Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 40(9): e106491, 2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-33847380

RESUMEN

Exercise can alter the skeletal muscle DNA methylome, yet little is known about the role of the DNA methylation machinery in exercise capacity. Here, we show that DNMT3A expression in oxidative red muscle increases greatly following a bout of endurance exercise. Muscle-specific Dnmt3a knockout mice have reduced tolerance to endurance exercise, accompanied by reduction in oxidative capacity and mitochondrial respiration. Moreover, Dnmt3a-deficient muscle overproduces reactive oxygen species (ROS), the major contributors to muscle dysfunction. Mechanistically, we show that DNMT3A suppresses the Aldh1l1 transcription by binding to its promoter region, altering its epigenetic profile. Forced expression of ALDH1L1 elevates NADPH levels, which results in overproduction of ROS by the action of NADPH oxidase complex, ultimately resulting in mitochondrial defects in myotubes. Thus, inhibition of ALDH1L1 pathway can rescue oxidative stress and mitochondrial dysfunction from Dnmt3a deficiency in myotubes. Finally, we show that in vivo knockdown of Aldh1l1 largely rescues exercise intolerance in Dnmt3a-deficient mice. Together, we establish that DNMT3A in skeletal muscle plays a pivotal role in endurance exercise by controlling intracellular oxidative stress.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/genética , Músculo Esquelético/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Resistencia Física/genética , Animales , Línea Celular , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN Metiltransferasa 3A , Perfilación de la Expresión Génica , Técnicas de Inactivación de Genes , Ratones , Mitocondrias Musculares/metabolismo , Estrés Oxidativo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Ratas , Especies Reactivas de Oxígeno/metabolismo , Análisis de Secuencia de ARN
2.
Int J Mol Sci ; 23(3)2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35162995

RESUMEN

The unfolded protein response in the endoplasmic reticulum (UPRER) is involved in a number of metabolic diseases. Here, we characterize UPRER-induced metabolic changes in mouse livers in vivo through metabolic labeling and mass spectrometric analysis of lipid and proteome-wide fluxes. We induced UPRER by tunicamycin administration and measured synthesis rates of proteins, fatty acids and cholesterol, as well as RNA-seq. Contrary to reports in isolated cells, hepatic de novo lipogenesis and cholesterogenesis were markedly reduced, as were mRNA levels and synthesis rates of lipogenic proteins. H&E staining showed enrichment with lipid droplets while electron microscopy revealed ER morphological changes. Interestingly, the pre-labeling of adipose tissue prior to UPRER induction resulted in the redistribution of labeled fatty acids from adipose tissue to the liver, with replacement by unlabeled glycerol in the liver acylglycerides, indicating that the liver uptake was of free fatty acids, not whole glycerolipids. The redistribution of adipose fatty acids to the liver was not explicable by altered plasma insulin, increased fatty acid levels (lipolysis) or by reduced food intake. Synthesis of most liver proteins was suppressed under UPRER conditions, with the exception of BiP, other chaperones, protein disulfide isomerases, and proteins of ribosomal biogenesis. Protein synthesis rates generally, but not always, paralleled changes in mRNA. In summary, this combined approach, linking static changes with fluxes, revealed an integrated reduction of lipid and cholesterol synthesis pathways, from gene expression to translation and metabolic flux rates, under UPRER conditions. The reduced lipogenesis does not parallel human fatty liver disease. This approach provides powerful tools to characterize metabolic processes underlying hepatic UPRER in vivo.


Asunto(s)
Colesterol/metabolismo , Ácidos Grasos/sangre , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes/efectos de los fármacos , Hígado/metabolismo , Tunicamicina/efectos adversos , Tejido Adiposo/metabolismo , Animales , Regulación de la Expresión Génica/efectos de los fármacos , Insulina/sangre , Lipogénesis/efectos de los fármacos , Masculino , Espectrometría de Masas , Ratones , Modelos Animales , RNA-Seq , Respuesta de Proteína Desplegada
3.
Biol Reprod ; 105(5): 1257-1271, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34309663

RESUMEN

During gestation, the female reproductive tract must maintain pregnancy while concurrently preparing for parturition. Here, we explore the transitions in gene expression and protein turnover (fractional synthesis rates [FSR]) by which the cervix implements a transition from rigid to compliant. Shifts in gene transcription to achieve immune tolerance and alter epithelial cell programs begin in early pregnancy. Subsequently, in mid-to-late pregnancy transcriptional programs emerge that promote structural reorganization of the extracellular matrix (ECM). Stable isotope labeling revealed a striking slowdown of overall FSRs across the proteome on gestation day 6 that reverses in mid-to-late pregnancy. An exception was soluble fibrillar collagens and proteins of collagen assembly, which exhibit high turnover in nonpregnant cervix compared with other tissues and FSRs that continue throughout pregnancy. This finding provides a mechanism to explain how cross-linked collagen is replaced by newly synthesized, less cross-linked collagens, which allows increased tissue compliance during parturition. The rapid transition requires a reservoir of newly synthesized, less cross-linked collagens, which is assured by the high FSR of soluble collagens in the cervix. These findings suggest a previously unrecognized form of "metabolic flexibility" for ECM in the cervix that underlies rapid transformation in compliance to allow parturition.


Asunto(s)
Cuello del Útero/fisiología , Matriz Extracelular/metabolismo , Preñez/metabolismo , Proteoma , Transcriptoma , Animales , Femenino , Ratones , Embarazo
4.
J Nutr ; 151(9): 2551-2563, 2021 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-34132333

RESUMEN

BACKGROUND: Effects of high protein (HP) diets and prolonged energy restriction (ER) on integrated muscle protein kinetics have not been determined. OBJECTIVE: The objective of this study was to measure protein kinetics in response to prolonged ER and HP on muscle protein synthesis (MPS; absolute rates of synthesis) and muscle protein breakdown (MPB; half-lives) for proteins across the muscle proteome. METHODS: Female 6-wk-old obese Zucker rats (Leprfa+/fa+, n = 48) were randomly assigned to one of four diets for 10 wk: ad libitum-standard protein (AL-SP; 15% kcal from protein), AL-HP (35% kcal from protein), ER-SP, and ER-HP (both fed 60% feed consumed by AL-SP). During week 10, heavy/deuterated water (2H2O) was administered by intraperitoneal injection, and isotopic steady-state was maintained via 2H2O in drinking water. Rats were euthanized after 1 wk, and mixed-MPS as well as fractional replacement rate (FRR), relative concentrations, and half-lives of individual muscle proteins were quantified in the gastrocnemius. Data were analyzed using 2-factor (energy × protein) ANOVAs and 2-tailed t-tests or binomial tests as appropriate. RESULTS: Absolute MPS was lower in ER than AL for mixed-MPS (-29.6%; P < 0.001) and MPS of most proteins measured [23/26 myofibrillar, 48/60 cytoplasmic, and 46/60 mitochondrial (P < 0.05)], corresponding with lower gastrocnemius mass in ER compared with AL (-29.4%; P < 0.001). Although mixed-muscle protein half-life was not different between groups, prolonged half-lives were observed for most individual proteins in HP compared with SP in ER and AL (P < 0.001), corresponding with greater gastrocnemius mass in HP than SP (+5.3%; P = 0.043). CONCLUSIONS: ER decreased absolute bulk MPS and most individual MPS rates compared with AL, and HP prolonged half-lives of most proteins across the proteome. These data suggest that HP, independent of energy intake, may reduce MPB, and reductions in MPS may contribute to lower gastrocnemius mass during ER by reducing protein deposition in obese female Zucker rats.


Asunto(s)
Dieta Rica en Proteínas , Proteínas Musculares , Animales , Proteínas en la Dieta , Femenino , Músculo Esquelético , Obesidad , Proteoma , Ratas , Ratas Zucker
5.
Nat Commun ; 15(1): 2436, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38499535

RESUMEN

Parkinson's disease (PD) is closely linked to α-synuclein (α-syn) misfolding and accumulation in Lewy bodies. The PDZ serine protease HTRA1 degrades fibrillar tau, which is associated with Alzheimer's disease, and inactivating mutations to mitochondrial HTRA2 are implicated in PD. Here, we report that HTRA1 inhibits aggregation of α-syn as well as FUS and TDP-43, which are implicated in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. The protease domain of HTRA1 is necessary and sufficient for inhibiting aggregation, yet this activity is proteolytically-independent. Further, HTRA1 disaggregates preformed α-syn fibrils, rendering them incapable of seeding aggregation of endogenous α-syn, while reducing HTRA1 expression promotes α-syn seeding. HTRA1 remodels α-syn fibrils by targeting the NAC domain, the key domain catalyzing α-syn amyloidogenesis. Finally, HTRA1 detoxifies α-syn fibrils and prevents formation of hyperphosphorylated α-syn accumulations in primary neurons. Our findings suggest that HTRA1 may be a therapeutic target for a range of neurodegenerative disorders.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Amiloide/metabolismo , Serina Peptidasa A1 que Requiere Temperaturas Altas/genética , Serina Peptidasa A1 que Requiere Temperaturas Altas/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Cuerpos de Lewy/metabolismo
6.
Cell Metab ; 36(4): 745-761.e5, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38569471

RESUMEN

There is considerable heterogeneity in the cardiometabolic abnormalities associated with obesity. We evaluated multi-organ system metabolic function in 20 adults with metabolically healthy obesity (MHO; normal fasting glucose and triglycerides, oral glucose tolerance, intrahepatic triglyceride content, and whole-body insulin sensitivity), 20 adults with metabolically unhealthy obesity (MUO; prediabetes, hepatic steatosis, and whole-body insulin resistance), and 15 adults who were metabolically healthy lean. Compared with MUO, people with MHO had (1) altered skeletal muscle biology (decreased ceramide content and increased expression of genes involved in BCAA catabolism and mitochondrial structure/function); (2) altered adipose tissue biology (decreased expression of genes involved in inflammation and extracellular matrix remodeling and increased expression of genes involved in lipogenesis); (3) lower 24-h plasma glucose, insulin, non-esterified fatty acids, and triglycerides; (4) higher plasma adiponectin and lower plasma PAI-1 concentrations; and (5) decreased oxidative stress. These findings provide a framework of potential mechanisms responsible for MHO and the metabolic heterogeneity of obesity. This study was registered at ClinicalTrials.gov (NCT02706262).


Asunto(s)
Enfermedades Cardiovasculares , Resistencia a la Insulina , Síndrome Metabólico , Obesidad Metabólica Benigna , Adulto , Humanos , Obesidad/metabolismo , Triglicéridos , Síndrome Metabólico/metabolismo , Índice de Masa Corporal , Factores de Riesgo
7.
Am J Clin Nutr ; 120(1): 129-144, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38960570

RESUMEN

BACKGROUND: Personalized nutrition (PN) has been proposed as a strategy to increase the effectiveness of dietary recommendations and ultimately improve health status. OBJECTIVES: We aimed to assess whether including omics-based PN in an e-commerce tool improves dietary behavior and metabolic profile in general population. METHODS: A 21-wk parallel, single-blinded, randomized intervention involved 193 adults assigned to a control group following Mediterranean diet recommendations (n = 57, completers = 36), PN (n = 70, completers = 45), or personalized plan (PP, n = 68, completers = 53) integrating a behavioral change program with PN recommendations. The intervention used metabolomics, proteomics, and genetic data to assist participants in creating personalized shopping lists in a simulated e-commerce retailer portal. The primary outcome was the Mediterranean diet adherence screener (MEDAS) score; secondary outcomes included biometric and metabolic markers and dietary habits. RESULTS: Volunteers were categorized with a scoring system based on biomarkers of lipid, carbohydrate metabolism, inflammation, oxidative stress, and microbiota, and dietary recommendations delivered accordingly in the PN and PP groups. The intervention significantly increased MEDAS scores in all volunteers (control-3 points; 95% confidence interval [CI]: 2.2, 3.8; PN-2.7 points; 95% CI: 2.0, 3.3; and PP-2.8 points; 95% CI: 2.1, 3.4; q < 0.001). No significant differences were observed in dietary habits or health parameters between PN and control groups after adjustment for multiple comparisons. Nevertheless, personalized recommendations significantly (false discovery rate < 0.05) and selectively enhanced the scores calculated with biomarkers of carbohydrate metabolism (ß: -0.37; 95% CI: -0.56, -0.18), oxidative stress (ß: -0.37; 95% CI: -0.60, -0.15), microbiota (ß: -0.38; 95% CI: -0.63, -0.15), and inflammation (ß: -0.78; 95% CI: -1.24, -0.31) compared with control diet. CONCLUSIONS: Integration of personalized strategies within an e-commerce-like tool did not enhance adherence to Mediterranean diet or improved health markers compared with general recommendations. The metabotyping approach showed promising results and more research is guaranteed to further promote its application in PN. This trial was registered at clinicaltrials.gov as NCT04641559 (https://clinicaltrials.gov/study/NCT04641559?cond=NCT04641559&rank=1).


Asunto(s)
Dieta Mediterránea , Medicina de Precisión , Humanos , Femenino , Masculino , Persona de Mediana Edad , Adulto , Método Simple Ciego , Metabolómica , Estado Nutricional , Biomarcadores/sangre , Conducta Alimentaria
8.
Res Sq ; 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37674720

RESUMEN

Parkinson disease (PD) is closely linked to the misfolding and accumulation of α-synuclein (α-syn) into Lewy bodies. HtrA1 is a PDZ serine protease that degrades fibrillar tau, which is associated with Alzheimer disease (AD). Further, inactivating mutations to mitochondrial HtrA2 have been implicated in PD. Here, we establish that HtrA1 inhibits the aggregation of α-syn as well as FUS and TDP-43, which are implicated in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). We demonstrate that the protease domain of HtrA1 is necessary and sufficient for inhibition of aggregation, yet this activity is independent of HtrA1 proteolytic activity. Further, we find that HtrA1 also disaggregates preformed α-syn fibrils, which may promote their clearance. Treatment of α-syn fibrils with HtrA1 renders α-syn incapable of seeding the aggregation of endogenous α-syn in mammalian biosensor cells. We find that HtrA1 remodels α-syn by specifically targeting the NAC domain, which is the key domain that catalyzes α-syn oligomerization and fibrillization. Finally, in a primary neuron model of α-syn aggregation, we show that HtrA1 and its proteolytically inactive form both detoxify α-syn and prevent the formation of hyperphosphorylated α-syn accumulations. Our findings suggest that HtrA1 prevents aggregation and promotes disaggregation of multiple disease-associated proteins, and may be a therapeutic target for treating a range of neurodegenerative disorders.

9.
bioRxiv ; 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36778276

RESUMEN

Dysfunctional adipose tissue is believed to promote the development of hepatic steatosis and systemic insulin resistance, but many of the mechanisms involved are still unclear. Lipin 1 catalyzes the conversion of phosphatidic acid to diacylglycerol (DAG), the penultimate step of triglyceride synthesis, which is essential for lipid storage. Herein we found that adipose tissue LPIN1 expression is decreased in people with obesity compared to lean subjects and low LPIN1 expression correlated with multi-tissue insulin resistance and increased rates of hepatic de novo lipogenesis. Comprehensive metabolic and multi-omic phenotyping demonstrated that adipocyte-specific Lpin1-/- mice had a metabolically-unhealthy phenotype, including liver and skeletal muscle insulin resistance, hepatic steatosis, increased hepatic de novo lipogenesis, and transcriptomic signatures of nonalcoholic steatohepatitis that was exacerbated by high-fat diets. We conclude that adipocyte lipin 1-mediated lipid storage is vital for preserving adipose tissue and systemic metabolic health and its loss predisposes mice to nonalcoholic steatohepatitis.

10.
Aging Cell ; 21(3): e13558, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35170180

RESUMEN

Age is a risk factor for numerous diseases, including neurodegenerative diseases, cancers, and diabetes. Loss of protein homeostasis is a central hallmark of aging. Activation of the endoplasmic reticulum unfolded protein response (UPRER ) includes changes in protein translation and membrane lipid synthesis. Using stable isotope labeling, a flux "signature" of the UPRER in vivo in mouse liver was developed by inducing ER stress with tunicamycin and measuring rates of both proteome-wide translation and de novo lipogenesis. Several changes in protein synthesis across ontologies were noted with age, including a more dramatic suppression of translation under ER stress in aged mice as compared with young mice. Binding immunoglobulin protein (BiP) synthesis rates and mRNA levels were increased more in aged than young mice. De novo lipogenesis rates decreased under ER stress conditions in aged mice, including both triglyceride and phospholipid fractions. In young mice, a significant reduction was seen only in the triglyceride fraction. These data indicate that aged mice have an exaggerated metabolic flux response to ER stress, which may indicate that aging renders the UPRER less effective in resolving proteotoxic stress.


Asunto(s)
Estrés del Retículo Endoplásmico , Respuesta de Proteína Desplegada , Animales , Estrés del Retículo Endoplásmico/genética , Ratones , Transducción de Señal , Triglicéridos
11.
Toxins (Basel) ; 14(3)2022 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-35324693

RESUMEN

This study evaluated the fungal incidence through direct plating in Agar Dichloran Glycerol, and the presence of aflatoxins in maize samples from the Highlands and Coast of Ecuador by HPLC, investigating the influence of the temperature, altitude, water activity, and humidity of the collection regions on the maize samples' contamination using Principal Components Analysis (PCA). The overall kernel infection by fungi was usually lower in samples from the Highlands, and no aflatoxins or Aspergillus series Flavi were detected in the samples from this region. In the coastal samples, Aspergillus sp. were isolated from all samples, while the potentially aflatoxigenic A. Flavi contaminated about 80% of them. Aflatoxins were present in 50% of these samples, in ranges from 0.42 to 107.69 µg/kg. PCA was able to segregate the samples according to their collection region, and showed that the maximum and minimum temperatures are closely and positively related to the presence of A. Flavi. A highly positive relationship was also observed between the water activity of the sample and aflatoxin contamination. On the other hand, the altitude had a very strong-but negative-relationship with the variables studied. This study is relevant because data regarding fungi and aflatoxin occurrence, as well the main factor influencing the contamination of Ecuadoran maize, are scarce; it clearly shows that aflatoxins are a hazard present in maize from the Ecuadorian Coast but not the Highlands.


Asunto(s)
Aflatoxinas , Aflatoxinas/análisis , Aspergillus , Aspergillus flavus , Ecuador , Contaminación de Alimentos/análisis , Humedad , Incidencia , Agua/análisis , Zea mays/microbiología
12.
Biomolecules ; 11(7)2021 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-34356622

RESUMEN

BACKGROUND: The human intestinal microbiome plays a central role in overall health status, especially in early life stages. 16S rRNA amplicon sequencing is used to profile its taxonomic composition; however, multiomic approaches have been proposed as the most accurate methods for study of the complexity of the gut microbiota. In this study, we propose an optimized method for bacterial diversity analysis that we validated and complemented with metabolomics by analyzing fecal samples. METHODS: Forty-eight different analytical combinations regarding (1) 16S rRNA variable region sequencing, (2) a feature selection approach, and (3) taxonomy assignment methods were tested. A total of 18 infant fecal samples grouped depending on the type of feeding were analyzed by the proposed 16S rRNA workflow and by metabolomic analysis. RESULTS: The results showed that the sole use of V4 region sequencing with ASV identification and VSEARCH for taxonomy assignment produced the most accurate results. The application of this workflow showed clear differences between fecal samples according to the type of feeding, which correlated with changes in the fecal metabolic profile. CONCLUSION: A multiomic approach using real fecal samples from 18 infants with different types of feeding demonstrated the effectiveness of the proposed 16S rRNA-amplicon sequencing workflow.


Asunto(s)
Bacterias , Heces/microbiología , Microbioma Gastrointestinal , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Bacterias/clasificación , Bacterias/genética , Bacterias/crecimiento & desarrollo , Femenino , Humanos , Lactante , Recién Nacido , Masculino
13.
J Cell Mol Med ; 14(11): 2667-74, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19906014

RESUMEN

Brain energy disorders can be present in aged men and animals. To this respect, the mitochondrial and free radical theory of aging postulates that age-associated brain energy disorders are caused by an imbalance between pro- and anti-oxidants that can result in oxidative stress. Our study was designed to investigate brain energy metabolism and the activity of endogenous antioxidants during their lifespan in male Wistar rats. In vivo brain bioenergetics were measured using ³¹P nuclear magnetic resonance (NMR) spectroscopy and in vitro by polarographic analysis of mitochondrial oxidative phosphorylation. When compared to the young controls, a significant decrease of age-dependent mitochondrial respiration and adenosine-3-phosphate (ATP) production measured in vitro correlated with significant reduction of forward creatine kinase reaction (kfor) and with an increase in phosphocreatine (PCr)/ATP, PCr/Pi and PME/ATP ratio measured in vivo. The levels of enzymatic antioxidants catalase, GPx and GST significantly decreased in the brain tissue as well as in the peripheral blood of aged rats. We suppose that mitochondrial dysfunction and oxidative inactivation of endogenous enzymes may participate in age-related disorders of brain energy metabolism.


Asunto(s)
Envejecimiento/fisiología , Encéfalo/metabolismo , Metabolismo Energético , Adenosina Trifosfato/metabolismo , Animales , Antioxidantes/metabolismo , Espectroscopía de Resonancia Magnética , Masculino , Mitocondrias/metabolismo , Oxidación-Reducción , Fosforilación Oxidativa , Ratas , Ratas Wistar
14.
Nutrients ; 12(2)2020 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-32033223

RESUMEN

Conjugated linoleic acid (CLA) is a dietary supplement that has been shown to improve obesity. However, some authors have associated high doses of CLA supplementation with liver impairment and insulin resistance. The aim of this study was to assess whether the consumption of low doses of CLA maintained the beneficial effects on the main metabolic disturbances associated with metabolic syndrome (MetS) but prevented the occurrence of non-desirable outcomes associated with its consumption. Male Wistar rats, fed standard or cafeteria (CAF) diet for 12 weeks, were supplemented with three different low doses of CLA in the last three weeks. Both biochemical and H1 NMR-based metabolomics profiles were analysed in serum and liver. The consumption of 100 mg/kg CLA, but not doses of 200 and 300 mg/kg, ameliorated the increase in body weight gain as well as the serum concentrations of glucose, insulin, cholesterol, triglyceride, diglyceride, and total phospholipid induced by a CAF diet. In turn, CLA reverted the increase in lactate, alanine, and glucose concentrations in the liver of these animals, but enhanced hepatic cholesterol accumulation without any detrimental effect on liver function. In conclusion, a low dose of CLA corrected the adverse effects associated with MetS without compromising other metabolic parameters.


Asunto(s)
Dieta/métodos , Suplementos Dietéticos , Ácidos Linoleicos Conjugados/administración & dosificación , Síndrome Metabólico/prevención & control , Aumento de Peso/efectos de los fármacos , Animales , Glucemia/efectos de los fármacos , Colesterol/metabolismo , Dieta/efectos adversos , Diglicéridos/sangre , Modelos Animales de Enfermedad , Insulina/sangre , Hígado/metabolismo , Masculino , Síndrome Metabólico/etiología , Fosfolípidos/sangre , Ratas , Ratas Wistar , Factores de Riesgo , Triglicéridos/sangre
15.
J Gerontol A Biol Sci Med Sci ; 75(11): 2037-2041, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32556267

RESUMEN

SRT1720, a sirtuin1-activator, and metformin (MET), an antidiabetic drug, confer health and life-span benefits when administered individually. It is unclear whether combination of the two compounds could lead to additional benefits. Groups of 56-week-old C57BL/6J male mice were fed a high-fat diet (HFD) alone or supplemented with either SRT1720 (2 g/kg food), a high dose of MET (1% wt/wt food), or a combination of both. Animals were monitored for survival, body weight, food consumption, body composition, and rotarod performance. Mice treated with MET alone did not have improved longevity, and life span was dramatically reduced by combination of MET with SRT1720. Although all groups of animals were consuming similar amounts of food, mice on MET or MET + SRT1720 showed a sharp reduction in body weight. SRT1720 + MET mice also had lower percent body fat combined with better performance on the rotarod compared to controls. These data suggest that co-treatment of SRT1720 with MET is detrimental to survival at the doses used and, therefore, risk-benefits of combining life-span-extending drugs especially in older populations needs to be systematically evaluated.


Asunto(s)
Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Longevidad/efectos de los fármacos , Metformina/farmacología , Animales , Composición Corporal , Peso Corporal , Dieta Alta en Grasa , Compuestos Heterocíclicos de 4 o más Anillos/administración & dosificación , Masculino , Metformina/administración & dosificación , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Sirtuina 1
16.
Cell Metab ; 27(3): 667-676.e4, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29514072

RESUMEN

The role in longevity and healthspan of nicotinamide (NAM), the physiological precursor of NAD+, is elusive. Here, we report that chronic NAM supplementation improves healthspan measures in mice without extending lifespan. Untargeted metabolite profiling of the liver and metabolic flux analysis of liver-derived cells revealed NAM-mediated improvement in glucose homeostasis in mice on a high-fat diet (HFD) that was associated with reduced hepatic steatosis and inflammation concomitant with increased glycogen deposition and flux through the pentose phosphate and glycolytic pathways. Targeted NAD metabolome analysis in liver revealed depressed expression of NAM salvage in NAM-treated mice, an effect counteracted by higher expression of de novo NAD biosynthetic enzymes. Although neither hepatic NAD+ nor NADP+ was boosted by NAM, acetylation of some SIRT1 targets was enhanced by NAM supplementation in a diet- and NAM dose-dependent manner. Collectively, our results show health improvement in NAM-supplemented HFD-fed mice in the absence of survival effects.


Asunto(s)
Suplementos Dietéticos , Envejecimiento Saludable/metabolismo , Hígado , NAD/metabolismo , Niacinamida/farmacología , Animales , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Hígado Graso/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Hígado/efectos de los fármacos , Hígado/metabolismo , Longevidad , Ratones Endogámicos C57BL , Niacinamida/administración & dosificación , Estrés Oxidativo/efectos de los fármacos , Sirtuina 1/metabolismo
17.
NPJ Aging Mech Dis ; 2: 16006, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28721264

RESUMEN

Cytochrome b5 reductases (CYB5R) are required for the elongation and desaturation of fatty acids, cholesterol synthesis and mono-oxygenation of cytochrome P450 enzymes, all of which are associated with protection against metabolic disorders. However, the physiological role of CYB5R in the context of metabolism, healthspan and aging remains ill-defined. We generated CYB5R-overexpressing flies (CYB5R-OE) and created a transgenic mouse line overexpressing CYB5R3 (CYB5R3-Tg) in the C57BL/6J background to investigate the function of this class of enzymes as regulators of metabolism and age-associated pathologies. Gender- and/or stage-specific induction of CYB5R, and pharmacological activation of CYB5R with tetrahydroindenoindole extended fly lifespan. Increased expression of CYB5R3 was associated with significant improvements in several metabolic parameters that resulted in modest lifespan extension in mice. Diethylnitrosamine-induced liver carcinogenesis was reduced in CYB5R3-Tg mice. Accumulation of high levels of long-chain polyunsaturated fatty acids, improvement in mitochondrial function, decrease in oxidative damage and inhibition of chronic pro-inflammatory pathways occurred in the transgenic animals. These results indicate that CYB5R represents a new target in the study of genes that regulate lipid metabolism and healthspan.

18.
Cell Metab ; 23(6): 1093-1112, 2016 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-27304509

RESUMEN

Calorie restriction (CR) is the most robust non-genetic intervention to delay aging. However, there are a number of emerging experimental variables that alter CR responses. We investigated the role of sex, strain, and level of CR on health and survival in mice. CR did not always correlate with lifespan extension, although it consistently improved health across strains and sexes. Transcriptional and metabolomics changes driven by CR in liver indicated anaplerotic filling of the Krebs cycle together with fatty acid fueling of mitochondria. CR prevented age-associated decline in the liver proteostasis network while increasing mitochondrial number, preserving mitochondrial ultrastructure and function with age. Abrogation of mitochondrial function negated life-prolonging effects of CR in yeast and worms. Our data illustrate the complexity of CR in the context of aging, with a clear separation of outcomes related to health and survival, highlighting complexities of translation of CR into human interventions.


Asunto(s)
Envejecimiento/metabolismo , Ingestión de Energía , Caracteres Sexuales , Envejecimiento/genética , Animales , Autofagia/genética , Biomarcadores/metabolismo , Restricción Calórica , Análisis por Conglomerados , Ingestión de Energía/genética , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Glucosa/metabolismo , Homeostasis/genética , Sulfuro de Hidrógeno/metabolismo , Islotes Pancreáticos/anatomía & histología , Hígado/metabolismo , Hígado/ultraestructura , Longevidad/genética , Longevidad/fisiología , Masculino , Metaboloma , Metabolómica , Ratones , Ratones Endogámicos , Mitocondrias/metabolismo , Fenotipo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo
19.
Aging Cell ; 14(3): 334-44, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25711920

RESUMEN

Astrocytes are key cells in brain aging, helping neurons to undertake healthy aging or otherwise letting them enter into a spiral of neurodegeneration. We aimed to characterize astrocytes cultured from senescence-accelerated prone 8 (SAMP8) mice, a mouse model of brain pathological aging, along with the effects of caloric restriction, the most effective rejuvenating treatment known so far. Analysis of the transcriptomic profiles of SAMP8 astrocytes cultured in control conditions and treated with caloric restriction serum was performed using mRNA microarrays. A decrease in mitochondrial and ribosome mRNA, which was restored by caloric restriction, confirmed the age-related profile of SAMP8 astrocytes and the benefits of caloric restriction. An amelioration of antioxidant and neurodegeneration-related pathways confirmed the brain benefits of caloric restriction. Studies of oxidative stress and mitochondrial function demonstrated a reduction of oxidative damage and partial improvement of mitochondria after caloric restriction. In summary, caloric restriction showed a significant tendency to normalize pathologically aged astrocytes through the activation of pathways that are protective against the age-related deterioration of brain physiology.


Asunto(s)
Envejecimiento/metabolismo , Astrocitos/metabolismo , Restricción Calórica , Animales , Antioxidantes/metabolismo , Restricción Calórica/métodos , Células Cultivadas , Ratones , Mitocondrias/metabolismo , Neuronas/metabolismo , Estrés Oxidativo/fisiología
20.
Cell Rep ; 6(5): 836-43, 2014 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-24582957

RESUMEN

The prevention or delay of the onset of age-related diseases prolongs survival and improves quality of life while reducing the burden on the health care system. Activation of sirtuin 1 (SIRT1), an NAD(+)-dependent deacetylase, improves metabolism and confers protection against physiological and cognitive disturbances in old age. SRT1720 is a specific SIRT1 activator that has health and lifespan benefits in adult mice fed a high-fat diet. We found extension in lifespan, delayed onset of age-related metabolic diseases, and improved general health in mice fed a standard diet after SRT1720 supplementation. Inhibition of proinflammatory gene expression in both liver and muscle of SRT1720-treated animals was noted. SRT1720 lowered the phosphorylation of NF-κB pathway regulators in vitro only when SIRT1 was functionally present. Combined with our previous work, the current study further supports the beneficial effects of SRT1720 on health across the lifespan in mice.


Asunto(s)
Compuestos Heterocíclicos de 4 o más Anillos/metabolismo , Sirtuina 1/metabolismo , Animales , Dieta , Longevidad , Masculino , Ratones , Ratones Endogámicos C57BL , Sirtuina 1/genética , Análisis de Supervivencia , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA