Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Int J Mol Sci ; 20(15)2019 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-31370144

RESUMEN

Normally ubiquitin C-terminal hydrolase L1 (UCH-L1) is expressed in the central nervous and reproductive systems of adults, but its de novo expression has been detected in many human cancers. There is a growing body of evidence that UCH-L1 de-ubiquitinating (DUB) activity plays a major pro-metastatic role in certain carcinomas. Here we tested anti-metastatic effects of the small-molecule inhibitor of UCH-L1 DUB activity, LDN-57444, in cell lines from advanced oral squamous cell carcinoma (OSCC) as well as invasive nasopharyngeal (NP) cell lines expressing the major pro-metastatic gene product of Epstein-Barr virus (EBV) tumor virus, LMP1. To overcome the limited aqueous solubility of LDN-57444 we developed a nanoparticle formulation of LDN-57444 by incorporation of the compound in polyoxazoline micellear nanoparticles (LDN-POx). LDN-POx nanoparticles were equal in effects as the native compound in vitro. Our results demonstrate that inhibition of UCH-L1 DUB activity with LDN or LDN-POx inhibits secretion of exosomes and reduces levels of the pro-metastatic factor in exosomal fractions. Both forms of UCH-L1 DUB inhibitor suppress motility of metastatic squamous carcinoma cells as well as nasopharyngeal cells expressing EBV pro-metastatic Latent membrane protein 1 (LMP1) in physiological assays. Moreover, treatment with LDN and LDN-POx resulted in reduced levels of pro-metastatic markers, a decrease of carcinoma cell adhesion, as well as inhibition of extra-cellular vesicle (ECV)-mediated transfer of viral invasive factor LMP1. We suggest that soluble inhibitors of UCH-L1 such as LDN-POx offer potential forms of treatment for invasive carcinomas including EBV-positive malignancies.


Asunto(s)
Antineoplásicos/farmacología , Portadores de Fármacos , Células Epiteliales/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Indoles/farmacología , Oximas/farmacología , Ubiquitina Tiolesterasa/genética , Proteínas de la Matriz Viral/genética , Antineoplásicos/química , Adhesión Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Exosomas/efectos de los fármacos , Exosomas/metabolismo , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/patogenicidad , Humanos , Indoles/química , Micelas , Boca/metabolismo , Boca/patología , Nanopartículas/química , Nanopartículas/ultraestructura , Nasofaringe/metabolismo , Nasofaringe/patología , Oxazoles/química , Oximas/química , Ubiquitina Tiolesterasa/antagonistas & inhibidores , Ubiquitina Tiolesterasa/metabolismo , Proteínas de la Matriz Viral/metabolismo
2.
J Virol ; 91(19)2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28724765

RESUMEN

Epstein-Barr virus (EBV) infection and lytic replication are known to induce a cellular DNA damage response. We previously showed that the virally encoded BPLF1 protein interacts with and regulates several members of the translesion synthesis (TLS) pathway, a DNA damage tolerance pathway, and that these cellular factors enhance viral infectivity. BPLF1 is a late lytic cycle gene, but the protein is also packaged in the viral tegument, indicating that BPLF1 may function both early and late during infection. The BPLF1 protein expresses deubiquitinating activity that is strictly conserved across the Herpesviridae; mutation of the active site cysteine results in a loss of enzymatic activity. Infection with an EBV BPLF1 knockout virus results in decreased EBV infectivity. Polymerase eta (Pol η), a specialized DNA repair polymerase, functions in TLS and allows for DNA replication complexes to bypass lesions in DNA. Here we report that BPLF1 interacts with Pol η and that Pol η protein levels are increased in the presence of functional BPLF1. BPLF1 promotes a nuclear relocalization of Pol η molecules which are focus-like in appearance, consistent with the localization observed when Pol η is recruited to sites of DNA damage. Knockdown of Pol η resulted in decreased production of infectious virus, and further, Pol η was found to bind to EBV DNA, suggesting that it may allow for bypass of damaged viral DNA during its replication. The results suggest a mechanism by which EBV recruits cellular repair factors, such as Pol η, to sites of viral DNA damage via BPLF1, thereby allowing for efficient viral DNA replication.IMPORTANCE Epstein-Barr virus is the causative agent of infectious mononucleosis and infects approximately 90% of the world's population. It causes lymphomas in individuals with acquired and innate immune disorders and is strongly associated with Hodgkin's lymphoma, Burkitt's lymphoma, diffuse large B-cell lymphomas, nasopharyngeal carcinoma (NPC), and lymphomas that develop in organ transplant recipients. Cellular DNA damage is a major determinant in the establishment of oncogenic processes and is well studied, but there are few studies of endogenous repair of viral DNA. This work evaluates how EBV's BPLF1 protein and its conserved deubiquitinating activity regulate the cellular DNA repair enzyme polymerase eta and recruit it to potential sites of viral damage and replication, resulting in enhanced production of infectious virus. These findings help to establish how EBV enlists and manipulates cellular DNA repair factors during the viral lytic cycle, contributing to efficient infectious virion production.


Asunto(s)
Daño del ADN/genética , Reparación del ADN/genética , Replicación del ADN/genética , ADN Polimerasa Dirigida por ADN/genética , Enzimas Desubicuitinizantes/genética , Herpesvirus Humano 4/genética , Proteínas Reguladoras y Accesorias Virales/genética , Línea Celular , ADN Viral/genética , ADN Viral/metabolismo , Infecciones por Virus de Epstein-Barr/patología , Infecciones por Virus de Epstein-Barr/virología , Dosificación de Gen/genética , Células HEK293 , Herpesvirus Humano 4/patogenicidad , Humanos , Antígeno Nuclear de Célula en Proliferación/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , Proteínas Reguladoras y Accesorias Virales/metabolismo , Replicación Viral/genética
3.
Blood ; 127(12): 1524-5, 2016 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-27013211

RESUMEN

In this issue of Blood, Bedekovics et al have demonstrated that a multifunctional molecule of the ubiquitin system ubiquitin C-terminal hydrolase L1 (UCH-L1) is induced in diffuse large B-cell lymphomas (DLBCLs), and that levels of this molecule are higher in germinal center (GC) B-cell DLBCL (GCB-DLBCL) compared with activated B-cell DLBCL (ABC-DLBCL) and predict poor outcomes.


Asunto(s)
Linfocitos B/patología , Regulación Neoplásica de la Expresión Génica , Centro Germinal/patología , Linfoma de Células B Grandes Difuso/genética , Ubiquitina Tiolesterasa/genética , Animales , Humanos
4.
Pathol Int ; 67(9): 461-466, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28712115

RESUMEN

Interferon regulatory factor 7 (IRF7) has oncogenic properties in several malignancies such as Epstein-Barr virus (EBV)-associated lymphoma. However, there is no evidence whether IRF7 is associated with the oncogenesis of nasopharyngeal cancer (NPC), the pathogenesis of which is closely associated with EBV. Herein, we report that expression of IRF7 was increased in normal nasopharyngeal cells that expressed the EBV principal oncoprotein, latent membrane protein 1 (LMP1). In addition, IRF7 was mainly expressed in the nucleus in both normal nasopharyngeal cells and nasopharyngeal cancer cells that expresses LMP1. On immunohistochemical analysis, IRF7 was predominantly localized in the nucleus in biopsy samples of NPC tissues. In total, IRF7 expression was detected with 36 of 49 specimens of these tissues. Furthermore, the expression score of IRF7 correlated with the expression score of LMP1. Moreover, the expression score of IRF7 is associated with cervical lymph-node metastasis, which reflects the highly metastatic nature of this cancer. Taken together, our results suggest that expression of IRF7 is one of the metastatic effectors of LMP1 signalling in EBV-associated NPC.


Asunto(s)
Factor 7 Regulador del Interferón/biosíntesis , Neoplasias Nasofaríngeas/patología , Neoplasias Nasofaríngeas/virología , Proteínas de la Matriz Viral/biosíntesis , Adulto , Anciano , Biomarcadores de Tumor/análisis , Infecciones por Virus de Epstein-Barr/complicaciones , Femenino , Humanos , Metástasis Linfática/patología , Masculino , Persona de Mediana Edad , Neoplasias Nasofaríngeas/metabolismo , Adulto Joven
5.
J Virol ; 89(15): 7465-77, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25948750

RESUMEN

UNLABELLED: As a herpesvirus, Epstein-Barr virus (EBV) establishes a latent infection that can periodically undergo reactivation, resulting in lytic replication and the production of new infectious virus. Latent membrane protein-1 (LMP1), the principal viral oncoprotein, is a latency-associated protein implicated in regulating viral reactivation and the maintenance of latency. We recently found that LMP1 hijacks the SUMO-conjugating enzyme Ubc9 via its C-terminal activating region-3 (CTAR3) and induces the sumoylation of cellular proteins. Because protein sumoylation can promote transcriptional repression, we hypothesized that LMP1-induced protein sumoylation induces the repression of EBV lytic promoters and helps maintain the viral genome in its latent state. We now show that with inhibition of LMP1-induced protein sumoylation, the latent state becomes less stable or leakier in EBV-transformed lymphoblastoid cell lines. The cells are also more sensitive to viral reactivation induced by irradiation, which results in the increased production and release of infectious virus, as well as increased susceptibility to ganciclovir treatment. We have identified a target of LMP1-mediated sumoylation that contributes to the maintenance of latency in this context: KRAB-associated protein-1 (KAP1). LMP1 CTAR3-mediated sumoylation regulates the function of KAP1. KAP1 also binds to EBV OriLyt and immediate early promoters in a CTAR3-dependent manner, and inhibition of sumoylation processes abrogates the binding of KAP1 to these promoters. These data provide an additional line of evidence that supports our findings that CTAR3 is a distinct functioning regulatory region of LMP1 and confirm that LMP1-induced sumoylation may help stabilize the maintenance of EBV latency. IMPORTANCE: Epstein-Barr virus (EBV) latent membrane protein-1 (LMP1) plays an important role in the maintenance of viral latency. Previously, we documented that LMP1 targets cellular proteins to be modified by a ubiquitin-like protein (SUMO). We have now identified a function for this LMP1-induced modification of cellular proteins in the maintenance of EBV latency. Because latently infected cells have to undergo viral reactivation in order to be vulnerable to antiviral drugs, these findings identify a new way to increase the rate of EBV reactivation, which increases cell susceptibility to antiviral therapies.


Asunto(s)
Infecciones por Virus de Epstein-Barr/metabolismo , Herpesvirus Humano 4/fisiología , Proteínas Represoras/metabolismo , Proteínas de la Matriz Viral/metabolismo , Latencia del Virus , Línea Celular , Infecciones por Virus de Epstein-Barr/genética , Infecciones por Virus de Epstein-Barr/virología , Regulación Viral de la Expresión Génica , Herpesvirus Humano 4/genética , Humanos , Regiones Promotoras Genéticas , Unión Proteica , Proteínas Represoras/genética , Sumoilación , Proteína 28 que Contiene Motivos Tripartito , Proteínas de la Matriz Viral/genética
6.
Clin Microbiol Rev ; 27(3): 463-81, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24982317

RESUMEN

About a fifth of all human cancers worldwide are caused by infectious agents. In 12% of cancers, seven different viruses have been causally linked to human oncogenesis: Epstein-Barr virus, hepatitis B virus, human papillomavirus, human T-cell lymphotropic virus, hepatitis C virus, Kaposi's sarcoma herpesvirus, and Merkel cell polyomavirus. Here, we review the many molecular mechanisms of oncogenesis that have been discovered over the decades of study of these viruses. We discuss how viruses can act at different stages in the complex multistep process of carcinogenesis. Early events include their involvement in mutagenic events associated with tumor initiation such as viral integration and insertional mutagenesis as well as viral promotion of DNA damage. Also involved in tumor progression is the dysregulation of cellular processes by viral proteins, and we describe how this has been investigated by studies in cell culture and in experimental animals and by molecular cellular approaches. Also important are the molecular mechanisms whereby viruses interact with the immune system and the immune evasion strategies that have evolved.


Asunto(s)
Transformación Celular Viral , Neoplasias/etiología , Virus Oncogénicos/fisiología , Infecciones Tumorales por Virus/complicaciones , Animales , Interacciones Huésped-Patógeno/inmunología , Humanos , Evasión Inmune , Neoplasias/virología , Infecciones Tumorales por Virus/mortalidad
7.
J Virol ; 88(11): 6411-22, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24672041

RESUMEN

UNLABELLED: Epstein-Barr virus (EBV) encodes BPLF1, a lytic cycle protein with deubiquitinating activity that is contained in its N-terminal domain and conserved across the Herpesviridae. EBV replication is associated with cellular DNA replication and repair factors, and initiation of EBV lytic replication induces a DNA damage response, which can be regulated at least in part by BPLF1. The cellular DNA repair pathway, translesion synthesis (TLS), is disrupted by BPLF1, which deubiquitinates the DNA processivity factor, PCNA, and inhibits the recruitment of the TLS polymerase, polymerase eta (Pol eta), after damage to DNA by UV irradiation. Here we showed that the E3 ubiquitin ligase, which activates TLS repair by monoubiquitination of PCNA, is also affected by BPLF1 deubiquitinating activity. First, BPLF1 interacts directly with Rad18, and overexpression of BPLF1 results in increased levels of the Rad18 protein, suggesting that it stabilizes Rad18. Next, expression of functionally active BPLF1 caused relocalization of Rad18 into nuclear foci, which is consistent with sites of cellular DNA replication that occur during S phase. Also, levels of Rad18 remain constant during lytic reactivation of wild-type virus, but reactivation of BPLF1 knockout virus resulted in decreased levels of Rad18. Finally, the contribution of Rad18 levels to infectious virus production was examined with small interfering RNA (siRNA) targeting Rad18. Results demonstrated that reducing levels of Rad18 decreased production of infectious virus, and infectious titers of BPLF1 knockout virus were partially restored by overexpression of Rad18. Thus, BPLF1 interacts with and maintains Rad18 at high levels during lytic replication, which assists in production of infectious virus. IMPORTANCE: Characterization of EBV BPLF1's deubiquitinating activity and identification of its targets and subsequent functional effects remain little studied. All members of the Herpesviridae contain BPLF1 homologs with conserved enzymatic activity, and findings discovered with EBV BPLF1 are likely applicable to other members of the family. Discovery of new targets of BPLF1 will point to cellular pathways and viral processes regulated by the enzymatic activity of the EBV-encoded deubiquitinating enzyme. Here we determined the importance of the cellular ubiquitin ligase Rad18 in these processes and how it is affected by BPLF1. Our findings demonstrate that EBV can co-opt Rad18 as a novel accessory factor in the production of infectious virus.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica/genética , Herpesvirus Humano 4/enzimología , Herpesvirus Humano 4/patogenicidad , Complejos Multiproteicos/metabolismo , Proteínas Reguladoras y Accesorias Virales/metabolismo , Replicación Viral/genética , Escherichia coli , Técnica del Anticuerpo Fluorescente , Células HEK293 , Humanos , Immunoblotting , Inmunoprecipitación , Antígeno Nuclear de Célula en Proliferación/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas
8.
J Virol ; 87(9): 5311-5, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23449792

RESUMEN

Maribavir (MBV) inhibits Epstein-Barr virus (EBV) replication and the enzymatic activity of the viral protein kinase BGLF4. MBV also inhibits expression of multiple EBV transcripts during EBV lytic infection. Here we demonstrate, with the use of a BGLF4 knockout virus, that effects of MBV on transcription take place primarily through inhibition of BGLF4. MBV inhibits viral genome copy numbers and infectivity to levels similar to and exceeding levels produced by BGLF4 knockout virus.


Asunto(s)
Antivirales/farmacología , Bencimidazoles/farmacología , Regulación hacia Abajo/efectos de los fármacos , Infecciones por Virus de Epstein-Barr/virología , Regulación Viral de la Expresión Génica/efectos de los fármacos , Herpesvirus Humano 4/efectos de los fármacos , Herpesvirus Humano 4/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Ribonucleósidos/farmacología , Proteínas Virales/metabolismo , Línea Celular , Genoma Viral/efectos de los fármacos , Herpesvirus Humano 4/fisiología , Humanos , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/genética , Replicación Viral/efectos de los fármacos
9.
J Gen Virol ; 94(Pt 3): 507-513, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23223620

RESUMEN

A global regulator of chromatin remodelling and gene expression, special AT-rich-binding protein 1 (SATB1) has been implicated in promotion of growth and metastasis of a number of cancers. Here, we demonstrate that the principal oncogene of Epstein-Barr virus (EBV), latent membrane protein 1 (LMP1) upregulates SATB1 RNA and protein expression in human nasopharyngeal cell lines. Silencing of endogenously expressed SATB1 with specific short hairpin RNA decreases cell proliferation and resistance to apoptosis induced by growth factor withdrawal. Additionally, we provide evidence that LMP1-mediated expression of Survivin, a multifunctional protein involved in promoting cell growth and survival, is mediated at least in part by SATB1 in human nasopharyngeal cells. Finally, we show that SATB1 protein levels are elevated in tissue samples from patients with nasopharyngeal carcinoma (NPC), and are directly correlated with the expression of LMP1. Taken together, our results suggest that SATB1 functions as a pro-metastatic effector of LMP1 signalling in EBV-positive NPC.


Asunto(s)
Herpesvirus Humano 4/metabolismo , Proteínas de Unión a la Región de Fijación a la Matriz/metabolismo , Proteínas de la Matriz Viral/metabolismo , Carcinoma , Línea Celular , Proliferación Celular , Regulación de la Expresión Génica/fisiología , Humanos , Proteínas de Unión a la Región de Fijación a la Matriz/genética , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patología , Neoplasias Nasofaríngeas/virología , Nariz/citología , Faringe/citología , ARN Interferente Pequeño , Transducción de Señal , Proteínas de la Matriz Viral/genética
10.
J Virol ; 86(22): 12251-61, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22951831

RESUMEN

Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) induces multiple signal transduction pathways during latent EBV infection via its C-terminal activating region 1 (CTAR1), CTAR2, and the less-studied CTAR3. One mechanism by which LMP1 regulates cellular activation is through the induction of protein posttranslational modifications, including phosphorylation and ubiquitination. We recently documented that LMP1 induces a third major protein modification by physically interacting with the SUMO-conjugating enzyme Ubc9 through CTAR3 and inducing the sumoylation of cellular proteins in latently infected cells. We have now identified a specific target of LMP1-induced sumoylation, interferon regulatory factor 7 (IRF7). We hypothesize that during EBV latency, LMP1 induces the sumoylation of IRF7, limiting its transcriptional activity and modulating the activation of innate immune responses. Our data show that endogenously sumoylated IRF7 is detected in latently infected EBV lymphoblastoid cell lines. LMP1 expression coincided with increased sumoylation of IRF7 in a CTAR3-dependent manner. Additional experiments show that LMP1 CTAR3-induced sumoylation regulates the expression and function of IRF7 by decreasing its turnover, increasing its nuclear retention, decreasing its DNA binding, and limiting its transcriptional activation. Finally, we identified that IRF7 is sumoylated at lysine 452. These data demonstrate that LMP1 CTAR3 does in fact function in intracellular signaling, leading to biologic effects. We propose that CTAR3 is an important signaling region of LMP1 that regulates protein function by sumoylation. We have shown specifically that LMP1 CTAR3, in cooperation with CTAR2, can limit the ability of IRF7 to induce innate immune responses by inducing the sumoylation of IRF7.


Asunto(s)
Regulación Viral de la Expresión Génica , Factor 7 Regulador del Interferón/metabolismo , Proteínas de la Matriz Viral/metabolismo , Núcleo Celular/metabolismo , Cromatina/química , Infecciones por Virus de Epstein-Barr/virología , Células HEK293 , Humanos , Inmunidad Innata , Luciferasas/metabolismo , Lisina/química , Mutagénesis , Unión Proteica , Procesamiento Proteico-Postraduccional , Transducción de Señal , Sumoilación
11.
J Virol ; 86(15): 8097-106, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22623772

RESUMEN

PCNA is monoubiquitinated in response to DNA damage and fork stalling and then initiates recruitment of specialized polymerases in the DNA damage tolerance pathway, translesion synthesis (TLS). Since PCNA is reported to associate with Epstein-Barr virus (EBV) DNA during its replication, we investigated whether the EBV deubiquitinating (DUB) enzyme encoded by BPLF1 targets ubiquitinated PCNA and disrupts TLS. An N-terminal BPLF1 fragment (a BPLF1 construct containing the first 246 amino acids [BPLF1 1-246]) associated with PCNA and attenuated its ubiquitination in response to fork-stalling agents UV and hydroxyurea in cultured cells. Moreover, monoubiquitinated PCNA was deubiquitinated after incubation with purified BPLF1 1-246 in vitro. BPLF1 1-246 dysregulated TLS by reducing recruitment of the specialized repair polymerase polymerase η (Polη) to the detergent-resistant chromatin compartment and virtually abolished localization of Polη to nuclear repair foci, both hallmarks of TLS. Expression of BPLF1 1-246 decreased viability of UV-treated cells and led to cell death, presumably through deubiquitination of PCNA and the inability to repair damaged DNA. Importantly, deubiquitination of PCNA could be detected endogenously in EBV-infected cells in comparison with samples expressing short hairpin RNA (shRNA) against BPLF1. Further, the specificity of the interaction between BPLF1 and PCNA was dependent upon a PCNA-interacting peptide (PIP) domain within the N-terminal region of BPLF1. Both DUB activity and PIP sequence are conserved in the members of the family Herpesviridae. Thus, deubiquitination of PCNA, normally deubiquitinated by cellular USP1, by the viral DUB can disrupt repair of DNA damage by compromising recruitment of TLS polymerase to stalled replication forks. PCNA is the first cellular target identified for BPLF1 and its deubiquitinating activity.


Asunto(s)
Daño del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Infecciones por Virus de Epstein-Barr/metabolismo , Herpesvirus Humano 4/enzimología , Antígeno Nuclear de Célula en Proliferación/metabolismo , Ubiquitinación , Proteínas Reguladoras y Accesorias Virales/metabolismo , Proteínas de Arabidopsis , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Supervivencia Celular/genética , Supervivencia Celular/efectos de la radiación , ADN Polimerasa Dirigida por ADN/genética , Endopeptidasas/genética , Endopeptidasas/metabolismo , Infecciones por Virus de Epstein-Barr/genética , Glicoproteínas/genética , Glicoproteínas/metabolismo , Células HEK293 , Herpesvirus Humano 4/genética , Humanos , Proteínas de Transporte de Membrana , Antígeno Nuclear de Célula en Proliferación/química , Antígeno Nuclear de Célula en Proliferación/genética , Estructura Terciaria de Proteína , Proteasas Ubiquitina-Específicas , Rayos Ultravioleta , Proteínas Reguladoras y Accesorias Virales/química , Proteínas Reguladoras y Accesorias Virales/genética
12.
Nat Biotechnol ; 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37563299

RESUMEN

Germ-free (GF) mice, which are depleted of their resident microbiota, are the gold standard for exploring the role of the microbiome in health and disease; however, they are of limited value in the study of human-specific pathogens because they do not support their replication. Here, we develop GF mice systemically reconstituted with human immune cells and use them to evaluate the role of the resident microbiome in the acquisition, replication and pathogenesis of two human-specific pathogens, Epstein-Barr virus (EBV) and human immunodeficiency virus (HIV). Comparison with conventional (CV) humanized mice showed that resident microbiota enhance the establishment of EBV infection and EBV-induced tumorigenesis and increase mucosal HIV acquisition and replication. HIV RNA levels were higher in plasma and tissues of CV humanized mice compared with GF humanized mice. The frequency of CCR5+ CD4+ T cells throughout the intestine was also higher in CV humanized mice, indicating that resident microbiota govern levels of HIV target cells. Thus, resident microbiota promote the acquisition and pathogenesis of two clinically relevant human-specific pathogens.

13.
J Virol ; 85(19): 10144-53, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21795333

RESUMEN

Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1), the principal viral oncoprotein and a member of the tumor necrosis factor receptor superfamily, is a constitutively active membrane signaling protein that regulates multiple signal transduction pathways via its C-terminal-activating region 1 (CTAR1) and CTAR2, and also the less-studied CTAR3. Because protein sumoylation among other posttranslational modifications may regulate many signaling pathways induced by LMP1, we investigated whether during EBV latency LMP1 regulates sumoylation processes that control cellular activation and cellular responses. By immunoprecipitation experiments, we show that LMP1 interacts with Ubc9, the single reported SUMO-conjugating enzyme. Requirements for LMP1-Ubc9 interactions include enzymatically active Ubc9: expression of inactive Ubc9 (Ubc9 C93S) inhibited the LMP1-Ubc9 interaction. LMP1 CTAR3, but not CTAR1 and CTAR2, participated in the LMP1-Ubc9 interaction, and amino acid sequences found in CTAR3, including the JAK-interacting motif, contributed to this interaction. Furthermore, LMP1 expression coincided with increased sumoylation of cellular proteins, and disruption of the Ubc9-LMP1 CTAR3 interaction almost completely abrogated LMP1-induced protein sumoylation, suggesting that this interaction promotes the sumoylation of downstream targets. Additional consequences of the disruption of the LMP1 CTAR3-Ubc9 interaction revealed effects on cellular migration, a hallmark of oncogenesis. Together, these data demonstrate that LMP1 CTAR3 does in fact function in intracellular signaling and leads to biological effects. We propose that LMP1, by interaction with Ubc9, modulates sumoylation processes, which regulate signal transduction pathways that affect phenotypic changes associated with oncogenesis.


Asunto(s)
Herpesvirus Humano 4/fisiología , Interacciones Huésped-Patógeno , Enzimas Ubiquitina-Conjugadoras/metabolismo , Proteínas de la Matriz Viral/metabolismo , Latencia del Virus , Secuencias de Aminoácidos , Sitios de Unión , Línea Celular , Humanos , Inmunoprecipitación , Unión Proteica , Mapeo de Interacción de Proteínas
14.
J Virol ; 85(21): 11255-64, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21849440

RESUMEN

Recent studies suggest the existence of cancer stem cells (CSC) and cancer progenitor cells (CPC), although strict definitions of neither CSC nor CPC have been developed. We have produced evidence that the principal oncoprotein of Epstein-Barr virus (EBV), latent membrane protein 1 (LMP1), which is associated with human malignancies, especially nasopharyngeal carcinoma (NPC), promotes tumor cell invasion and metastasis, as well as the epithelial-mesenchymal transition (EMT). However, whether LMP1 is involved in the development of CSC/CPC is still unclear. This study investigates whether the expression of EBV-LMP1 is related to the development of CSC/CPC. Analysis of cancer stem cell markers reveals that LMP1 induces the CD44(high) CD24(low) CSC/CPC-like phenotype as well as self-renewal abilities in LMP1-expressing epithelial cell lines. In addition, we show here that LMP1 induction in epithelial cells causes high tumorigenicity and rapid cellular proliferation. Furthermore, we found that LMP1 expression increased the expression of several CPC markers as well as producing increased levels of EMT markers. Our findings indicate that LMP1 can induce a CPC-like rather than a CSC-like phenotype in epithelial cells and suggest that LMP1-induced phenotypic changes contribute to the development of NPC.


Asunto(s)
Antígeno CD24/biosíntesis , Células Epiteliales/virología , Herpesvirus Humano 4/patogenicidad , Receptores de Hialuranos/biosíntesis , Proteínas Oncogénicas Virales/metabolismo , Células Madre/virología , Proteínas de la Matriz Viral/metabolismo , Línea Celular , Proliferación Celular , Humanos , Invasividad Neoplásica , Metástasis de la Neoplasia
15.
Front Virol ; 22022.
Artículo en Inglés | MEDLINE | ID: mdl-35611388

RESUMEN

In most individuals, EBV maintains a life-long asymptomatic latent infection. However, EBV can induce the formation of B cell lymphomas in immune suppressed individuals including people living with HIV (PLWH). Most individuals who acquire HIV are already infected with EBV as EBV infection is primarily acquired during childhood and adolescence. Although antiretroviral therapy (ART) has substantially reduced the incidence of AIDS-associated malignancies, EBV positive PLWH are at an increased risk of developing lymphomas compared to the general population. The direct effect of HIV co-infection on EBV replication and EBV-induced tumorigenesis has not been experimentally examined. Using a humanized mouse model of EBV infection, we demonstrate that HIV co-infection enhances systemic EBV replication and immune activation. Importantly, EBV-induced tumorigenesis was augmented in EBV/HIV co-infected mice. Collectively, these results demonstrate a direct effect of HIV co-infection on EBV pathogenesis and disease progression and will facilitate future studies to address why the incidence of certain types of EBV-associated malignancies are stable or increasing in ART treated PLWH.

16.
J Virol ; 84(12): 6130-8, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20392859

RESUMEN

A20 possesses both deubiquitinase (DUB) and ubiquitin E3 ligase activities that are required for termination of Toll-like receptor (TLR) signaling leading to NF-kappaB activation and for blockage of tumor necrosis factor (TNF)-induced cytotoxicity and apoptosis. A20 is induced by the Epstein-Barr virus (EBV) oncoprotein LMP1. However, its dual ubiquitin-editing activities have not been investigated in the context of either EBV infection or IRF7 responses. Both A20 and IRF7 have oncogenic properties. We have recently shown that LMP1 activates IRF7 through K63-linked ubiquitination which requires RIP1 and TRAF6, but how this ubiquitination event is regulated has not been studied. Here, we show that A20 negatively regulates IRF7 transcriptional activity induced by LMP1. Deletion or mutation of A20 C-terminal zinc finger motifs had no effect on the inhibition of IRF7 activity, whereas DUB-deficient truncation or point mutation ablated the ability of A20 to inhibit IRF7. Correspondingly, the A20 N-terminal DUB domain, but not the C-terminal E3 ligase domain, interacts physically with IRF7. Transient expression of A20 reduced K63-linked ubiquitination of IRF7 in vivo, but an in vitro deubiquitination assay with purified constituents shows that IRF7 did not act as a substrate for A20 DUB activity. Moreover, A20 interacts with IRF7 endogenously in latently EBV-infected type 3 Raji cells, in which expression of both A20 and IRF7 is constitutively induced by the considerable level of endogenous LMP1. Knockdown of endogenous A20 in Raji cells by expression of A20 short hairpin RNA (shRNA) vectors increases endogenous IRF7 activity and ubiquitination, as well as the protein level of LMP1, a target of IRF7. Thus, A20 negatively regulates LMP1-stimulated IRF7 ubiquitination and activity in EBV latency, and its DUB activity is indispensable for this function. Finally, we discussed the regulation and function of IRFs in EBV latency.


Asunto(s)
Infecciones por Virus de Epstein-Barr/metabolismo , Herpesvirus Humano 4/metabolismo , Factor 7 Regulador del Interferón/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de la Matriz Viral/metabolismo , Línea Celular Tumoral , Proteínas de Unión al ADN , Infecciones por Virus de Epstein-Barr/genética , Herpesvirus Humano 4/genética , Humanos , Factor 7 Regulador del Interferón/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Nucleares/genética , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa , Ubiquitinación , Proteínas de la Matriz Viral/genética
17.
J Virol ; 84(9): 4534-42, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20181711

RESUMEN

Ganciclovir (GCV) and acyclovir (ACV) are guanine nucleoside analogues that inhibit lytic herpesvirus replication. GCV and ACV must be monophosphorylated by virally encoded enzymes to be converted into nucleotides and incorporated into viral DNA. However, whether GCV and/or ACV phosphorylation in Epstein-Barr virus (EBV)-infected cells is mediated primarily by the EBV-encoded protein kinase (EBV-PK), the EBV-encoded thymidine kinase (EBV-TK), or both is controversial. To examine this question, we constructed EBV mutants containing stop codons in either the EBV-PK or EBV-TK open reading frame and selected for stable 293T clones latently infected with wild-type EBV or each of the mutant viruses. Cells were induced to the lytic form of viral replication with a BZLF1 expression vector in the presence and absence of various doses of GCV and ACV, and infectious viral titers were determined by a green Raji cell assay. As expected, virus production in wild-type EBV-infected 293T cells was inhibited by both GCV (50% inhibitory concentration [IC(50)] = 1.5 microM) and ACV (IC(50) = 4.1 microM). However, the EBV-PK mutant (which replicates as well as the wild-type (WT) virus in 293T cells) was resistant to both GCV (IC(50) = 19.6 microM) and ACV (IC(50) = 36.4 microM). Expression of the EBV-PK protein in trans restored GCV and ACV sensitivity in cells infected with the PK mutant virus. In contrast, in 293T cells infected with the TK mutant virus, viral replication remained sensitive to both GCV (IC(50) = 1.2 microM) and ACV (IC(50) = 2.8 microM), although susceptibility to the thymine nucleoside analogue, bromodeoxyuridine, was reduced. Thus, EBV-PK but not EBV-TK mediates ACV and GCV susceptibilities.


Asunto(s)
Aciclovir/farmacología , Antivirales/farmacología , Ganciclovir/farmacología , Herpesvirus Humano 4/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Timidina Quinasa/metabolismo , Proteínas Virales/metabolismo , Aciclovir/metabolismo , Antivirales/metabolismo , Línea Celular , Codón sin Sentido , Ganciclovir/metabolismo , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/crecimiento & desarrollo , Humanos , Concentración 50 Inhibidora , Mutagénesis Sitio-Dirigida , Fosforilación , Proteínas Serina-Treonina Quinasas/deficiencia , Timidina Quinasa/deficiencia , Proteínas Virales/genética , Replicación Viral/efectos de los fármacos
18.
J Virol ; 83(9): 4345-53, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19244336

RESUMEN

A newly discovered virally encoded deubiquitinating enzyme (DUB) is strictly conserved across the Herpesviridae. Epstein-Barr virus (EBV) BPLF1 encodes a tegument protein (3,149 amino acids) that exhibits deubiquitinating (DUB) activity that is lost upon mutation of the active-site cysteine. However, targets for the herpesviral DUBs have remained elusive. To investigate a predicted interaction between EBV BPLF1 and EBV ribonucleotide reductase (RR), a functional clone of the first 246 N-terminal amino acids of BPLF1 (BPLF1 1-246) was constructed. Immunoprecipitation verified an interaction between the small subunit of the viral RR2 and BPLF1 proteins. In addition, the large subunit (RR1) of the RR appeared to be ubiquitinated both in vivo and in vitro; however, ubiquitinated forms of the small subunit, RR2, were not detected. Ubiquitination of RR1 requires the expression of both subunits of the RR complex. Furthermore, coexpression of RR1 and RR2 with BPLF1 1-246 abolishes ubiquitination of RR1. EBV RR1, RR2, and BPLF1 1-246 colocalized to the cytoplasm in HEK 293T cells. Finally, expression of enzymatically active BPLF1 1-246 decreased RR activity, whereas a nonfunctional active-site mutant (BPLF1 C61S) had no effect. These results indicate that the EBV deubiquitinating enzyme interacts with, deubiquitinates, and influences the activity of the EBV RR. This is the first verified protein target of the EBV deubiquitinating enzyme.


Asunto(s)
Herpesvirus Humano 4/enzimología , Ribonucleótido Reductasas/metabolismo , Proteínas Reguladoras y Accesorias Virales/metabolismo , Línea Celular , Citoplasma/enzimología , Activación Enzimática , Genoma Viral/genética , Herpesvirus Humano 4/genética , Humanos , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Interferencia de ARN , ARN Mensajero/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribonucleótido Reductasas/genética , Ubiquitinación , Proteínas Reguladoras y Accesorias Virales/genética
19.
J Virol ; 83(23): 12108-17, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19759127

RESUMEN

Although many drugs inhibit the replication of Epstein-Barr virus (EBV) in cell culture systems, there is still no drug that is effective and approved for use in primary EBV infection. More recently, maribavir (MBV), an l-ribofuranoside benzimidazole, has been shown to be a potent and nontoxic inhibitor of EBV replication and to have a mode of action quite distinct from that of acyclic nucleoside analogs such as acyclovir (ACV) that is based primarily on MBV's ability to block the phosphorylation of target proteins by EBV and human cytomegalovirus protein kinases. However, since the antiviral mechanisms of the drug are complex, we have carried out a comprehensive analysis of the effects of MBV on the RNA expression levels of all EBV genes with a quantitative real-time reverse transcription-PCR-based array. We show that in comparisons with ACV, the RNA expression profiles produced by the two drugs are entirely different, with MBV causing a pronounced inhibition of multiple viral mRNAs and with ACV causing virtually none. The results emphasize the different modes of action of the two drugs and suggest that the action of MBV may be linked to indirect effects on the transcription of EBV genes through the interaction of BGLF4 with multiple viral proteins.


Asunto(s)
Antivirales/farmacología , Bencimidazoles/farmacología , Herpesvirus Humano 4/efectos de los fármacos , Ribonucleósidos/farmacología , Transcripción Genética/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Aciclovir/farmacología , Línea Celular , Humanos , ARN Mensajero/biosíntesis , ARN Viral/biosíntesis
20.
Mol Cell Biol ; 27(8): 2910-8, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17296724

RESUMEN

As a key mediator of type I interferon (IFN) (IFN-alpha/beta) responses, IFN regulatory factor 7 (IRF7) is essential to host immune defenses. Activation of IRF7 generally requires virus-induced C-terminal phosphorylation, which leads to its nuclear accumulation and activation of target genes. Here we use the Epstein-Barr virus (EBV) oncoprotein LMP1, which activates IRF7, to identify factors involved in IRF7 activation. We demonstrate for the first time that RIP activates IRF7 and that RIP and IRF7 interact under physiological conditions in EBV-positive Burkitt's lymphoma cells. We provide evidence that both RIP and IRF7 are ubiquitinated in these cells and that IRF7 preferentially interacts with ubiquitinated RIP. RIP is required for full activation of IRF7 by LMP1, with LMP1 stimulating the ubiquitination of RIP and its interaction with IRF7. Moreover, LMP1 stimulates RIP-dependent K63-linked ubiquitination of IRF7, which regulates protein function rather than proteasomal degradation of proteins. We suggest that RIP may serve as a general activator of IRF7, responding to and transmitting the signals from various stimuli, and that ubiquitination may be a general mechanism for enhancing the activity of IRF7.


Asunto(s)
Factor 7 Regulador del Interferón/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Ubiquitina/metabolismo , Proteínas de la Matriz Viral/metabolismo , Animales , Genes Dominantes , Humanos , Factor 7 Regulador del Interferón/genética , Células Jurkat , Ratones , Modelos Biológicos , Unión Proteica , Factor 6 Asociado a Receptor de TNF/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA