasing ionic strength and decreasing pH also systematically enhance the attachment efficiency. Attachment efficiency decreases only at a very high ionic strength, most likely as a result of steric repulsion and possibly other changes in oocyst surface properties. Attachment efficiencies vary with fluid flow rate but without showing specific trends. We found that the computed attachment efficiency across all reported experiments could be reliably estimated using a regression model based on parameters related to ionic strength and pH. The regression model performed better with the Nelson-Ginn η model and Tufenkji-Elimelech η model than with the Rajagopalan-Tien η model. When CFT is used in environmental assessments, the proposed regression model provides a practical estimator for attachment efficiencies of C. parvum oocyst deposition in porous media for a variety of environmental conditions unfavorable to attachment.


Asunto(s)
Silicatos de Aluminio/química , Cryptosporidium parvum/aislamiento & purificación , Compuestos Férricos/química , Minerales/química , Oocistos/citología , Adsorción , Arcilla , Criptosporidiosis/parasitología , Humanos , Concentración Osmolar , Porosidad , Propiedades de Superficie
18.
Sci Adv ; 8(2): eabi9305, 2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35020429

RESUMEN

In rivers, small and lightweight microplastics are transported downstream, but they are also found frequently in riverbed sediment, demonstrating long-term retention. To better understand microplastic dynamics in global rivers from headwaters to mainstems, we developed a model that includes hyporheic exchange processes, i.e., transport between surface water and riverbed sediment, where microplastic retention is facilitated. Our simulations indicate that the longest microplastic residence times occur in headwaters, the most abundant stream classification. In headwaters, residence times averaged 5 hours/km but increased to 7 years/km during low-flow conditions. Long-term accumulation for all stream classifications averaged ~5% of microplastic inputs per river kilometer. Our estimates isolated the impact of hyporheic exchange processes, which are known to influence dynamics of naturally occurring particles in streams, but rarely applied to microplastics. The identified mechanisms and time scales for small and lightweight microplastic accumulation in riverbed sediment reveal that these often-unaccounted components are likely a pollution legacy that is crucial to include in global assessments.

19.
Biotechnol Bioeng ; 108(11): 2571-82, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21656713

RESUMEN

Biofilms are microbial communities growing on surfaces, and are ubiquitous in nature, in bioreactors, and in human infection. Coupling between physical, chemical, and biological processes is known to regulate the development of biofilms; however, current experimental systems do not provide sufficient control of environmental conditions to enable detailed investigations of these complex interactions. We developed a novel planar flow cell that supports biofilm growth under complex two-dimensional fluid flow conditions. This device provides precise control of flow conditions and can be used to create well-defined physical and chemical gradients that significantly affect biofilm heterogeneity. Moreover, the top and bottom of the flow chamber are transparent, so biofilm growth and flow conditions are fully observable using non-invasive confocal microscopy and high-resolution video imaging. To demonstrate the capability of the device, we observed the growth of Pseudomonas aeruginosa biofilms under imposed flow gradients. We found a positive relationship between patterns of fluid velocity and biofilm biomass due to faster microbial growth under conditions of greater local nutrient influx, but this relationship eventually reversed because high hydrodynamic shear leads to the detachment of cells from the surface. These results reveal that flow gradients play a critical role in the development of biofilm communities. By providing new capability for observing biofilm growth, solute and particle transport, and net chemical transformations under user-specified environmental gradients, this new planar flow cell system has broad utility for studies of environmental biotechnology and basic biofilm microbiology, as well as applications in bioreactor design, environmental engineering, biogeochemistry, geomicrobiology, and biomedical research.


Asunto(s)
Técnicas Bacteriológicas/métodos , Biopelículas/crecimiento & desarrollo , Citometría de Flujo/instrumentación , Hidrodinámica , Pseudomonas aeruginosa/fisiología , Microscopía Confocal , Microscopía por Video , Pseudomonas aeruginosa/crecimiento & desarrollo , Estrés Mecánico , Estrés Fisiológico
20.
Biofouling ; 27(4): 393-402, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21547755

RESUMEN

The impact of continuous chlorination and periodic glutaraldehyde treatment on planktonic and biofilm microbial communities was evaluated in pilot-scale cooling towers operated continuously for 3 months. The system was operated at a flow rate of 10,080 l day(-1). Experiments were performed with a well-defined microbial consortium containing three heterotrophic bacteria: Pseudomonas aeruginosa, Klebsiella pneumoniae and Flavobacterium sp. The persistence of each species was monitored in the recirculating cooling water loop and in biofilms on steel and PVC coupons in the cooling tower basin. The observed bacterial colonization in cooling towers did not follow trends in growth rates observed under batch conditions and, instead, reflected differences in the ability of each organism to remain attached and form biofilms under the high-through flow conditions in cooling towers. Flavobacterium was the dominant organism in the community, while P. aeruginosa and K. pneumoniae did not attach well to either PVC or steel coupons in cooling towers and were not able to persist in biofilms. As a result, the much greater ability of Flavobacterium to adhere to surfaces protected it from disinfection, whereas P. aeruginosa and K. pneumoniae were subject to rapid disinfection in the planktonic state.


Asunto(s)
Aire Acondicionado , Bacterias/efectos de los fármacos , Biopelículas/efectos de los fármacos , Cloro/farmacología , Desinfección/métodos , Glutaral/farmacología , Microbiología del Agua , Bacterias/crecimiento & desarrollo , Biopelículas/crecimiento & desarrollo , Recuento de Colonia Microbiana , Flavobacterium/efectos de los fármacos , Flavobacterium/crecimiento & desarrollo , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/crecimiento & desarrollo , Consorcios Microbianos/efectos de los fármacos , Consorcios Microbianos/fisiología , Proyectos Piloto , Plancton/efectos de los fármacos , Plancton/crecimiento & desarrollo , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/crecimiento & desarrollo , Acero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA