Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Cardiovasc Magn Reson ; 25(1): 78, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38093273

RESUMEN

BACKGROUND: While the microstructure of the left ventricle (LV) has been largely described, only a few studies investigated the right ventricular insertion point (RVIP). It was accepted that the aggregate cardiomyocytes organization was much more complex due to the intersection of the ventricular cavities but a precise structural characterization in the human heart was lacking even if clinical phenotypes related to right ventricular wall stress or arrhythmia were observed in this region. METHODS: MRI-derived anatomical imaging (150 µm3) and diffusion tensor imaging (600 µm3) were performed in large mammalian whole hearts (human: N = 5, sheep: N = 5). Fractional anisotropy, aggregate cardiomyocytes orientations and tractography were compared within both species. Aggregate cardiomyocytes orientation on one ex-vivo sheep whole heart was then computed using structure tensor imaging (STI) from 21 µm isotropic acquisition acquired with micro computed tomography (MicroCT) imaging. Macroscopic and histological examination were performed. Lastly, experimental cardiomyocytes orientation distribution was then compared to the usual rule-based model using electrophysiological (EP) modeling. Electrical activity was modeled with the monodomain formulation. RESULTS: The RVIP at the level of the inferior ventricular septum presented a unique arrangement of aggregate cardiomyocytes. An abrupt, mid-myocardial change in cardiomyocytes orientation was observed, delimiting a triangle-shaped region, present in both sheep and human hearts. FA's histogram distribution (mean ± std: 0.29 ± 0.06) of the identified region as well as the main dimension (22.2 mm ± 5.6 mm) was found homogeneous across samples and species. Averaged volume is 0.34 cm3 ± 0.15 cm3. Both local activation time (LAT) and morphology of pseudo-ECGs were strongly impacted with delayed LAT and change in peak-to-peak amplitude in the simulated wedge model. CONCLUSION: The study was the first to describe the 3D cardiomyocytes architecture of the basal inferoseptal left ventricle region in human hearts and identify the presence of a well-organized aggregate cardiomyocytes arrangement and cardiac structural discontinuities. The results might offer a better appreciation of clinical phenotypes like RVIP-late gadolinium enhancement or uncommon idiopathic ventricular arrhythmias (VA) originating from this region.


Asunto(s)
Imagen de Difusión Tensora , Ventrículos Cardíacos , Humanos , Animales , Ovinos , Ventrículos Cardíacos/diagnóstico por imagen , Imagen de Difusión Tensora/métodos , Medios de Contraste , Microtomografía por Rayos X , Valor Predictivo de las Pruebas , Gadolinio , Miocitos Cardíacos/fisiología , Arritmias Cardíacas , Mamíferos
2.
Gut ; 67(12): 2192-2203, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29074727

RESUMEN

OBJECTIVE: The AAA+ ATPase Reptin is overexpressed in hepatocellular carcinoma and preclinical studies indicate that it could be a relevant therapeutic target. However, its physiological and pathophysiological roles in vivo remain unknown. This study aimed to determine the role of Reptin in mammalian adult liver. DESIGN AND RESULTS: We generated an inducible liver-specific Reptin knockout (RepinLKO ) mouse model. Following Reptin invalidation, mice displayed decreased body and fat mass, hypoglycaemia and hypolipidaemia. This was associated with decreased hepatic mTOR protein abundance. Further experiments in primary hepatocytes demonstrated that Reptin maintains mTOR protein level through its ATPase activity. Unexpectedly, loss or inhibition of Reptin induced an opposite effect on mTORC1 and mTORC2 signalling, with: (1) strong inhibition of hepatic mTORC1 activity, likely responsible for the reduction of hepatocytes cell size, for decreased de novo lipogenesis and cholesterol transcriptional programmes and (2) enhancement of mTORC2 activity associated with inhibition of the gluconeogenesis transcriptional programme and hepatic glucose production. Consequently, the role of hepatic Reptin in the pathogenesis of insulin resistance (IR) and non-alcoholic fatty liver disease consecutive to a high-fat diet was investigated. We found that Reptin deletion completely rescued pathological phenotypes associated with IR, including glucose intolerance, hyperglycaemia, hyperlipidaemia and hepatic steatosis. CONCLUSION: We show here that the AAA +ATPase Reptin is a regulator of mTOR signalling in the liver and global glucido-lipidic homeostasis. Inhibition of hepatic Reptin expression or activity represents a new therapeutic perspective for metabolic syndrome.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/fisiología , ADN Helicasas/fisiología , Glucosa/metabolismo , Metabolismo de los Lípidos/fisiología , Adenosina Trifosfatasas/fisiología , Animales , Peso Corporal/fisiología , ADN Helicasas/deficiencia , ADN Helicasas/genética , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Metabolismo Energético/fisiología , Hígado Graso/etiología , Hígado Graso/metabolismo , Hígado Graso/prevención & control , Intolerancia a la Glucosa/fisiopatología , Intolerancia a la Glucosa/prevención & control , Hepatocitos/metabolismo , Resistencia a la Insulina/fisiología , Lipogénesis/fisiología , Hígado/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Ratones Noqueados , Transducción de Señal/fisiología
3.
Hepatology ; 66(6): 2016-2028, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28646562

RESUMEN

Hepatocellular adenomas (HCAs) are rare benign tumors divided into three main subgroups defined by pathomolecular features, HNF1A (H-HCA), mutated ß-catenin (b-HCA), and inflammatory (IHCA). In the case of unclassified HCAs (UHCAs), which are currently identified by default, a high risk of bleeding remains a clinical issue. The objective of this study was to explore UHCA proteome with the aim to identify specific biomarkers. Following dissection of the tumoral (T) and nontumoral (NT) tissue on formalin-fixed, paraffin-embedded HCA tissue sections using laser capture methodology, we performed mass spectrometry analysis to compare T and NT protein expression levels in H-HCA, IHCA, b-HCA, UHCA, and focal nodular hyperplasia. Using this methodology, we searched for proteins which are specifically deregulated in UHCA. We demonstrate that proteomic profiles allow for discriminating known HCA subtypes through identification of classical biomarkers in each HCA subgroup. We observed specific up-regulation of the arginine synthesis pathway associated with overexpression of argininosuccinate synthase (ASS1) and arginosuccinate lyase in UHCA. ASS1 immunohistochemistry identified all the UHCA, of which 64.7% presented clinical bleeding manifestations. Interestingly, we demonstrated that the significance of ASS1 was not restricted to UHCA, but also encompassed certain hemorrhagic cases in other HCA subtypes, particularly IHCA. CONCLUSION: ASS1 + HCA combined with a typical hematoxylin and eosin stain aspect defined a new HCA subgroup at a high risk of bleeding. (Hepatology 2017;66:2016-2028).


Asunto(s)
Adenoma de Células Hepáticas/metabolismo , Argininosuccinato Sintasa/metabolismo , Neoplasias Hepáticas/metabolismo , Adenoma de Células Hepáticas/complicaciones , Adenoma de Células Hepáticas/patología , Adulto , Arginina/biosíntesis , Biomarcadores de Tumor/metabolismo , Estudios de Cohortes , Femenino , Hemorragia/etiología , Humanos , Captura por Microdisección con Láser , Hígado/patología , Neoplasias Hepáticas/complicaciones , Neoplasias Hepáticas/patología , Espectrometría de Masas , Persona de Mediana Edad , Proteoma
4.
EMBO Rep ; 16(3): 332-40, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25652260

RESUMEN

The accumulation of misfolded proteins in the endoplasmic reticulum (ER) activates the Unfolded Protein Response (UPR(ER)) to restore ER homeostasis. The AAA(+) ATPase p97/CDC-48 plays key roles in ER stress by promoting both ER protein degradation and transcription of UPR(ER) genes. Although the mechanisms associated with protein degradation are now well established, the molecular events involved in the regulation of gene transcription by p97/CDC-48 remain unclear. Using a reporter-based genome-wide RNAi screen in combination with quantitative proteomic analysis in Caenorhabditis elegans, we have identified RUVB-2, a AAA(+) ATPase, as a novel repressor of a subset of UPR(ER) genes. We show that degradation of RUVB-2 by CDC-48 enhances expression of ER stress response genes through an XBP1-dependent mechanism. The functional interplay between CDC-48 and RUVB-2 in controlling transcription of select UPR(ER) genes appears conserved in human cells. Together, these results describe a novel role for p97/CDC-48, whereby its role in protein degradation is integrated with its role in regulating expression of ER stress response genes.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Proteínas de Ciclo Celular/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Transducción de Señal/genética , Transcripción Genética/fisiología , Respuesta de Proteína Desplegada/fisiología , Adenosina Trifosfatasas/genética , Animales , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Estrés del Retículo Endoplásmico/genética , Proteómica/métodos , Interferencia de ARN , Proteínas Represoras/metabolismo , Proteína que Contiene Valosina
5.
Mol Cell Proteomics ; 13(12): 3473-83, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25225353

RESUMEN

Proteomics-based clinical studies represent promising resources for the discovery of novel biomarkers or for unraveling molecular mechanisms underlying particular diseases. Here, we present a discovery study of hepatocellular carcinoma developed on nonfibrotic liver (nfHCC) that combines complementary quantitative iTRAQ-based proteomics and phosphoproteomics approaches. Using both approaches, we compared a set of 24 samples (18 nfHCC versus six nontumor liver tissue). We identified 43 proteins (67 peptides) differentially expressed and 32 peptides differentially phosphorylated between the experimental groups. The functional analysis of the two data sets pointed toward the deregulation of a protein homeostasis (proteostasis) network including the up-regulation of the Endoplasmic Reticulum (ER) resident HSPA5, HSP90B1, PDIA6, and P4HB and of the cytosolic HSPA1B, HSP90AA1, HSPA9, UBC, CNDP2, TXN, and VCP as well as the increased phosphorylation of the ER resident calnexin at Ser583. Antibody-based validation approaches (immunohistochemistry, immunoblot, Alphascreen(®), and AMMP(®)) on independent nfHCC tumor sets (up to 77 samples) confirmed these observations, thereby indicating a common mechanism occurring in nfHCC tumors. Based on these results we propose that adaptation to proteostasis imbalance in nfHCC tumors might confer selective advantages to those tumors. As such, this model could provide an additional therapeutic opportunity for those tumors arising on normal liver by targeting the tumor proteostasis network. Data are available via ProteomeXchange with identifier PXD001253.


Asunto(s)
Carcinoma Hepatocelular/genética , Regulación Neoplásica de la Expresión Génica , Cirrosis Hepática/genética , Neoplasias Hepáticas/genética , Proteínas de Neoplasias/genética , Fosfoproteínas/genética , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Anciano , Anciano de 80 o más Años , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Calnexina/genética , Calnexina/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Dipeptidasas/genética , Dipeptidasas/metabolismo , Chaperón BiP del Retículo Endoplásmico , Femenino , Perfilación de la Expresión Génica , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Persona de Mediana Edad , Anotación de Secuencia Molecular , Proteínas de Neoplasias/metabolismo , Fosfoproteínas/metabolismo , Fosforilación , Procolágeno-Prolina Dioxigenasa/genética , Procolágeno-Prolina Dioxigenasa/metabolismo , Proteína Disulfuro Isomerasas/genética , Proteína Disulfuro Isomerasas/metabolismo , Proteómica/métodos , Transducción de Señal , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Proteína que Contiene Valosina
6.
Artículo en Inglés | MEDLINE | ID: mdl-38083585

RESUMEN

Heart rate variability (HRV) is an important clinical parameter that depicts the autonomic balance. Diminished HRV has been associated with diseased hearts and incorporating stochasticity in pacing has been investigated as a potential mechanism for restoring the altered autonomic balance and preventing cardiac arrhythmias. We studied the change in HRV with the development of chronic myocardial infarction (MI) in adult sheep (n=16). Next, we investigated the utility of stochastic pacing in modulating HRV in-vivo in both sham and MI hearts. The propensity of the heart to the development of cardiac alternans, a known precursor to tachyarrhythmias, was studied under three different pacing techniques, namely periodic pacing, stochastic pacing and constant diastolic interval (DI) pacing in one sham and one MI sheep. Autonomic balance was observed to be altered after 6 weeks of chronic MI. Increased heart rate, QTc interval, standard deviation of the R-R intervals and LF/HF ratio was observed in MI hearts. Stochastic pacing was found to be proarrhythmic and increased T-wave alternans burden was observed with increase in stochasticity. Maintaining a constant DI on every beat demonstrated reduced alternans levels compared to both periodic and stochastic pacing.Clinical Relevance-Our results demonstrate that precise control of the diastolic interval may be more beneficial in inhibiting arrhythmias than stochastic pacing.


Asunto(s)
Corazón , Infarto del Miocardio , Animales , Ovinos , Frecuencia Cardíaca/fisiología , Potenciales de Acción/fisiología , Corazón/fisiología , Arritmias Cardíacas
7.
Front Physiol ; 14: 734356, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36755791

RESUMEN

Introduction: High pacing frequency or irregular activity due to arrhythmia produces complex optical mapping signals and challenges for processing. The objective is to establish an automated activation time-based analytical framework applicable to optical mapping images of complex electrical behavior. Methods: Optical mapping signals with varying complexity from sheep (N = 7) ventricular preparations were examined. Windows of activation centered on each action potential upstroke were derived using Hilbert transform phase. Upstroke morphology was evaluated for potential multiple activation components and peaks of upstroke signal derivatives defined activation time. Spatially and temporally clustered activation time points were grouped in to wave fronts for individual processing. Each activation time point was evaluated for corresponding repolarization times. Each wave front was subsequently classified based on repetitive or non-repetitive events. Wave fronts were evaluated for activation time minima defining sites of wave front origin. A visualization tool was further developed to probe dynamically the ensemble activation sequence. Results: Our framework facilitated activation time mapping during complex dynamic events including transitions to rotor-like reentry and ventricular fibrillation. We showed that using fixed AT windows to extract AT maps can impair interpretation of the activation sequence. However, the phase windowing of action potential upstrokes enabled accurate recapitulation of repetitive behavior, providing spatially coherent activation patterns. We further demonstrate that grouping the spatio-temporal distribution of AT points in to coherent wave fronts, facilitated interpretation of isolated conduction events, such as conduction slowing, and to derive dynamic changes in repolarization properties. Focal origins precisely detected sites of stimulation origin and breakthrough for individual wave fronts. Furthermore, a visualization tool to dynamically probe activation time windows during reentry revealed a critical single static line of conduction slowing associated with the rotation core. Conclusion: This comprehensive analytical framework enables detailed quantitative assessment and visualization of complex electrical behavior.

8.
JACC Clin Electrophysiol ; 9(8 Pt 1): 1248-1261, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37227351

RESUMEN

BACKGROUND: Brugada syndrome is a significant cause of sudden cardiac death (SCD), but the underlying mechanisms remain hypothetical. OBJECTIVES: This study aimed to elucidate this knowledge gap through detailed ex vivo human heart studies. METHODS: A heart was obtained from a 15-year-old adolescent boy with normal electrocardiogram who experienced SCD. Postmortem genotyping was performed, and clinical examinations were done on first-degree relatives. The right ventricle was optically mapped, followed by high-field magnetic resonance imaging and histology. Connexin-43 and NaV1.5 were localized by immunofluorescence, and RNA and protein expression levels were studied. HEK-293 cell surface biotinylation assays were performed to examine NaV1.5 trafficking. RESULTS: A Brugada-related SCD diagnosis was established for the donor because of a SCN5A Brugada-related variant (p.D356N) inherited from his mother, together with a concomitant NKX2.5 variant of unknown significance. Optical mapping demonstrated a localized epicardial region of impaired conduction near the outflow tract, in the absence of repolarization alterations and microstructural defects, leading to conduction blocks and figure-of-8 patterns. NaV1.5 and connexin-43 localizations were normal in this region, consistent with the finding that the p.D356N variant does not affect the trafficking, nor the expression of NaV1.5. Trends of decreased NaV1.5, connexin-43, and desmoglein-2 protein levels were noted; however, the RT-qPCR results suggested that the NKX2-5 variant was unlikely to be involved. CONCLUSIONS: This study demonstrates for the first time that SCD associated with a Brugada-SCN5A variant can be caused by localized functionally, not structurally, impaired conduction.


Asunto(s)
Síndrome de Brugada , Masculino , Adolescente , Humanos , Células HEK293 , Electrocardiografía , Trastorno del Sistema de Conducción Cardíaco , Muerte Súbita Cardíaca , Conexinas
9.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 657-661, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36086483

RESUMEN

Cardiac alternans has been associated with an increased propensity to lethal tachyarrhythmias such as ventricular tachycardia and fibrillation (VT/VF). Myocardial infarction (MI), resulting from restricted oxygen supply to the heart, is a known substrate for VT/VF. Here, we investigate the utility of cardiac alternans as a predictor of tachyarrhythmias in a chronic MI ovine model. In-vivo electrophysiological studies were performed to assess the change in microvolt T-wave alternans (TWA) with induction of acute ischemia following coronary artery occlusion. 24-hour telemetry was performed in an ambulatory animal for 6 weeks to monitor the progression of TWA with chronic MI. At 6 weeks, ex-vivo optical mapping experiments were performed to assess the spatiotemporal evolution of alternans in sham (n=5) and chronic MI hearts (n=8). Our results demonstrate that chronic MI leads to significant electrophysiological changes in the cardiac substrate. Significant increase in TWA is observed post occlusion and a steady rise in alternans is seen with progression of chronic MI. Compared to sham, chronic MI hearts show significant presence of localized action potential amplitude alternans, which spatially evolve with an increase in pacing frequency. Clinical Relevance - Our results demonstrate that localized alternans underlie arrhythmogenesis in chronic MI hearts and microvolt TWA can serve as a biomarker of disease progression during chronic MI.


Asunto(s)
Infarto del Miocardio , Taquicardia Ventricular , Animales , Arritmias Cardíacas , Biomarcadores , Infarto del Miocardio/complicaciones , Infarto del Miocardio/diagnóstico , Ovinos , Oveja Doméstica , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/etiología
10.
J Vis Exp ; (180)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35225260

RESUMEN

Structural remodeling is a common consequence of chronic pathological stresses imposed on the heart. Understanding the architectural and compositional properties of diseased tissue is critical to determine their interactions with arrhythmic behavior. Microscale tissue remodeling, below the clinical resolution, is emerging as an important source of lethal arrhythmia, with high prevalence in young adults. Challenges remain in obtaining high imaging contrast at sufficient microscale resolution for preclinical models, such as large mammalian whole hearts. Moreover, tissue composition-selective contrast enhancement for three-dimensional high-resolution imaging is still lacking. Non-destructive imaging using micro-computed tomography shows promise for high-resolution imaging. The objective was to alleviate sufferance from X-ray over attenuation in large biological samples. Hearts were extracted from healthy pigs (N = 2), and sheep (N = 2) with either induced chronic myocardial infarction and fibrotic scar formation or induced chronic atrial fibrillation. Excised hearts were perfused with: a saline solution supplemented with a calcium ion quenching agent and a vasodilator, ethanol in serial dehydration, and hexamethyldisilizane under vacuum. The latter reinforced the heart structure during air-drying for 1 week. Collagen-dominant tissue was selectively bound by an X-ray contrast-enhancing agent, phosphomolybdic acid. Tissue conformation was stable in air, permitting long-duration microcomputed tomography acquisitions to obtain high-resolution (isotropic 20.7 µm) images. Optimal contrast agent loading by diffusion showed selective contrast enhancement of the epithelial layer and sub-endocardial Purkinje fibers in healthy pig ventricles. Atrial fibrillation (AF) hearts showed enhanced contrast accumulation in the posterior walls and appendages of the atria, attributed to greater collagen content. Myocardial infarction hearts showed increased contrast selectively in regions of cardiac fibrosis, which enabled the identification of interweaving surviving myocardial muscle fibers. Contrast-enhanced air-dried tissue preparations enabled microscale imaging of the intact large mammalian heart and selective contrast enhancement of underlying disease constituents.


Asunto(s)
Fibrilación Atrial , Atrios Cardíacos , Animales , Enfermedad Crónica , Mamíferos , Miocardio/patología , Ovinos , Porcinos , Microtomografía por Rayos X
12.
EMBO Mol Med ; 10(3)2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29311133

RESUMEN

Proteostasis imbalance is emerging as a major hallmark of cancer, driving tumor aggressiveness. Evidence suggests that the endoplasmic reticulum (ER), a major site for protein folding and quality control, plays a critical role in cancer development. This concept is valid in glioblastoma multiform (GBM), the most lethal primary brain cancer with no effective treatment. We previously demonstrated that the ER stress sensor IRE1α (referred to as IRE1) contributes to GBM progression, through XBP1 mRNA splicing and regulated IRE1-dependent decay (RIDD) of RNA Here, we first demonstrated IRE1 signaling significance to human GBM and defined specific IRE1-dependent gene expression signatures that were confronted to human GBM transcriptomes. This approach allowed us to demonstrate the antagonistic roles of XBP1 mRNA splicing and RIDD on tumor outcomes, mainly through selective remodeling of the tumor stroma. This study provides the first demonstration of a dual role of IRE1 downstream signaling in cancer and opens a new therapeutic window to abrogate tumor progression.


Asunto(s)
Neoplasias Encefálicas/enzimología , Neoplasias Encefálicas/patología , Carcinogénesis/patología , Endorribonucleasas/metabolismo , Glioblastoma/enzimología , Glioblastoma/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Neoplasias Encefálicas/genética , Carcinogénesis/genética , Línea Celular Tumoral , Endorribonucleasas/genética , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Humanos , Modelos Biológicos , Mutación/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fenotipo , Proteínas Serina-Treonina Quinasas/genética , Empalme del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal , Microambiente Tumoral/genética
14.
Oncotarget ; 6(28): 24922-34, 2015 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-26325176

RESUMEN

IRE1α is an endoplasmic reticulum (ER)-resident transmembrane signaling protein and a cellular stress sensor. The protein harbors a cytosolic dual kinase/endoribonuclease activity required for adaptive responses to micro-environmental changes. In an orthotopic xenograft model of human glioma, invalidation of IRE1α RNase or/and kinase activities generated tumors with remarkably distinct phenotypes. Contrasting with the extensive angiogenesis observed in tumors derived from control cells, the double kinase/RNase invalidation reprogrammed mesenchymal differentiation of cancer cells and produced avascular and infiltrative glioblastomas with blood vessel co-option. In comparison, selective invalidation of IRE1α RNase did not compromise tumor angiogenesis but still elicited invasive features and vessel co-option. In vitro, IRE1α RNase deficient cells were also endowed with a higher ability to migrate. Constitutive activation of both enzymes led to wild-type-like lesions. The presence of IRE1α, but not its RNase activity, is therefore required for glioblastoma neovascularization, whereas invasion results only from RNase inhibition. In this model, two key mechanisms of tumor progression and cancer cell survival are functionally linked to IRE1α.


Asunto(s)
Neoplasias Encefálicas/enzimología , Endorribonucleasas/metabolismo , Glioblastoma/enzimología , Neovascularización Patológica/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Neoplasias Encefálicas/irrigación sanguínea , Neoplasias Encefálicas/tratamiento farmacológico , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Doxiciclina/farmacología , Endorribonucleasas/genética , Glioblastoma/irrigación sanguínea , Glioblastoma/tratamiento farmacológico , Humanos , Immunoblotting , Estimación de Kaplan-Meier , Ratones , Microscopía Confocal , Mutación , Invasividad Neoplásica , Neovascularización Patológica/patología , Neovascularización Patológica/prevención & control , Proteínas Serina-Treonina Quinasas/genética , Carga Tumoral/efectos de los fármacos , Carga Tumoral/genética , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA