Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(50): 31850-31860, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33257549

RESUMEN

There is ongoing debate regarding the mechanism through which cation/proton antiporters (CPAs), like Thermus thermophilus NapA (TtNapA) and Escherichia coli NapA (EcNhaA), alternate between their outward- and inward-facing conformations in the membrane. CPAs comprise two domains, and it is unclear whether the transition is driven by their rocking-bundle or elevator motion with respect to each other. Here we address this question using metadynamics simulations of TtNapA, where we bias conformational sampling along two axes characterizing the two proposed mechanisms: angular and translational motions, respectively. By applying the bias potential for the two axes simultaneously, as well as to the angular, but not the translational, axis alone, we manage to reproduce each of the two known states of TtNapA when starting from the opposite state, in support of the rocking-bundle mechanism as the driver of conformational change. Next, starting from the inward-facing conformation of EcNhaA, we sample what could be its long-sought-after outward-facing conformation and verify it using cross-linking experiments.


Asunto(s)
Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Thermus thermophilus/metabolismo , Cristalografía por Rayos X , Proteínas de Escherichia coli/ultraestructura , Simulación de Dinámica Molecular , Conformación Proteica en Hélice alfa , Dominios Proteicos , Protones , Sodio/metabolismo , Intercambiadores de Sodio-Hidrógeno/ultraestructura
2.
J Biol Chem ; 294(1): 246-256, 2019 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-30409911

RESUMEN

Much of the research on Na+/H+ exchange has been done in prokaryotic models, mainly on the NhaA Na+/H+-exchanger from Escherichia coli (EcNhaA). Two conserved aspartate residues, Asp-163 and Asp-164, are essential for transport and are candidates for possible binding sites for the two H+ that are exchanged for one Na+ to make the overall transport process electrogenic. More recently, a proposed mechanism of transport for EcNhaA has suggested direct binding of one of the transported H+ to the conserved Lys-300 residue, a salt bridge partner of Asp-163. This contention is supported by a study reporting that substitution of the equivalent residue, Lys-305, of a related Na+/H+ antiporter, NapA from Thermus thermophilus, renders the transporter electroneutral. In this work, we sought to establish whether the Lys-300 residue and its partner Asp-163 are essential for the electrogenicity of EcNhaA. To that end, we replaced Lys-300 with Gln, either alone or together with the simultaneous substitution of Asp-163 with Asn, and characterized these transporter variants in electrophysiological experiments combined with H+ transport measurements and stability analysis. We found that K300Q EcNhaA can still support electrogenic Na+/H+ antiport in EcNhaA, but has reduced thermal stability. A parallel electrophysiological investigation of the K305Q variant of TtNapA revealed that it is also electrogenic. Furthermore, replacement of both salt bridge partners in the ion-binding site of EcNhaA produced an electrogenic variant (D163N/K300Q). Our findings indicate that alternative mechanisms sustain EcNhaA activity in the absence of canonical ion-binding residues and that the conserved lysines confer structural stability.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Sustitución de Aminoácidos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Glutamina , Transporte Iónico/fisiología , Lisina , Mutación Missense , Estabilidad Proteica , Intercambiadores de Sodio-Hidrógeno/genética
3.
Proc Natl Acad Sci U S A ; 114(44): 11691-11696, 2017 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-29078272

RESUMEN

Na+/H+ antiporters comprise a family of membrane proteins evolutionarily conserved in all kingdoms of life and play an essential role in cellular ion homeostasis. The NhaA crystal structure of Escherichia coli has become the paradigm for this class of secondary active transporters. However, structural data are only available at low pH, where NhaA is inactive. Here, we adapted hydrogen/deuterium-exchange mass spectrometry (HDX-MS) to analyze conformational changes in NhaA upon Li+ binding at physiological pH. Our analysis revealed a global conformational change in NhaA with two sets of movements around an immobile binding site. Based on these results, we propose a model for the ion translocation mechanism that explains previously controversial data for this antiporter. Furthermore, these findings contribute to our understanding of related human transporters that have been linked to various diseases.


Asunto(s)
Medición de Intercambio de Deuterio , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Espectrometría de Masas/métodos , Intercambiadores de Sodio-Hidrógeno/química , Detergentes , Deuterio/química , Proteínas de Escherichia coli/metabolismo , Ligandos , Litio/química , Micelas , Modelos Moleculares , Conformación Proteica , Intercambiadores de Sodio-Hidrógeno/metabolismo
4.
J Biol Chem ; 292(19): 7932-7941, 2017 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-28330875

RESUMEN

Na+/H+ antiporters are located in the cytoplasmic and intracellular membranes and play crucial roles in regulating intracellular pH, Na+, and volume. The NhaA antiporter of Escherichia coli is the best studied member of the Na+/H+ exchanger family and a model system for all related Na+/H+ exchangers, including eukaryotic representatives. Several amino acid residues are important for the transport activity of NhaA, including Lys-300, a residue that has recently been proposed to carry one of the two H+ ions that NhaA exchanges for one Na+ ion during one transport cycle. Here, we sought to characterize the effects of mutating Lys-300 of NhaA to amino acid residues containing side chains of different polarity and length (i.e. Ala, Arg, Cys, His, Glu, and Leu) on transporter stability and function. Salt resistance assays, acridine-orange fluorescence dequenching, solid supported membrane-based electrophysiology, and differential scanning fluorometry were used to characterize Na+ and H+ transport, charge translocation, and thermal stability of the different variants. These studies revealed that NhaA could still perform electrogenic Na+/H+ exchange even in the absence of a protonatable residue at the Lys-300 position. However, all mutants displayed lower thermal stability and reduced ion transport activity compared with the wild-type enzyme, indicating the critical importance of Lys-300 for optimal NhaA structural stability and function. On the basis of these experimental data, we propose a tentative mechanism integrating the functional and structural role of Lys-300.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Lisina/química , Intercambiadores de Sodio-Hidrógeno/metabolismo , Transporte Biológico , Transporte Biológico Activo , Cristalografía por Rayos X , Fluorometría , Concentración de Iones de Hidrógeno , Mutagénesis Sitio-Dirigida , Mutación , Fenotipo , Estructura Secundaria de Proteína , Transporte de Proteínas , Espectrometría de Fluorescencia
5.
Proc Natl Acad Sci U S A ; 112(41): E5575-82, 2015 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-26417087

RESUMEN

The Escherichia coli Na(+)/H(+) antiporter (Ec-NhaA) is the best-characterized of all pH-regulated Na(+)/H(+) exchangers that control cellular Na(+) and H(+) homeostasis. Ec-NhaA has 12 helices, 2 of which (VI and VII) are absent from other antiporters that share the Ec-NhaA structural fold. This α-hairpin is located in the dimer interface of the Ec-NhaA homodimer together with a ß-sheet. Here we examine computationally and experimentally the role of the α-hairpin in the stability, dimerization, transport, and pH regulation of Ec-NhaA. Evolutionary analysis (ConSurf) indicates that the VI-VII helical hairpin is much less conserved than the remaining transmembrane region. Moreover, normal mode analysis also shows that intact NhaA and a variant, deleted of the α-hairpin, share similar dynamics, suggesting that the structure may be dispensable. Thus, two truncated Ec-NhaA mutants were constructed, one deleted of the α-hairpin and another also lacking the ß-sheet. The mutants were studied at physiological pH in the membrane and in detergent micelles. The findings demonstrate that the truncated mutants retain significant activity and regulatory properties but are defective in the assembly/stability of the Ec-NhaA dimer.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/química , Multimerización de Proteína , Intercambiadores de Sodio-Hidrógeno/química , Membrana Celular/química , Membrana Celular/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Concentración de Iones de Hidrógeno , Mutación , Estabilidad Proteica , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Intercambiadores de Sodio-Hidrógeno/genética , Relación Estructura-Actividad
6.
Biochim Biophys Acta ; 1837(7): 1047-62, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24361841

RESUMEN

The crystal structure of down-regulated NhaA crystallized at acidic pH4 [21] has provided the first structural insights into the antiport mechanism and pH regulation of a Na(+)/H(+) antiporter [22]. On the basis of the NhaA crystal structure [21] and experimental data (reviewed in [2,22,38] we have suggested that NhaA is organized into two functional regions: (i) a cluster of amino acids responsible for pH regulation (ii) a catalytic region at the middle of the TM IV/XI assembly, with its unique antiparallel unfolded regions that cross each other forming a delicate electrostatic balance in the middle of the membrane. This unique structure contributes to the cation binding site and allows the rapid conformational changes expected for NhaA. Extended chains interrupting helices appear now a common feature for ion binding in transporters. However the NhaA fold is unique and shared by ASBTNM [30] and NapA [29]. Computation [13], electrophysiology [69] combined with biochemistry [33,47] have provided intriguing models for the mechanism of NhaA. However, the conformational changes and the residues involved have not yet been fully identified. Another issue which is still enigma is how energy is transduced "in this 'nano-machine.'" We expect that an integrative approach will reveal the residues that are crucial for NhaA activity and regulation, as well as elucidate the pHand ligand-induced conformational changes and their dynamics. Ultimately, integrative results will shed light on the mechanism of activity and pH regulation of NhaA, a prototype of the CPA2 family of transporters. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.


Asunto(s)
Proteínas de Escherichia coli/química , Simulación de Dinámica Molecular , Protones , Intercambiadores de Sodio-Hidrógeno/química , Sodio/metabolismo , Secuencia de Aminoácidos , Escherichia coli/enzimología , Proteínas de Escherichia coli/metabolismo , Homeostasis , Datos de Secuencia Molecular , Intercambiadores de Sodio-Hidrógeno/metabolismo
7.
J Biol Chem ; 288(34): 24666-75, 2013 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-23836890

RESUMEN

Na(+)/H(+) antiporters show a marked pH dependence, which is important for their physiological function in eukaryotic and prokaryotic cells. In NhaA, the Escherichia coli Na(+)/H(+) antiporter, specific single site mutations modulating the pH profile of the transporter have been described in the past. To clarify the mechanism by which these mutations influence the pH dependence of NhaA, the substrate dependence of the kinetics of selected NhaA variants was electrophysiologically investigated and analyzed with a kinetic model. It is shown that the mutations affect NhaA activity in quite different ways by changing the properties of the binding site or the dynamics of the transporter. In the first case, pK and/or KD(Na) are altered, and in the second case, the rate constants of the conformational transition between the inside and the outside open conformation are modified. It is shown that residues as far apart as 15-20 Å from the binding site can have a significant impact on the dynamics of the conformational transitions or on the binding properties of NhaA. The implications of these results for the pH regulation mechanism of NhaA are discussed.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Modelos Biológicos , Mutación Missense , Intercambiadores de Sodio-Hidrógeno/metabolismo , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Concentración de Iones de Hidrógeno , Transporte Iónico/fisiología , Estructura Terciaria de Proteína , Intercambiadores de Sodio-Hidrógeno/química , Intercambiadores de Sodio-Hidrógeno/genética
8.
Proc Natl Acad Sci U S A ; 108(38): 15769-74, 2011 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-21873214

RESUMEN

NhaA, a Na(+)/H(+) antiporter critical for pH and Na(+) homeostasis in Escherichia coli, as well as other enterobacteria and possibly Homo sapiens, was modified for fluorescence spectroscopy by constructing a functional Trp-less NhaA mutant. Purified Trp-less NhaA lacks the Trp fluorescence emission characteristic of the wild type, thereby providing a background for studying structure-function relationships in NhaA by site-directed Trp fluorescence. Two single-Trp variants in the Trp-less background (F136W and F339W) were constructed. The mutants grow on selective media, have antiport activities that are similar to Trp-less NhaA, and exhibit Trp fluorescence with three different reversible responses to Li(+), Na(+), and/or pH. With single Trp/F136W, a pH shift from pH 6.0 to 8.5 induces a red shift and dramatically increases fluorescence in a reversible fashion; no effect is observed when either Na(+) or Li(+) is added. In marked contrast, with single Trp/F339W, changes in pH do not alter fluorescence, but addition of either Na(+) or Li(+) drastically quenches fluorescence at alkaline pH. Therefore, a Trp at position 136 specifically monitors a pH-induced conformational change that activates NhaA, whereas a Trp at position 339 senses a ligand-induced conformational change that does not occur until NhaA is activated at alkaline pH.


Asunto(s)
Proteínas de Escherichia coli/química , Conformación Proteica , Intercambiadores de Sodio-Hidrógeno/química , Triptófano/química , Sustitución de Aminoácidos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Concentración de Iones de Hidrógeno , Litio/metabolismo , Litio/farmacología , Mutagénesis Sitio-Dirigida , Mutación , Sodio/metabolismo , Sodio/farmacología , Intercambiadores de Sodio-Hidrógeno/genética , Intercambiadores de Sodio-Hidrógeno/metabolismo , Espectrometría de Fluorescencia , Triptófano/genética , Triptófano/metabolismo
9.
Mol Membr Biol ; 30(1): 90-100, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22694117

RESUMEN

Na(+)/H(+) antiporters play a primary role in Na(+)/H(+) homeostasis in cells and many organelles and have long been drug targets. The X-ray structure of NhaA, the main antiporter of Escherichia coli, provided structural insights into the antiport mechanism and its pH regulation and revealed a novel fold; six of the 12 TMs (Trans membrane segments) are organized in two topologically inverted repeats, each with one TM interrupted by an extended chain creating a unique electrostatic environment in the middle of the membrane at the cation binding site. Remarkably, inverted repeats containing interrupted helices with similar functional implications have since been observed in structures of other bacterial secondary transporters with almost no sequence homology. Finally, the structure reveals that NhaA is organized into two functional regions: a 'pH sensor' - a cluster of amino acyl side chains that are involved in pH regulation; and a catalytic region that is 9 Å removed from the pH sensor. Alternative accessibility of the binding site to either side of the membrane, i.e., functional-dynamics, is the essence of secondary transport mechanism. Because NhaA is tightly pH regulated, structures of the pH-activated and ligand-activated NhaA conformations are needed to identify its functional-dynamics. However, as these are static snapshots of a dynamic protein, the dynamics of the protein both in vitro and in situ in the membrane are also required as reviewed here in detail. The results reveal two different conformational changes characterizing NhaA: One is pH-induced for NhaA activation; the other is ligand-induced for antiport activity.


Asunto(s)
Intercambiadores de Sodio-Hidrógeno/química , Membrana Celular/química , Cristalización , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Concentración de Iones de Hidrógeno , Conformación Proteica , Intercambiadores de Sodio-Hidrógeno/metabolismo , Relación Estructura-Actividad
10.
Sci Rep ; 14(1): 5915, 2024 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-38467695

RESUMEN

Cell pH and Na+ homeostasis requires Na+/H+ antiporters. The crystal structure of NhaA, the main Escherichia coli Na+/H+ antiporter, revealed a unique NhaA structural fold shared by prokaryotic and eukaryotic membrane proteins. Out of the 12 NhaA transmembrane segments (TMs), TMs III-V and X-XII are topologically inverted repeats with unwound TMs IV and XI forming the X shape characterizing the NhaA fold. We show that intramolecular cross-linking under oxidizing conditions of a NhaA mutant with two Cys replacements across the crossing (D133C-T340C) inhibits antiporter activity and impairs NhaA-dependent cell growth in high-salts. The affinity purified D133C-T340C protein binds Li+ (the Na+ surrogate substrate of NhaA) under reducing conditions. The cross-linking traps the antiporter in an outward-facing conformation, blocking the antiport cycle. As many secondary transporters are found to share the NhaA fold, including some involved in human diseases, our data have importance for both basic and clinical research.


Asunto(s)
Proteínas de Escherichia coli , Humanos , Proteínas de Escherichia coli/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Escherichia coli/metabolismo , Antiportadores/metabolismo , Transporte Iónico , Iones/metabolismo , Concentración de Iones de Hidrógeno
11.
J Biol Chem ; 287(45): 38150-7, 2012 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-22915592

RESUMEN

pH and Na(+) homeostasis in all cells requires Na(+)/H(+) antiporters. In most cases, their activity is tightly pH-regulated. NhaA, the main antiporter of Escherichia coli, has homologues in all biological kingdoms. The crystal structure of NhaA provided insights into the mechanism of action and pH regulation of an antiporter. However, the active site of NhaA remained elusive because neither Na(+) nor Li(+), the NhaA ligands, were observed in the structure. Using isothermal titration calorimetry, we show that purified NhaA binds Li(+) in detergent micelles. This interaction is driven by an increase in enthalpy (ΔH of -8000 ± 300 cal/mol and ΔS of -15.2 cal/mol/degree at 283 K), involves a single binding site per NhaA molecule, and is highly specific and drastically dependent on pH; Li(+) binding was observed only at pH 8.5. Combining mutational analysis with the isothermal titration calorimetry measurements revealed that Asp-163, Asp-164, Thr-132, and Asp-133 form the Li(+) binding site, whereas Lys-300 plays an important role in pH regulation of the antiporter.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Litio/metabolismo , Mutación , Intercambiadores de Sodio-Hidrógeno/metabolismo , Sustitución de Aminoácidos , Sitios de Unión/genética , Calorimetría/métodos , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Concentración de Iones de Hidrógeno , Cinética , Ligandos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Unión Proteica , Estructura Terciaria de Proteína , Intercambiadores de Sodio-Hidrógeno/química , Intercambiadores de Sodio-Hidrógeno/genética , Termodinámica
12.
J Biol Chem ; 287(22): 18249-61, 2012 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-22431724

RESUMEN

The Escherichia coli NhaA antiporter couples the transport of H(+) and Na(+) (or Li(+)) ions to maintain the proper pH range and Na(+) concentration in cells. A crystal structure of NhaA, solved at pH 4, comprises 12 transmembrane helices (TMs), arranged in two domains, with a large cytoplasm-facing funnel and a smaller periplasm-facing funnel. NhaA undergoes conformational changes, e.g. after pH elevation to alkaline ranges, and we used two computational approaches to explore them. On the basis of pseudo-symmetric features of the crystal structure, we predicted the structural architecture of an alternate, periplasm-facing state. In contrast to the crystal structure, the model presents a closed cytoplasmic funnel, and a periplasmic funnel of greater volume. To examine the transporter functional direction of motion, we conducted elastic network analysis of the crystal structure and detected two main normal modes of motion. Notably, both analyses predicted similar trends of conformational changes, consisting of an overall rotational motion of the two domains around a putative symmetry axis at the funnel centers, perpendicular to the membrane plane. This motion, along with conformational changes within specific helices, resulted in closure at the cytoplasmic end and opening at the periplasmic end. Cross-linking experiments, performed between segments on opposite sides of the cytoplasmic funnel, revealed pH-dependent interactions consistent with the proposed conformational changes. We suggest that the model-structure and predicted motion represent alkaline pH-induced conformational changes, mediated by a cluster of evolutionarily conserved, titratable residues, at the cytoplasmic ends of TMs II, V, and IX.


Asunto(s)
Proteínas de Escherichia coli/química , Concentración de Iones de Hidrógeno , Modelos Moleculares , Periplasma/metabolismo , Intercambiadores de Sodio-Hidrógeno/química , Conformación Proteica
13.
Trends Biochem Sci ; 33(9): 435-43, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18707888

RESUMEN

Na(+)-H(+) antiporters are integral membrane proteins that exchange Na(+) for H(+) across the cytoplasmic membrane and many intracellular membranes. They are essential for Na(+), pH, and volume homeostasis, which are processes crucial for cell viability. Accordingly, antiporters are important drug targets in humans and underlie salt resistance in plants. Many Na(+)-H(+) antiporters are tightly regulated by pH. Escherichia coli NhaA, a prototype pH-regulated antiporter, exchanges 2H(+) for 1Na(+) (or Li(+)). The NhaA crystal structure has provided insight into the pH-regulated mechanism of antiporter action and revealed transmembrane segments, which are interrupted by extended mid-membrane chains that have since been found with variations in other ion-transport proteins. This novel structural fold creates a delicately balanced electrostatic environment in the middle of the membrane, which might be essential for ion binding and translocation.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Intercambiadores de Sodio-Hidrógeno/química , Intercambiadores de Sodio-Hidrógeno/metabolismo , Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Homeostasis , Humanos , Concentración de Iones de Hidrógeno , Modelos Moleculares , Pliegue de Proteína , Multimerización de Proteína , Sodio/metabolismo , Intercambiador 1 de Sodio-Hidrógeno , Intercambiadores de Sodio-Hidrógeno/genética , Termodinámica
14.
Biochemistry ; 51(47): 9560-9, 2012 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-23131124

RESUMEN

pH and Na(+) homeostasis in all cells requires Na(+)/H(+) antiporters. The crystal structure of NhaA, the main antiporter of Escherichia coli, has provided general insights into antiporter mechanisms and their pH regulation. Functional studies of NhaA in the membrane have yielded valuable information regarding its functionality in situ at physiological pH. Here, we Cys-scanned the discontinuous transmembrane segment (TM) IV (helices IVp and IVc connected by an extended chain) of NhaA to explore its functionality at physiological pH. We then tested the accessibility of the Cys replacements to the positively charged SH reagent [2-(trimethylammonium)ethyl] methanethiosulfonate bromide (MTSET) and the negatively charged 2-sulfonatoethyl methanethiosulfonate (MTSES) in intact cells at pH 8.5 and 6.5 and in parallel tested their accessibility to MTSET in high-pressure membranes at both pH values. We found that the outer membrane of E. coli TA16 acts as a partially permeable barrier to MTSET. Overcoming this technical problem, we revealed that (a) Cys replacement of the most conserved residues of TM IV strongly increases the apparent K(m) of NhaA to both Na(+) and Li(+), (b) the cationic passage of NhaA at physiological pH is lined by the most conserved and functionally important residues of TM IV, and (c) a pH shift from 6.5 to 8.5 induces conformational changes in helix IVp and in the extended chain at physiological pH.


Asunto(s)
Proteínas de Escherichia coli/química , Estructura Secundaria de Proteína , Intercambiadores de Sodio-Hidrógeno/química , Sustitución de Aminoácidos , Cationes/metabolismo , Permeabilidad de la Membrana Celular , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mesilatos/farmacología , Modelos Moleculares , Intercambiadores de Sodio-Hidrógeno/genética , Intercambiadores de Sodio-Hidrógeno/metabolismo
15.
J Biol Chem ; 286(26): 23570-81, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21566125

RESUMEN

Using an electrophysiological assay the activity of NhaA was tested in a wide pH range from pH 5.0 to 9.5. Forward and reverse transport directions were investigated at zero membrane potential using preparations with inside-out and right side-out-oriented transporters with Na(+) or H(+) gradients as the driving force. Under symmetrical pH conditions with a Na(+) gradient for activation, both the wt and the pH-shifted G338S variant exhibit highly symmetrical transport activity with bell-shaped pH dependences, but the optimal pH was shifted 1.8 pH units to the acidic range in the variant. In both strains the pH dependence was associated with a systematic increase of the K(m) for Na(+) at acidic pH. Under symmetrical Na(+) concentration with a pH gradient for NhaA activation, an unexpected novel characteristic of the antiporter was revealed; rather than being down-regulated, it remained active even at pH as low as 5. These data allowed a transport mechanism to advance based on competing Na(+) and H(+) binding to a common transport site and a kinetic model to develop quantitatively explaining the experimental results. In support of these results, both alkaline pH and Na(+) induced the conformational change of NhaA associated with NhaA cation translocation as demonstrated here by trypsin digestion. Furthermore, Na(+) translocation was found to be associated with the displacement of a negative charge. In conclusion, the electrophysiological assay allows the revelation of the mechanism of NhaA antiport and sheds new light on the concept of NhaA pH regulation.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Hidrógeno/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Sodio/metabolismo , Concentración de Iones de Hidrógeno , Transporte Iónico/fisiología
16.
J Biol Chem ; 285(3): 2211-20, 2010 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-19923224

RESUMEN

The crystal structure of Escherichia coli NhaA determined at pH 4 has provided insights into the mechanism of activity of a pH-regulated Na+/H+ antiporter. However, because NhaA is activated at physiological pH (pH 5.5-8.5), many questions related to the active state of NhaA have remained elusive. Our experimental results at physiological pH and computational analyses reveal that amino acid residues in transmembrane segment II contribute to the cation pathway of NhaA and its pH regulation: 1) transmembrane segment II is a highly conserved helix and the conserved amino acid residues are located on one side of the helix facing either the cytoplasmic or periplasmic funnels of NhaA structure. 2) Cys replacements of the conserved residues and measuring their antiporter activity in everted membrane vesicles showed that D65C, L67C, E78C, and E82C increased the apparent K(m) to Na+ and Li+ and changed the pH response of the antiporter. 3) Introduced Cys replacements, L60C, N64C, F71C, F72C, and E78C, were significantly alkylated by [14C]N-ethylmaleimide implying the presence of water-filled cavities in NhaA. 4) Several Cys replacements were modified by MTSES and/or MTSET, membrane impermeant, negatively and positively charged reagents, respectively, that could reach Cys replacements from the periplasm only via water-filled funnel(s). Remarkably, the reactivity of D65C to MTSES increased with increasing pH and chemical modification by MTSES but not by MTSET, decreased the apparent K(m) of the antiporter at pH 7.5 (10-fold) but not at pH 8.5, implying the importance of Asp(65) negative charge for pH activation of the antiporter.


Asunto(s)
Ácido Aspártico/metabolismo , Cationes/metabolismo , Membrana Celular/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Intercambiadores de Sodio-Hidrógeno/química , Intercambiadores de Sodio-Hidrógeno/metabolismo , Membrana Celular/efectos de los fármacos , Simulación por Computador , Secuencia Conservada , Cristalografía por Rayos X , Cisteína , Escherichia coli/citología , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Concentración de Iones de Hidrógeno , Transporte Iónico , Litio/metabolismo , Mesilatos/farmacología , Modelos Moleculares , Mutación , Periplasma/metabolismo , Fenotipo , Conformación Proteica , Intercambiadores de Sodio-Hidrógeno/genética
17.
Nature ; 435(7046): 1197-202, 2005 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-15988517

RESUMEN

The control by Na+/H+ antiporters of sodium/proton concentration and cell volume is crucial for the viability of all cells. Adaptation to high salinity and/or extreme pH in plants and bacteria or in human heart muscles requires the action of Na+/H+ antiporters. Their activity is tightly controlled by pH. Here we present the crystal structure of pH-downregulated NhaA, the main antiporter of Escherichia coli and many enterobacteria. A negatively charged ion funnel opens to the cytoplasm and ends in the middle of the membrane at the putative ion-binding site. There, a unique assembly of two pairs of short helices connected by crossed, extended chains creates a balanced electrostatic environment. We propose that the binding of charged substrates causes an electric imbalance, inducing movements, that permit a rapid alternating-access mechanism. This ion-exchange machinery is regulated by a conformational change elicited by a pH signal perceived at the entry to the cytoplasmic funnel.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Intercambiadores de Sodio-Hidrógeno/química , Intercambiadores de Sodio-Hidrógeno/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Proteínas de Escherichia coli/genética , Hidrógeno/metabolismo , Concentración de Iones de Hidrógeno , Transporte Iónico , Modelos Biológicos , Modelos Moleculares , Conformación Proteica , Protones , Sodio/metabolismo , Intercambiadores de Sodio-Hidrógeno/genética , Electricidad Estática , Relación Estructura-Actividad
18.
Sci Rep ; 11(1): 7045, 2021 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-33782459

RESUMEN

Na+/H+ antiporters comprise a family of membrane proteins evolutionarily conserved in all kingdoms of life that are essential in cellular ion homeostasis. While several human homologues have long been drug targets, NhaA of Escherichia coli has become the paradigm for this class of secondary active transporters as NhaA crystals provided insight in the structure of this molecular machine. However, structural data revealing the composition of the binding site for Na+ (or its surrogate Li+) is missing, representing a bottleneck in our understanding of the correlation between the structure and function of NhaA. Here, by adapting the scintillation proximity assay (SPA) for direct determination of Na+ binding to NhaA, we revealed that (i) NhaA is well adapted as the main antiporter for Na+ homeostasis in Escherichia coli and possibly in other bacteria as the cytoplasmic Na+ concentration is similar to the Na+ binding affinity of NhaA, (ii) experimental conditions affect NhaA-mediated cation binding, (iii) in addition to Na+ and Li+, the halide Tl+ interacts with NhaA, (iv) whereas acidic pH inhibits maximum binding of Na+ to NhaA, partial Na+ binding by NhaA is independent of the pH, an important novel insight into the effect of pH on NhaA cation binding.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Sodio/metabolismo , Unión Proteica
19.
Proteins ; 76(3): 548-59, 2009 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-19274728

RESUMEN

Sodium proton antiporters are essential enzymes that catalyze the exchange of sodium ions for protons across biological membranes. The crystal structure of NhaA has provided a basis to explore the mechanism of ion exchange and its unique regulation by pH. Here, the mechanism of the pH activation of the antiporter is investigated through functional and computational studies of several variants with mutations in the ion-binding site (D163, D164). The most significant difference found computationally between the wild type antiporter and the active site variants, D163E and D164N, are low pK(a) values of Glu78 making them insensitive to pH. Although in the variant D163N the pK(a) of Glu78 is comparable to the physiological one, this variant cannot demonstrate the long-range electrostatic effect of Glu78 on the pH-dependent structural reorganization of trans-membrane helix X and, hence, is proposed to be inactive. In marked contrast, variant D164E remains sensitive to pH and can be activated by alkaline pH shift. Remarkably, as expected computationally and discovered here biochemically, D164E is viable and active in Na(+)/H(+) exchange albeit with increased apparent K(M). Our results unravel the unique electrostatic network of NhaA that connect the coupled clusters of the "pH sensor" with the binding site, which is crucial for pH activation of NhaA.


Asunto(s)
Cationes/química , Biología Computacional/métodos , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Intercambiadores de Sodio-Hidrógeno/química , Intercambiadores de Sodio-Hidrógeno/metabolismo , Electricidad Estática , Sitios de Unión , Proteínas de Escherichia coli/genética , Concentración de Iones de Hidrógeno , Mutagénesis Sitio-Dirigida , Mutación , Unión Proteica , Estructura Secundaria de Proteína , Intercambiadores de Sodio-Hidrógeno/genética
20.
Sci Rep ; 9(1): 17662, 2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31776461

RESUMEN

Cardiolipin (CL) was shown to bound to the dimer interface of NhaA Na+/H+ antiporter. Here, we explore the cardiolipin-NhaA interaction both in vitro and in vivo. Using a novel and straightforward in-vitro assay in which n-dodecyl ß-D maltoside (DDM) detergent is used to delipidate the dimer interface and to split the dimers into monomers; the monomers are subsequently exposed to cardiolipin or the other E. coli phospholipids. Most efficient reconstitution of dimers is observed by cardiolipin. This assay is likely to be applicable to future studies of protein-lipid interactions. In-vivo experiments further reveal that cardiolipin is necessary for NhaA survival. Although less efficient phosphatidyl-glycerol (PG) can also reconstitute NhaA monomers to dimers. We also identify a putative cardiolipin binding site. Our observations may contribute to drug design, as human NhaA homologues, which are involved in severe pathologies, might also require specific phospholipids.


Asunto(s)
Cardiolipinas/metabolismo , Multimerización de Proteína/efectos de los fármacos , Intercambiadores de Sodio-Hidrógeno/metabolismo , Sitios de Unión , Cardiolipinas/farmacología , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Humanos , Fosfolípidos/metabolismo , Intercambiadores de Sodio-Hidrógeno/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA