Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Pestic Biochem Physiol ; 164: 209-220, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32284129

RESUMEN

Demethylase inhibitors (DMIs) also referred to as azoles or triazoles are currently the main fungicides used for controlling Fusarium diseases and associated toxins in cereals. DMIs also represent an important class of fungicides used in the medical domain. The level of sensitivity of a set of F. graminearum strains (n = 23), collected over the period 1994-2010 in Luxembourg, Germany, Canada, USA, Italy and Belgium against three DMIs (cyproconazole, propiconazole, tebuconazole) used in agriculture and one DMI used in medicine (tioconazole) was assessed using a microplate test. Median molar EC50 values varied 113-fold among DMIs and on average 11-fold within DMIs with cyproconazole and tebuconazole being the least and the most effective ones, respectively. The EC50 values of the two DMIs registered for use against Fusarium species on cereals (propiconazole and tebuconazole) were significantly correlated (r = 0.597**), while no evidence for cross-resistance was obtained for other fungicide combinations. Haplotypes for CYP51A and CYP51C were defined based on snps determining amino acid variations in the two genes. EC50 values of strains with the CYP51A haplotype A0 and the CYP51C haplotype D1 varied greatly for the agricultural DMIs tebuconazole, propiconazole and cyproconazole, but not for the medical DMI tioconazole. None of the mutations and snps that were previously reported to be associated with resistance towards propiconazole was unambiguously related with resistance to tioconazole, because the mutations and snps were found in strains with low as well as with high EC50 values. Our results show that (1) DMI sensitivity of F. graminearum mycelium has been largely stable between 1994 and 2010, (2) effects of snps on sensitivity towards one DMI detected in one set of strains cannot be extrapolated to other DMIs and sets of strains and (3) F. graminearum strains responded differently to DMIs used in agriculture and to a representative of a medical DMI with no evidence for cross-resistance.


Asunto(s)
Fungicidas Industriales , Fusarium , Farmacorresistencia Fúngica , Micelio
2.
Front Microbiol ; 7: 406, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27092107

RESUMEN

Fusarium species, particularly Fusarium graminearum and F. culmorum, are the main cause of trichothecene type B contamination in cereals. Data on the distribution of Fusarium trichothecene genotypes in cereals in Europe are scattered in time and space. Furthermore, a common core set of related variables (sampling method, host cultivar, previous crop, etc.) that would allow more effective analysis of factors influencing the spatial and temporal population distribution, is lacking. Consequently, based on the available data, it is difficult to identify factors influencing chemotype distribution and spread at the European level. Here we describe the results of a collaborative integrated work which aims (1) to characterize the trichothecene genotypes of strains from three Fusarium species, collected over the period 2000-2013 and (2) to enhance the standardization of epidemiological data collection. Information on host plant, country of origin, sampling location, year of sampling and previous crop of 1147 F. graminearum, 479 F. culmorum, and 3 F. cortaderiae strains obtained from 17 European countries was compiled and a map of trichothecene type B genotype distribution was plotted for each species. All information on the strains was collected in a freely accessible and updatable database (www.catalogueeu.luxmcc.lu), which will serve as a starting point for epidemiological analysis of potential spatial and temporal trichothecene genotype shifts in Europe. The analysis of the currently available European dataset showed that in F. graminearum, the predominant genotype was 15-acetyldeoxynivalenol (15-ADON) (82.9%), followed by 3-acetyldeoxynivalenol (3-ADON) (13.6%), and nivalenol (NIV) (3.5%). In F. culmorum, the prevalent genotype was 3-ADON (59.9%), while the NIV genotype accounted for the remaining 40.1%. Both, geographical and temporal patterns of trichothecene genotypes distribution were identified.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA