RESUMEN
We report a comprehensive inelastic neutron-scattering study of the frustrated pyrochlore antiferromagnet MgCr_{2}O_{4} in its cooperative paramagnetic regime. Theoretical modeling yields a microscopic Heisenberg model with exchange interactions up to third-nearest neighbors, which quantitatively explains all of the details of the dynamic magnetic response. Our work demonstrates that the magnetic excitations in paramagnetic MgCr_{2}O_{4} are faithfully represented in the entire Brillouin zone by a theory of magnons propagating in a highly correlated paramagnetic background. Our results also suggest that MgCr_{2}O_{4} is proximate to a spiral spin-liquid phase distinct from the Coulomb phase, which has implications for the magnetostructural phase transition in MgCr_{2}O_{4}.
RESUMEN
The magnetic ground state of the pyrochlore Yb2GaSbO7 has remained an enigma for nearly a decade. The persistent spin fluctuations observed by muon spin relaxation measurements at low temperatures have not been adequately explained for this material using existing theories for quantum magnetism. Here we report on the synthesis and characterisation of Yb2GaSbO7 to elucidate the central physics at play. Through DC and AC magnetic susceptibility, heat capacity, and neutron scattering experiments, we observe evidence for a dynamical ground state that makes Yb2GaSbO7 a promising candidate for disorder-induced spin-liquid or spin-singlet behaviour. This state is quite fragile, being tuned to a splayed ferromagnet in a modest magnetic field µ0Hcâ¼1.5T.