Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Carbon N Y ; 210: 118058, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37151958

RESUMEN

The Coronavirus Disease 2019 (COVID-19) pandemic has led to collaboration between nanotechnology scientists, industry stakeholders, and clinicians to develop solutions for diagnostics, prevention, and treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infections. Nanomaterials, including carbon-based materials (CBM) such as graphene and carbon nanotubes, have been studied for their potential in viral research. CBM unique effects on microorganisms, immune interaction, and sensitivity in diagnostics have made them a promising subject of SARS-CoV-2 research. This review discusses the interaction of CBM with SARS-CoV-2 and their applicability, including CBM physical and chemical properties, the known interactions between CBM and viral components, and the proposed prevention, treatment, and diagnostics uses.

2.
Carbon N Y ; 194: 34-41, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35313599

RESUMEN

Additive manufacturing has played a crucial role in the COVID-19 global emergency allowing for rapid production of medical devices, indispensable tools for hospitals, or personal protection equipment. However, medical devices, especially in nosocomial environments, represent high touch surfaces prone to viral infection and currently used filaments for 3D printing can't inhibit transmission of virus [1]. Graphene-family materials are capable of reinforcing mechanical, optical and thermal properties of 3D printed constructs. In particular, graphene can adsorb near-infrared light with high efficiency. Here we demonstrate that the addition of graphene nanoplatelets to PLA filaments (PLA-G) allows the creation of 3D-printed devices that can be sterilized by near-infrared light exposure at power density analog to sunlight. This method has been used to kill SARS-CoV-2 viral particles on the surface of 3D printed PLA-G by 3 min of exposure. 3D-printed PLA-G is highly biocompatible and can represent the ideal material for the production of sterilizable personal protective equipment and daily life objects intended for multiple users.

3.
Int J Mol Sci ; 23(16)2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-36012749

RESUMEN

In the last 20 years, bone regenerative research has experienced exponential growth thanks to the discovery of new nanomaterials and improved manufacturing technologies that have emerged in the biomedical field. This revolution demands standardization of methods employed for biomaterials characterization in order to achieve comparable, interoperable, and reproducible results. The exploited methods for characterization span from biophysics and biochemical techniques, including microscopy and spectroscopy, functional assays for biological properties, and molecular profiling. This review aims to provide scholars with a rapid handbook collecting multidisciplinary methods for bone substitute R&D and validation, getting sources from an up-to-date and comprehensive examination of the scientific landscape.


Asunto(s)
Medicina Regenerativa , Ingeniería de Tejidos , Materiales Biocompatibles/química , Regeneración Ósea , Huesos , Ciencia de los Materiales , Medicina Regenerativa/métodos , Ingeniería de Tejidos/métodos
4.
Int J Mol Sci ; 23(6)2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35328638

RESUMEN

Cancer spheroids are in vitro 3D models that became crucial in nanomaterials science thanks to the possibility of performing high throughput screening of nanoparticles and combined nanoparticle-drug therapies on in vitro models. However, most of the current spheroid analysis methods involve manual steps. This is a time-consuming process and is extremely liable to the variability of individual operators. For this reason, rapid, user-friendly, ready-to-use, high-throughput image analysis software is necessary. In this work, we report the INSIDIA 2.0 macro, which offers researchers high-throughput and high content quantitative analysis of in vitro 3D cancer cell spheroids and allows advanced parametrization of the expanding and invading cancer cellular mass. INSIDIA has been implemented to provide in-depth morphologic analysis and has been used for the analysis of the effect of graphene quantum dots photothermal therapy on glioblastoma (U87) and pancreatic cancer (PANC-1) spheroids. Thanks to INSIDIA 2.0 analysis, two types of effects have been observed: In U87 spheroids, death is accompanied by a decrease in area of the entire spheroid, with a decrease in entropy due to the generation of a high uniform density spheroid core. On the other hand, PANC-1 spheroids' death caused by nanoparticle photothermal disruption is accompanied with an overall increase in area and entropy due to the progressive loss of integrity and increase in variability of spheroid texture. We have summarized these effects in a quantitative parameter of spheroid disruption demonstrating that INSIDIA 2.0 multiparametric analysis can be used to quantify cell death in a non-invasive, fast, and high-throughput fashion.


Asunto(s)
Glioblastoma , Grafito , Neoplasias Pancreáticas , Puntos Cuánticos , Línea Celular Tumoral , Glioblastoma/terapia , Humanos , Neoplasias Pancreáticas/terapia , Terapia Fototérmica , Esferoides Celulares , Neoplasias Pancreáticas
5.
Int J Mol Sci ; 21(10)2020 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-32466154

RESUMEN

Quantum dots (QDs) are semiconducting nanoparticles that have been gaining ground in various applications, including the biomedical field, thanks to their unique optical properties. Recently, graphene quantum dots (GQDs) have earned attention in biomedicine and nanomedicine, thanks to their higher biocompatibility and low cytotoxicity compared to other QDs. GQDs share the optical properties of QD and have proven ability to cross the blood-brain barrier (BBB). For this reason, GQDs are now being employed to deepen our knowledge in neuroscience diagnostics and therapeutics. Their size and surface chemistry that ease the loading of chemotherapeutic drugs, makes them ideal drug delivery systems through the bloodstream, across the BBB, up to the brain. GQDs-based neuroimaging techniques and theranostic applications, such as photothermal and photodynamic therapy alone or in combination with chemotherapy, have been designed. In this review, optical properties and biocompatibility of GQDs will be described. Then, the ability of GQDs to overtake the BBB and reach the brain will be discussed. At last, applications of GQDs in bioimaging, photophysical therapies and drug delivery to the central nervous system will be considered, unraveling their potential in the neuroscientific field.


Asunto(s)
Grafito/química , Puntos Cuánticos/química , Nanomedicina Teranóstica/métodos , Animales , Barrera Hematoencefálica/diagnóstico por imagen , Barrera Hematoencefálica/metabolismo , Grafito/efectos adversos , Humanos , Puntos Cuánticos/efectos adversos
6.
Int J Mol Sci ; 21(17)2020 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-32878114

RESUMEN

Recent evidence has shown that graphene quantum dots (GQDs) are capable of crossing the blood-brain barrier, the barrier that reduces cancer therapy efficacy. Here, we tested three alternative GQDs' surface chemistries on two neural lineages (glioblastoma cells and mouse cortical neurons). We showed that surface chemistry modulates GQDs' biocompatibility. When used in combination with the chemotherapeutic drug doxorubicin, GDQs exerted a synergistic effect on tumor cells, but not on neurons. This appears to be mediated by the modification of membrane permeability induced by the surface of GQDs. Our findings highlight that GQDs can be adopted as a suitable delivery and therapeutic strategy for the treatment of glioblastoma, by both directly destabilizing the cell membrane and indirectly increasing the efficacy of chemotherapeutic drugs.


Asunto(s)
Doxorrubicina/química , Doxorrubicina/farmacología , Embrión de Mamíferos/efectos de los fármacos , Glioblastoma/tratamiento farmacológico , Grafito/química , Neuronas/efectos de los fármacos , Puntos Cuánticos , Animales , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacología , Apoptosis , Proliferación Celular , Embrión de Mamíferos/citología , Glioblastoma/patología , Humanos , Ratones , Ratones Endogámicos C57BL , Neuronas/citología , Células Tumorales Cultivadas
7.
Cell Microbiol ; 20(12): e12952, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30192424

RESUMEN

PE_PGRSs of Mycobacterium tuberculosis (Mtb) represent a family of complex and peculiar proteins whose role and function remain elusive. In this study, we investigated PE_PGRS3 and PE_PGRS4, two highly homologous PE_PGRSs encoded by two contiguous genes in the Mtb genome. Using a gene-reporter system in Mycobacterium smegmatis (Ms) and transcriptional analysis in Mtb, we show that PE_PGRS3, but not PE_PGRS4, is specifically expressed under low phosphate concentrations. Interestingly, PE_PGRS3, but not PE_PGRS4, has a unique, arginine-rich C-terminal domain of unknown function. Heterologous expression of PE_PGRS3 in Ms was used to demonstrate cellular localisation of the protein on the mycobacterial surface, where it significantly affects net surface charge. Moreover, expression of full-length PE_PGRS3 enhanced adhesion of Ms to murine macrophages and human epithelial cells and improved bacterial persistence in spleen tissue following infection in mice. Expression of the PE_PGRS3 functional deletion mutant lacking the C-terminal domain in Ms did not enhance adhesion to host cells, showing a phenotype similar to the Ms parental strain. Interestingly, enhanced persistence of Ms expressing PE_PGRS3 did not correlate with increased concentrations of inflammatory cytokines. These results point to a critical role for the ≈ 80 amino acids long, arginine-rich C-terminal domain of PE_PGRS3 in tuberculosis pathogenesis.


Asunto(s)
Proteínas Bacterianas/genética , Mycobacterium smegmatis/genética , Fosfatos/farmacología , Células A549 , Animales , Adhesión Bacteriana/fisiología , Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Citocinas/metabolismo , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Interacciones Huésped-Patógeno/fisiología , Humanos , Macrófagos/microbiología , Ratones Endogámicos C57BL , Microorganismos Modificados Genéticamente , Infecciones por Mycobacterium no Tuberculosas/microbiología , Mycobacterium smegmatis/patogenicidad , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Fosfatos/administración & dosificación , Dominios Proteicos , Bazo/microbiología
8.
Am J Pathol ; 187(7): 1633-1647, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28619275

RESUMEN

Exosomes are involved in intercellular communication. We previously reported that sodium butyrate-induced differentiation of HT29 colon cancer cells is associated with a reduced CD133 expression. Herein, we analyzed the role of exosomes in the differentiation of HT29 cells. Exosomes were prepared using ultracentrifugation. Gene expression levels were evaluated by real-time PCR. The cell proliferation rate was assessed by MTT assay and with the electric cell-substrate impedance sensing system, whereas cell motility was assessed using the scratch test and confocal microscopy. Sodium butyrate-induced differentiation of HT29 and Caco-2 cells increased the levels of released exosomes and their expression of CD133. Cell differentiation and the decrease of cellular CD133 expression levels were prevented by blocking multivesicular body maturation. Exosomes released by HT29 differentiating cells carried increased levels of miRNAs, induced an increased proliferation and motility of both colon cancer cells and normal fibroblasts, increased the colony-forming efficiency of cancer cells, and reduced the sodium butyrate-induced differentiation of HT29 cells. Such effects were associated with an increased phosphorylation level of both Src and extracellular signal regulated kinase proteins and with an increased expression of epithelial-to-mesenchymal transition-related genes. Release of exosomes is affected by differentiation of colon cancer cells; exosomes might be used by differentiating cells to get rid of components that are no longer necessary but might continue to exert their effects on recipient cells.


Asunto(s)
Antígeno AC133/metabolismo , Neoplasias del Colon/metabolismo , Exosomas/metabolismo , Antígeno AC133/genética , Ácido Butírico/efectos adversos , Células CACO-2 , Diferenciación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Exosomas/genética , Regulación Neoplásica de la Expresión Génica , Células HT29 , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Fosforilación , Reacción en Cadena en Tiempo Real de la Polimerasa
9.
Int J Mol Sci ; 19(11)2018 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-30373116

RESUMEN

Graphene and graphene oxide can promote the adhesion, growth and differentiation of mesenchymal stem cells. Further, graphene surface coatings accelerate the differentiation of human mesenchymal stem cells acting as osteogenic inducers. Quantification of the osteogenic induction is conventionally performed with Alizarin Red S (ARS), an anthraquinone derivative used to identify calcium deposits in tissue sections and cell cultures. The ARS staining is quite versatile because the dye forms an Alizarin Red S⁻calcium complex that can be extracted from the stained monolayer of cells and readily assayed by absorbance measurements. Direct visualization of stained deposits is also feasible; however, an in-situ visualization and quantification of deposits is possible only on transparent supports and not on thick opaque materials like ceramics and graphene composites that are well-known inducers of osteogenesis. In this manuscript, the shape of the 2D-fluorescence spectra of the ARS-calcium complex is used to develop a method to detect and monitor the in-situ differentiation process occurring during the osteogenic induction mediated by opaque graphene oxide surfaces.


Asunto(s)
Materiales Biocompatibles/química , Grafito/química , Células Madre Mesenquimatosas/citología , Osteogénesis , Espectrometría de Fluorescencia/métodos , Antraquinonas/análisis , Calcio/análisis , Diferenciación Celular , Células Cultivadas , Colorantes/análisis , Humanos , Óxidos/química , Cráneo/citología , Ingeniería de Tejidos
10.
Nanotechnology ; 28(15): 152001, 2017 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-28303804

RESUMEN

Standing out as the new wonder bidimensional material, graphene oxide (GO) has aroused an exceptional interest in biomedical research by holding promise for being the antibacterial of future. First, GO possesses a specific interaction with microorganisms combined with a mild toxicity for human cells. Additionally, its antibacterial action seems to be directed to multiple targets in pathogens, causing both membranes mechanical injury and oxidative stress. Lastly, compared to other carbon materials, GO has easy and low-cost processing and is environment-friendly. This remarkable specificity and multi-targeting antibacterial activity come at a time when antibiotic resistance represents the major health challenge. Unfortunately, a comprehensive framework to understand how to effectively utilize this material against microorganisms is still lacking. In the last decade, several groups tried to define the mechanisms of interaction between GO flakes and pathogens but conflicting results have been reported. This review is focused on all the contradictions of GO antimicrobial properties in solution. Flake size, incubation protocol, time of exposure and species considered are examples of factors influencing results. These parameters will be summarized and analyzed with the aim of defining the causes of contradictions, to allow fast GO clinical application.


Asunto(s)
Antibacterianos/farmacología , Grafito/farmacología , Óxidos/farmacología , Membrana Celular/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Humanos , Estrés Oxidativo , Tamaño de la Partícula
11.
Biochim Biophys Acta ; 1840(7): 2192-202, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24735797

RESUMEN

BACKGROUND: Noise exposure impairs outer hair cells (OHCs). The common basis for OHC dysfunction and loss by acoustic over-stimulation is represented by reactive oxygen species (ROS) overload that may affect the membrane structural organization through generation of lipid peroxidation. METHODS: Here we investigated in OHC different functional zones the mechanisms linking metabolic functional state (NAD(P)H intracellular distribution) to the generation of lipid peroxides and to the physical state of membranes by two photon fluorescence microscopy. RESULTS: In OHCs of control animals, a more oxidized NAD(P)H redox state is associated to a less fluid plasma membrane structure. Acoustic trauma induces a topologically differentiated NAD(P)H oxidation in OHC rows, which is damped between 1 and 6h. Peroxidation occurs after ~4h from noise insult, while ROS are produced in the first 0.2h and damage cells for a period of time after noise exposure has ended (~7.5h) when a decrease of fluidity of OHC plasma membrane occurs. OHCs belonging to inner rows, characterized by a lower metabolic activity with respect to other rows, show less severe metabolic impairment. CONCLUSIONS: Our data indicate that plasma membrane fluidity is related to NAD(P)H redox state and lipid peroxidation in hair cells. GENERAL SIGNIFICANCE: Our results could pave the way for therapeutic intervention targeting the onset of redox umbalance.


Asunto(s)
Membrana Celular/metabolismo , Células Ciliadas Auditivas Externas/metabolismo , Fluidez de la Membrana , Ruido/efectos adversos , Animales , Oído Externo/metabolismo , Oído Externo/patología , Células Ciliadas Auditivas Externas/patología , Pérdida Auditiva Provocada por Ruido/metabolismo , Pérdida Auditiva Provocada por Ruido/fisiopatología , Peroxidación de Lípido , NADP/metabolismo , Especies Reactivas de Oxígeno/metabolismo
12.
Bioengineering (Basel) ; 11(7)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39061746

RESUMEN

Recent advancements in 3D bioprinting and microfluidic lab-on-chip systems offer promising solutions to the limitations of traditional animal models in biomedical research. Three-dimensional bioprinting enables the creation of complex, patient-specific tissue models that mimic human physiology more accurately than animal models. These 3D bioprinted tissues, when integrated with microfluidic systems, can replicate the dynamic environment of the human body, allowing for the development of multi-organ models. This integration facilitates more precise drug screening and personalized therapy development by simulating interactions between different organ systems. Such innovations not only improve predictive accuracy but also address ethical concerns associated with animal testing, aligning with the three Rs principle. Future directions include enhancing bioprinting resolution, developing advanced bioinks, and incorporating AI for optimized system design. These technologies hold the potential to revolutionize drug development, regenerative medicine, and disease modeling, leading to more effective, personalized, and humane treatments.

13.
Front Bioeng Biotechnol ; 12: 1390708, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952670

RESUMEN

Introduction: Triple negative breast cancer (TNBC), a highly aggressive subtype accounting for 15-20% of all breast cancer cases, faces limited treatment options often accompanied by severe side effects. In recent years, natural extracellular nanovesicles derived from plants have emerged as promising candidates for cancer therapy, given their safety profile marked by non-immunogenicity and absence of inflammatory responses. Nevertheless, the potential anti-cancer effects of Citrus limon L.-derived extracellular nanovesicles (CLENs) for breast cancer treatment is still unexplored. Methods: In this study, we investigated the anti-cancer effects of CLENs on two TNBC cell lines (4T1 and HCC-1806 cells) under growth conditions in 2D and 3D culture environments. The cellular uptake efficiency of CLENs and their internalization mechanism were evaluated in both cells using confocal microscopy. Thereafter, we assessed the effect of different concentrations of CLENs on cell viability over time using a dual approach of Calcein-AM PI live-dead assay and CellTiter-Glo bioluminescence assay. We also examined the influence of CLENs on the migratory and evasion abilities of TNBC cells through wound healing and 3D Matrigel drop evasion assays. Furthermore, Western blot analysis was employed to investigate the effects of CLENs on the phosphorylation levels of phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), and extracellular signal- regulated kinase (ERK) expression. Results: We found that CLENs were internalized by the cells via endocytosis, leading to decreased cell viability, in a dose- and time-dependent manner. Additionally, the migration and evasion abilities of TNBC cells were significantly inhibited under exposed to 40 and 80 µg/mL CLENs. Furthermore, down-regulated expression levels of phosphorylated phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), and extracellular signal-regulated kinase (ERK), suggesting that the inhibition of cancer cell proliferation, migration, and evasion is driven by the inhibition of the PI3K/AKT and MAPK/ERK signaling pathways. Discussion: Overall, our results demonstrate the anti-tumor efficiency of CLENs against TNBC cells, highlighting their potential as promising natural anti-cancer agents for clinical applications in cancer treatment.

14.
Front Microbiol ; 15: 1395815, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38774507

RESUMEN

Introduction: The emergence of drug-resistant Mycobacterium tuberculosis (Mtb) strains has underscored the urgent need for novel therapeutic approaches. Carbon-based nanomaterials, such as graphene oxide (GO), have shown potential in anti-TB activities but suffer from significant toxicity issues. Methods: This study explores the anti-TB potential of differently functionalized graphene quantum dots (GQDs) - non-functionalized, L-GQDs, aminated (NH2-GQDs), and carboxylated (COOH-GQDs) - alone and in combination with standard TB drugs (isoniazid, amikacin, and linezolid). Their effects were assessed in both axenic cultures and in vitro infection models. Results: GQDs alone did not demonstrate direct mycobactericidal effects nor trapping activity. However, the combination of NH2-GQDs with amikacin significantly reduced CFUs in in vitro models. NH2-GQDs and COOH-GQDs also enhanced the antimicrobial activity of amikacin in infected macrophages, although L-GQDs and COOH-GQDs alone showed no significant activity. Discussion: The results suggest that specific types of GQDs, particularly NH2-GQDs, can enhance the efficacy of existing anti-TB drugs. These nanoparticles might serve as effective adjuvants in anti-TB therapy by boosting drug performance and reducing bacterial counts in host cells, highlighting their potential as part of advanced drug delivery systems in tuberculosis treatment. Further investigations are needed to better understand their mechanisms and optimize their use in clinical settings.

15.
Mol Ther Oncol ; 32(3): 200836, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39050990

RESUMEN

The successful trajectory of liposome-encapsulated doxorubicin (e.g., Doxil, which has been approved by the U.S. Food and Drug Administration) as an anticancer nanodrug in clinical applications is contradicted by in vitro cell viability data that highlight its reduced efficacy in promoting cell death compared with non-encapsulated doxorubicin. No reports to date have provided a mechanistic explanation for this apparently discordant evidence. Taking advantage of doxorubicin intrinsic fluorescence and time-resolved optical microscopy, we analyze the uptake and intracellular processing of liposome-encapsulated doxorubicin (L-DOX) in several in vitro cellular models. Cell entry of L-DOX was found to lead to a rapid (seconds to minutes), energy- and temperature-independent release of crystallized doxorubicin nanorods into the cell cytoplasm, which then disassemble into a pool of fibril-shaped derivatives capable of crossing the cellular membrane while simultaneously releasing active drug monomers. Thus, a steady state is rapidly established in which the continuous supply of crystal nanorods from incoming liposomes is counteracted by a concentration-guided efflux in the extracellular medium of fibril-shaped derivatives and active drug monomers. These results demonstrate that liposome-mediated delivery is constitutively less efficient than isolated drug in establishing favorable conditions for drug retention in the cell. In addition to explaining previous contradictory evidence, present results impose careful rethinking of the synthetic identity of encapsulated anticancer drugs.

16.
Mater Today Bio ; 25: 100986, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38375317

RESUMEN

Surgically addressing tumors poses a challenge, requiring a tailored, multidisciplinary approach for each patient based on the unique aspects of their case. Innovative therapeutic regimens combined to reliable reconstructive methods can contribute to an extended patient's life expectancy. This study presents a detailed comparative investigation of near-infrared therapy protocols, examining the impact of non-fractionated and fractionated irradiation regimens on cancer treatment. The therapy is based on the implantation of graphene oxide/poly(lactic-co-glycolic acid) three-dimensional printed scaffolds, exploring their versatile applications in oncology by the examination of pro-inflammatory cytokine secretion, immune response, and in vitro and in vivo tumor therapy. The investigation into cell death patterns (apoptosis vs necrosis) underlines the pivotal role of protocol selection underscores the critical influence of treatment duration on cell fate, establishing a crucial parameter in therapeutic decision-making. In vivo experiments corroborated the profound impact of protocol selection on tumor response. The fractionated regimen emerged as the standout performer, achieving a substantial reduction in tumor size over time, surpassing the efficacy of the non-fractionated approach. Additionally, the fractionated regimen exhibited efficacy also in targeting tumors in proximity but not in direct contact to the scaffolds. Our results address a critical gap in current research, highlighting the absence of a standardized protocol for optimizing the outcome of photodynamic therapy. The findings underscore the importance of personalized treatment strategies in achieving optimal therapeutic efficacy for precision cancer therapy.

17.
Chembiochem ; 14(17): 2362-70, 2013 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-24222572

RESUMEN

The α-crystallin family of small heat shock proteins possesses chaperone activity in response to stress and is involved in several neurological, muscular, and ophthalmic pathologies. This family includes the vertebrate lens protein α-crystallin, associated with cataract disease. In this study, by combining small-angle X-ray and light scattering techniques, the structure and shape of α-crystallin was revealed in its native state and after a transition caused by heat stress. Below critical temperature (Tc ), α-crystallin appears as an ellipsoid with a central cavity; whereas at high temperatures the cavity almost disappears, and the protein rearranges its structure, increasing the solvent-exposed surface while retaining the ellipsoidal symmetry. Contextually, at Tc , α-crystallin chaperone binding shows an abrupt increase. By modelling the chaperone activity as the formation of a complex composed of α-crystallin and an aggregating substrate, it was demonstrated that the increase of α-crystallin-exposed surface is directly responsible for its gain in chaperone functionality.


Asunto(s)
alfa-Cristalinas/química , alfa-Cristalinas/metabolismo , Propiedades de Superficie , Temperatura
18.
Nat Commun ; 14(1): 4662, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37537177

RESUMEN

Extreme waves are intense and unexpected wavepackets ubiquitous in complex systems. In optics, these rogue waves are promising as robust and noise-resistant beams for probing and manipulating the underlying material. Localizing large optical power is crucial especially in biomedical systems, where, however, extremely intense beams have not yet been observed. We here discover that tumor-cell spheroids manifest optical rogue waves when illuminated by randomly modulated laser beams. The intensity of light transmitted through bio-printed three-dimensional tumor models follows a signature Weibull statistical distribution, where extreme events correspond to spatially-localized optical modes propagating within the cell network. Experiments varying the input beam power and size indicate that the rogue waves have a nonlinear origin. We show that these nonlinear optical filaments form high-transmission channels with enhanced transmission. They deliver large optical power through the tumor spheroid, and can be exploited to achieve a local temperature increase controlled by the input wave shape. Our findings shed light on optical propagation in biological aggregates and demonstrate how nonlinear extreme event formation allows light concentration in deep tissues, paving the way to using rogue waves in biomedical applications, such as light-activated therapies.


Asunto(s)
Modelos Teóricos , Óptica y Fotónica
19.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-37259419

RESUMEN

Candida parapsilosis is the major non-C. albicans species involved in the colonization of central venous catheters, causing bloodstream infections. Biofilm formation on medical devices is considered one of the main causes of healthcare-associated infections and represents a global public health problem. In this context, the development of new nanomaterials that exhibit anti-adhesive and anti-biofilm properties for the coating of medical devices is crucial. In this work, we aimed to characterize the antimicrobial activity of two different coated-surfaces, graphene oxide (GO) and curcumin-graphene oxide (GO/CU) for the first time, against C. parapsilosis. We report the capacity of GO to bind and stabilize CU molecules, realizing a homogenous coated surface. We tested the anti-planktonic activity of GO and GO/CU by growth curve analysis and quantification of Reactive Oxigen Species( ROS) production. Then, we tested the antibiofilm activity by adhesion assay, crystal violet assay, and live and dead assay; moreover, the inhibition of the formation of a mature biofilm was investigated by a viability test and the use of specific dyes for the visualization of the cells and the extra-polymeric substances. Our data report that GO/CU has anti-planktonic, anti-adhesive, and anti-biofilm properties, showing a 72% cell viability reduction and a decrease of 85% in the secretion of extra-cellular substances (EPS) after 72 h of incubation. In conclusion, we show that the GO/CU conjugate is a promising material for the development of medical devices that are refractory to microbial colonization, thus leading to a decrease in the impact of biofilm-related infections.

20.
Microorganisms ; 11(3)2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36985128

RESUMEN

Graphene Oxide has been proposed as a potential adjuvant to develop improved anti-TB treatment, thanks to its activity in entrapping mycobacteria in the extracellular compartment limiting their entry in macrophages. Indeed, when administered together with linezolid, Graphene Oxide significantly enhanced bacterial killing due to the increased production of Reactive Oxygen Species. In this work, we evaluated Graphene Oxide toxicity and its anti-mycobacterial activity on human peripheral blood mononuclear cells. Our data show that Graphene Oxide, different to what is observed in macrophages, does not support the clearance of Mycobacterium tuberculosis in human immune primary cells, probably due to the toxic effects of the nano-material on monocytes and CD4+ lymphocytes, which we measured by cytometry. These findings highlight the need to test GO and other carbon-based nanomaterials in relevant in vitro models to assess the cytotoxic activity while measuring antimicrobial potential.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA