Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Comput Chem ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38661234

RESUMEN

Physics-based scoring function AutoDock4 is one of the most successfully applied tools in the area of structure-based drug design. However, current scoring functions are still far from being perfect. In a recent work highlighting the strengths and deficiencies of current scoring functions, we discovered that the residual error of ΔGbind predictions made by AutoDock4 is highly correlated to the presence of formally charged fragments in a ligand. In this work, we study how the use of the high-quality atomic charges, applied for contemporary force fields calculation, affects the quality of the experimental ΔGbind prediction by means of AutoDock4. We initially expected that the previously found discrepancy could be attributed to the Gasteiger charges used within AutoDock4. We show that AutoDock4 is, surprisingly, not sensitive to the charges used, and the use of QC-derived atomic charges does not lead to any statistical improvements. We also briefly discuss the role of the explicit empirical hydrogen bond term along with the electrostatic term.

2.
Int J Mol Sci ; 25(2)2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38256079

RESUMEN

The emergence of multi-drug-resistant tuberculosis strains poses a significant challenge to modern medicine. The development of new antituberculosis drugs is hindered by the low permeability of many active compounds through the extremely strong bacterial cell wall of mycobacteria. In order to estimate the ability of potential antimycobacterial agents to diffuse through the outer mycolate membrane, the free energy profiles, the corresponding activation barriers, and possible permeability modes of passive transport for a series of known antibiotics, modern antituberculosis drugs, and prospective active drug-like molecules were determined using molecular dynamics simulations with the all-atom force field and potential of mean-force calculations. The membranes of different chemical and conformational compositions, density, thickness, and ionization states were examined. The typical activation barriers for the low-mass molecules penetrating through the most realistic membrane model were 6-13 kcal/mol for isoniazid, pyrazinamide, and etambutol, and 19 and 25 kcal/mol for bedaquilin and rifampicin. The barriers for the ionized molecules are usually in the range of 37-63 kcal/mol. The linear regression models were derived from the obtained data, allowing one to estimate the permeability barriers from simple physicochemical parameters of the diffusing molecules, notably lipophilicity and molecular polarizability.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Simulación de Dinámica Molecular , Estudios Prospectivos , Pared Celular , Antituberculosos/farmacología
3.
Molecules ; 29(3)2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38338443

RESUMEN

The emergence of new drug-resistant strains of the tuberculosis pathogen Mycobacterium tuberculosis (Mtb) is a new challenge for modern medicine. Its resistance capacity is closely related to the properties of the outer membrane of the Mtb cell wall, which is a bilayer membrane formed by mycolic acids (MAs) and their derivatives. To date, the molecular mechanisms of the response of the Mtb outer membrane to external factors and, in particular, elevated temperatures have not been sufficiently studied. In this work, we consider the temperature-induced changes in the structure, ordering, and molecular mobility of bilayer MA membranes of various chemical and conformational compositions. Using all-atom long-term molecular dynamics simulations of various MA membranes, we report the kinetic parameters of temperature-dependent changes in the MA self-diffusion coefficients and conformational compositions, including the apparent activation energies of these processes, as well as the characteristic times of ordering changes and the features of phase transitions occurring over a wide range of elevated temperatures. Understanding these effects could be useful for the prevention of drug resistance and the development of membrane-targeting pharmaceuticals, as well as in the design of membrane-based materials.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Ácidos Micólicos/química , Simulación de Dinámica Molecular , Temperatura , Pared Celular
4.
Molecules ; 29(2)2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38257233

RESUMEN

Effective therapeutics for Alzheimer's disease (AD) are in great demand worldwide. In our previous work, we responded to this need by synthesizing novel drug candidates consisting of 4-amino-2,3-polymethylenequinolines conjugated with butylated hydroxytoluene via fixed-length alkylimine or alkylamine linkers (spacers) and studying their bioactivities pertaining to AD treatment. Here, we report significant extensions of these studies, including the use of variable-length spacers and more detailed biological characterizations. Conjugates were potent inhibitors of acetylcholinesterase (AChE, the most active was 17d IC50 15.1 ± 0.2 nM) and butyrylcholinesterase (BChE, the most active was 18d: IC50 5.96 ± 0.58 nM), with weak inhibition of off-target carboxylesterase. Conjugates with alkylamine spacers were more effective cholinesterase inhibitors than alkylimine analogs. Optimal inhibition for AChE was exhibited by cyclohexaquinoline and for BChE by cycloheptaquinoline. Increasing spacer length elevated the potency against both cholinesterases. Structure-activity relationships agreed with docking results. Mixed-type reversible AChE inhibition, dual docking to catalytic and peripheral anionic sites, and propidium iodide displacement suggested the potential of hybrids to block AChE-induced ß-amyloid (Aß) aggregation. Hybrids also exhibited the inhibition of Aß self-aggregation in the thioflavin test; those with a hexaquinoline ring and C8 spacer were the most active. Conjugates demonstrated high antioxidant activity in ABTS and FRAP assays as well as the inhibition of luminol chemiluminescence and lipid peroxidation in mouse brain homogenates. Quantum-chemical calculations explained antioxidant results. Computed ADMET profiles indicated favorable blood-brain barrier permeability, suggesting the CNS activity potential. Thus, the conjugates could be considered promising multifunctional agents for the potential treatment of AD.


Asunto(s)
Enfermedad de Alzheimer , Inhibidores de la Colinesterasa , Animales , Ratones , Inhibidores de la Colinesterasa/farmacología , Antioxidantes/farmacología , Enfermedad de Alzheimer/tratamiento farmacológico , Butirilcolinesterasa , Acetilcolinesterasa , Farmacóforo
5.
J Comput Chem ; 44(13): 1312-1315, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36786238

RESUMEN

The proper and precise reproduction of the molecular electrostatic potential (MEP) is crucial to describe correctly electrostatic interactions in molecular modeling. Most of the classical molecular mechanics force fields for biomolecules and drug-like molecules use the atom-centered point charges to describe MEP. However, it has been systematically pointed out in literature that such an approximation is not always enough, and some groups, like amino group or heavy halogens, require the use of anisotropic model for better description of their MEP. At the same time, the formally charged groups have not been as extensively and systematically studied as their neutral counterparts. In this report, we demonstrate that the anisotropic models for formally charged groups do bring improvements in the reference MEP reproduction, that are comparable in magnitude to those for neutral groups.

6.
Arch Virol ; 168(3): 100, 2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36871232

RESUMEN

Introduction of point mutations is one of the forces enabling arboviruses to rapidly adapt in a changing environment. The influence of these mutations on the properties of the virus is not always obvious. In this study, we attempted to clarify this influence using an in silico approach. Using molecular dynamics (MD) simulations, we investigated how the position of charge-changing point mutations influences the structure and conformational stability of the E protein for a set of variants of a single TBEV strain. The computational findings were supported by experimental evaluation of relevant properties of virions, such as binding to heparan sulfate, thermostability, and susceptibility of the viral hemagglutinating activity to detergents. Our results also point to relationships between E protein dynamics and viral neuroinvasiveness.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas , Mutación Puntual , Mutación , Simulación de Dinámica Molecular , Factores de Transcripción
7.
Int J Mol Sci ; 24(12)2023 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-37373440

RESUMEN

The synthetic approaches to three new AMPA receptor modulators-derivatives of 1,11-dimethyl-3,6,9-triazatricyclo[7.3.1.13,11]tetradecane-4,8,12-trione-had been developed and all steps of synthesis were optimized. The structures of the compounds contain tricyclic cage and indane fragments necessary for binding with the target receptor. Their physiological activity was studied by radioligand-receptor binding analysis using [3H]PAM-43 as a reference ligand, which is a highly potent positive allosteric modulator of AMPA receptors. The results of radioligand-binding studies indicated the high potency of two synthesized compounds to bind with the same targets as positive allosteric modulator PAM-43 (at least on AMPA receptors). We suggest that the Glu-dependent specific binding site of [3H]PAM-43 or the receptor containing this site may be one of the targets of the new compounds. We also suggest that enhanced radioligand binding may indicate the existence of synergistic effects of compounds 11b and 11c with respect to PAM-43 binding to the targets. At the same time, these compounds may not compete directly with PAM-43 for its specific binding sites but bind to other specific sites of this biotarget, changing its conformation and thereby causing a synergistic effect of cooperative interaction. It can be expected that the newly synthesized compounds will also have pronounced effects on the glutamatergic system of the mammalian brain.


Asunto(s)
Mamíferos , Receptores AMPA , Animales , Receptores AMPA/química , Regulación Alostérica , Unión Proteica , Sitios de Unión , Ligandos , Sitio Alostérico
8.
Int J Mol Sci ; 24(22)2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-38003327

RESUMEN

An efficient regioselective approach to novel functionalized bis(isoxazoles) with a variety of aromatic and aliphatic linkers was elaborated, based on the heterocyclization reaction of electrophilic alkenes under the treatment with tetranitromethane-triethylamine complex affording 3-EWG-5-nitroisoxazoles. The subsequent SNAr reactions of 5-nitroisoxazoles with various O,O-, N,N- and S,S-bis(nucleophiles) provide a wide range of bis(isoxazole) derivatives in good isolated yields. Employing an elaborated method, a series of novel bis(3-EWG-isoxazoles) as the promising allosteric modulators of AMPA receptors were designed and synthesized. The effect of the compounds on the kainate-induced currents was studied in the patch clamp experiments, revealing modulator properties for several of them. The best positive modulator potency was found for dimethyl 5,5'-(ethane-1,2-diylbis(sulfanediyl))bis(isoxazole-3-carboxylate), which potentiated the kainate-induced currents in a wide concentration range (10-12-10-6 M) with maximum potentiation of 77% at 10-10 M. The results were rationalized using molecular docking and molecular dynamics simulations of modulator complexes with the dimeric ligand-binding domain of the GluA2 AMPA receptor. The predicted physicochemical, ADMET, and PAINS properties confirmed that the AMPA receptor modulators based on the bis(isoxazole) scaffold may serve as potential lead compounds for the development of neuroprotective drugs.


Asunto(s)
Ácido Kaínico , Receptores AMPA , Receptores AMPA/química , Isoxazoles/farmacología , Ligandos , Simulación del Acoplamiento Molecular
9.
Int J Mol Sci ; 24(3)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36768608

RESUMEN

A series of previously synthesized conjugates of tacrine and salicylamide was extended by varying the structure of the salicylamide fragment and using salicylic aldehyde to synthesize salicylimine derivatives. The hybrids exhibited broad-spectrum biological activity. All new conjugates were potent inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with selectivity toward BChE. The structure of the salicylamide moiety exerted little effect on anticholinesterase activity, but AChE inhibition increased with spacer elongation. The most active conjugates were salicylimine derivatives: IC50 values of the lead compound 10c were 0.0826 µM (AChE) and 0.0156 µM (BChE), with weak inhibition of the off-target carboxylesterase. The hybrids were mixed-type reversible inhibitors of both cholinesterases and displayed dual binding to the catalytic and peripheral anionic sites of AChE in molecular docking, which, along with experimental results on propidium iodide displacement, suggested their potential to block AChE-induced ß-amyloid aggregation. All conjugates inhibited Aß42 self-aggregation in the thioflavin test, and inhibition increased with spacer elongation. Salicylimine 10c and salicylamide 5c with (CH2)8 spacers were the lead compounds for inhibiting Aß42 self-aggregation, which was corroborated by molecular docking to Aß42. ABTS•+-scavenging activity was highest for salicylamides 5a-c, intermediate for salicylimines 10a-c, low for F-containing salicylamides 7, and non-existent for methoxybenzoylamides 6 and difluoromethoxybenzoylamides 8. In the FRAP antioxidant (AO) assay, the test compounds displayed little or no activity. Quantum chemical analysis and molecular dynamics (MD) simulations with QM/MM potentials explained the AO structure-activity relationships. All conjugates were effective chelators of Cu2+, Fe2+, and Zn2+, with molar compound/metal (Cu2+) ratios of 2:1 (5b) and ~1:1 (10b). Conjugates exerted comparable or lower cytotoxicity than tacrine on mouse hepatocytes and had favorable predicted intestinal absorption and blood-brain barrier permeability. The overall results indicate that the synthesized conjugates are promising new multifunctional agents for the potential treatment of AD.


Asunto(s)
Enfermedad de Alzheimer , Tacrina , Animales , Ratones , Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Antioxidantes/farmacología , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/química , Simulación del Acoplamiento Molecular , Salicilamidas , Relación Estructura-Actividad , Tacrina/farmacología , Tacrina/química , Ácido Salicílico/química
10.
Molecules ; 28(2)2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36677691

RESUMEN

The cell wall of Mycobacterium tuberculosis and related organisms has a very complex and unusual organization that makes it much less permeable to nutrients and antibiotics, leading to the low activity of many potential antimycobacterial drugs against whole-cell mycobacteria compared to their isolated molecular biotargets. The ability to predict and optimize the cell wall permeability could greatly enhance the development of novel antitubercular agents. Using an extensive structure-permeability dataset for organic compounds derived from published experimental big data (5371 compounds including 2671 penetrating and 2700 non-penetrating compounds), we have created a predictive classification model based on fragmental descriptors and an artificial neural network of a novel architecture that provides better accuracy (cross-validated balanced accuracy 0.768, sensitivity 0.768, specificity 0.769, area under ROC curve 0.911) and applicability domain compared with the previously published results.


Asunto(s)
Antituberculosos , Mycobacterium tuberculosis , Antituberculosos/farmacología , Pared Celular , Aprendizaje Automático , Permeabilidad
11.
Molecules ; 28(3)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36771014

RESUMEN

Bilayers of mycolic acids (MAs) form the outer membrane of Mycobacterium tuberculosis that has high strength and extremely low permeability for external molecules (including antibiotics). For the first time, we were able to study them using the all-atom long-term molecular dynamic simulations (from 300 ns up to 1.2 µs) in order to investigate the conformational changes and most favorable structures of the mycobacterial membranes. The structure and properties of the membranes are crucially dependent on the initial packing of the α-mycolic acid (AMA) molecules, as well as on the presence of the secondary membrane components, keto- and methoxy mycolic acids (KMAs and MMAs). In the case of AMA-based membranes, the most labile conformation is W while other types of conformations (sU as well as sZ, eU, and eZ) are much more stable. In the multicomponent membranes, the presence of the KMA and MMA components (in the W conformation) additionally stabilizes both the W and eU conformations of AMA. The membrane in which AMA prevails in the eU conformation is much thicker and, at the same time, much denser. Such a packing of the MA molecules promotes the formation of a significantly stronger outer mycobacterial membrane that should be much more resistant to the threatening external factors.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Conformación Molecular , Simulación de Dinámica Molecular , Mycobacterium tuberculosis/química , Ácidos Micólicos/química
12.
J Phys Chem A ; 126(36): 6278-6294, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36054931

RESUMEN

Polarization and inductive effects are the concepts that have been widely used in qualitative and even quantitative descriptions of experimentally observed properties in chemistry. The polarization effect has proven to be important in cases of biomolecular modeling though still the vast majority of molecular simulations use the classical non-polarizable force fields. In the last few decades, a lot of effort has been put into promoting the polarization effect and incorporating it into modern force fields and charge calculation methods. In contrast, the inductive effect has not attracted such attention and is effectively absent in both classic and modern force fields. Thus, a question is whether this difference corresponds to the difference in the physical significance of the effects and their explicit account, or is an artifact that should be corrected in the next generation of force fields. The significance of the electronic effects is studied in this paper through the prism of performance of specific models for atomic charge calculation that take into explicit account a nested set of effects: the formal charge, the nearest neighbors, the inductive effect, and finally the model, which takes into account all effects, which are possible to account for using atomic charges. The specific choice for the methods is the following: formal charges, MMFF94 bond charge increments, Dynamic Electronegativity Relaxation (DENR), and RESP. We propose a special scheme for the separate estimation of each particular effect contribution. By pairwise comparing the residual molecular electrostatic potential (MEP) errors of those charge models (aimed at best reproducing the quantum chemical reference MEP), we sequentially revealed how the account of each effect contributes to the better-quality MEP reproduction. The following relative importance of effects was estimated; thus, the natural hierarchy of the effects was established. First, the account of formal charges is of primordial importance. Second, the nearest neighbors account is the next in significance. Third, the explicit account of inductive effect in empirical charge calculation schemes was shown to significantly─both qualitatively and quantitatively─improve the quality of MEP reproduction. Fourth, the contribution of polarization is indirectly assessed. Surprisingly, it is of the order of magnitude of the inductive effect even for the molecular systems, for which it is anticipated to be more significant. Finally, the relative importance of anisotropic effects in neutral molecules was additionally reviewed.


Asunto(s)
Electricidad Estática
13.
Arch Pharm (Weinheim) ; 355(5): e2100425, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35103336

RESUMEN

A series of novel antimitotic agents was designed using the replacement of heterocyclic cores in two tubulin-targeting lead molecules with the acylated 4-aminoisoxazole moiety. Target compounds were synthesized via heterocyclization of ß-aryl-substituted vinylketones by tert-butyl nitrite in the presence of water as a key step. 4-Methyl-N-[5-methyl-3-(3,4,5-trimethoxyphenyl)isoxazol-4-yl]benzamide (1aa) was found to stimulate partial depolymerization of microtubules of human lung carcinoma A549 cells at a high concentration of 100 µM and to totally inhibit cell growth (IC50 = 0.99 µM) and cell viability (IC50 = 0.271 µM) in the nanomolar to submicromolar concentration range. These data provide evidence of the multitarget profile of the cytotoxic action of compound 1aa. The SAR study demonstrated that the 3,4,5-trimethoxyphenyl residue is the key structural parameter determining the efficiency both towards tubulin and other molecular targets. The cytotoxicity of 3-methyl-N-[5-methyl-3-(3,4,5-trimethoxyphenyl)isoxazol-4-yl]benzamide (1ab) to the androgen-sensitive human prostate adenocarcinoma cancer cell line LNCaP (IC50 = 0.301 µM) was approximately one order of magnitude higher than that to the conditionally normal cells lines WI-26 VA4 (IC50 = 2.26 µM) and human umbilical vein endothelial cells (IC50 = 5.58 µM) and significantly higher than that to primary fibroblasts (IC50 > 75 µM).


Asunto(s)
Antimitóticos , Antineoplásicos , Neoplasias , Antimitóticos/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Apoptosis , Benzamidas/farmacología , Línea Celular Tumoral , Proliferación Celular , Células Endoteliales/metabolismo , Humanos , Relación Estructura-Actividad , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/farmacología
14.
Int J Mol Sci ; 23(23)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36499344

RESUMEN

Scoring functions (SFs) are ubiquitous tools for early stage drug discovery. However, their accuracy currently remains quite moderate. Despite a number of successful target-specific SFs appearing recently, up until now, no ideas on how to systematically improve the general scope of SFs have been formulated. In this work, we hypothesized that the specific features of ligands, corresponding to interactions well appreciated by medicinal chemists (e.g., hydrogen bonds, hydrophobic and aromatic interactions), might be responsible, in part, for the remaining SF errors. The latter provides direction to efforts aimed at the rational and systematic improvement of SF accuracy. In this proof-of-concept work, we took a CASF-2016 coreset of 285 ligands as a basis for comparison and calculated the values of scores for a representative panel of SFs (including AutoDock 4.2, AutoDock Vina, X-Score, NNScore2.0, ΔVina RF20, and DSX). The residual error of linear correlation of each SF value, with the experimental values of affinity and activity, was then analyzed in terms of its correlation with the presence of the fragments responsible for certain medicinal chemistry defined interactions. We showed that, despite the fact that SFs generally perform reasonably, there is room for improvement in terms of better parameterization of interactions involving certain fragments in ligands. Thus, this approach opens a potential way for the systematic improvement of SFs without their significant complication. However, the straightforward application of the proposed approach is limited by the scarcity of reliable available data for ligand-receptor complexes, which is a common problem in the field.


Asunto(s)
Descubrimiento de Drogas , Proteínas , Ligandos , Unión Proteica , Proteínas/química , Enlace de Hidrógeno , Simulación del Acoplamiento Molecular
15.
Molecules ; 27(6)2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35335347

RESUMEN

The notion of a contribution of a specific group in an organic molecule's property and/or activity is both common in our thinking and is still not strictly correct due to the inherent non-additivity of free energy with respect to molecular fragments composing a molecule. The fragment- based drug discovery (FBDD) approach has proven to be fruitful in addressing the above notions. The main difficulty of the FBDD, however, is in its reliance on the low throughput and expensive experimental means of determining the fragment-sized molecules binding. In this article we propose a way to enhance the throughput and availability of the FBDD methods by judiciously using an in silico means of assessing the contribution to ligand-receptor binding energy of fragments of a molecule under question using a previously developed in silico Reverse Fragment Based Drug Discovery (R-FBDD) approach. It has been shown that the proposed structure-based drug discovery (SBDD) type of approach fills in the vacant niche among the existing in silico approaches, which mainly stem from the ligand-based drug discovery (LBDD) counterparts. In order to illustrate the applicability of the approach, our work retrospectively repeats the findings of the use case of an FBDD hit-to-lead project devoted to the experimentally based determination of additive group efficiency (GE)-an analog of ligand efficiency (LE) for a group in the molecule-using the Free-Wilson (FW) decomposition. It is shown that in using our in silico approach to evaluate fragment contributions of a ligand and to estimate GE one can arrive at similar decisions as those made using the experimentally determined activity-based FW decomposition. It is also shown that the approach is rather robust to the choice of the scoring function, provided the latter demonstrates a decent scoring power. We argue that the proposed approach of in silico assessment of GE has a wider applicability domain and expect that it will be widely applicable to enhance the net throughput of drug discovery based on the FBDD paradigm.


Asunto(s)
Diseño de Fármacos , Descubrimiento de Drogas , Descubrimiento de Drogas/métodos , Ligandos , Unión Proteica , Estudios Retrospectivos
16.
Molecules ; 27(3)2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35164325

RESUMEN

Using two ways of functionalizing amiridine-acylation with chloroacetic acid chloride and reaction with thiophosgene-we have synthesized new homobivalent bis-amiridines joined by two different spacers-bis-N-acyl-alkylene (3) and bis-N-thiourea-alkylene (5) -as potential multifunctional agents for the treatment of Alzheimer's disease (AD). All compounds exhibited high inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with selectivity for BChE. These new agents displayed negligible carboxylesterase inhibition, suggesting a probable lack of untoward drug-drug interactions arising from hydrolytic biotransformation. Compounds 3 with bis-N-acyl-alkylene spacers were more potent inhibitors of both cholinesterases compared to compounds 5 and the parent amiridine. The lead compounds 3a-c exhibited an IC50(AChE) = 2.9-1.4 µM, IC50(BChE) = 0.13-0.067 µM, and 14-18% propidium displacement at 20 µM. Kinetic studies of compounds 3a and 5d indicated mixed-type reversible inhibition. Molecular docking revealed favorable poses in both catalytic and peripheral AChE sites. Propidium displacement from the peripheral site by the hybrids suggests their potential to hinder AChE-assisted Aß42 aggregation. Conjugates 3 had no effect on Aß42 self-aggregation, whereas compounds 5c-e (m = 4, 5, 6) showed mild (13-17%) inhibition. The greatest difference between conjugates 3 and 5 was their antioxidant activity. Bis-amiridines 3 with N-acylalkylene spacers were nearly inactive in ABTS and FRAP tests, whereas compounds 5 with thiourea in the spacers demonstrated high antioxidant activity, especially in the ABTS test (TEAC = 1.2-2.1), in agreement with their significantly lower HOMO-LUMO gap values. Calculated ADMET parameters for all conjugates predicted favorable blood-brain barrier permeability and intestinal absorption, as well as a low propensity for cardiac toxicity. Thus, it was possible to obtain amiridine derivatives whose potencies against AChE and BChE equaled (5) or exceeded (3) that of the parent compound, amiridine. Overall, based on their expanded and balanced pharmacological profiles, conjugates 5c-e appear promising for future optimization and development as multitarget anti-AD agents.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Aminoquinolinas/química , Antioxidantes/farmacología , Butirilcolinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Fármacos Neuroprotectores/farmacología , Acetilcolinesterasa , Antioxidantes/química , Inhibidores de la Colinesterasa/química , Proteínas Ligadas a GPI/antagonistas & inhibidores , Humanos , Cinética , Modelos Moleculares , Simulación del Acoplamiento Molecular , Estructura Molecular , Fármacos Neuroprotectores/química , Relación Estructura-Actividad
17.
Molecules ; 27(23)2022 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-36500341

RESUMEN

Positive allosteric modulators (PAMs) of AMPA receptors represent attractive candidates for the development of drugs for the treatment of cognitive and neurodegenerative disorders. Dimeric molecules have been reported to have an especially potent modulating effect, due to the U-shaped form of the AMPA receptor's allosteric binding site. In the present work, novel bis(pyrimidines) were studied as AMPA receptor modulators. A convenient and flexible preparative approach to bis(pyrimidines) containing a hydroquinone linker was elaborated, and a series of derivatives with varied substituents was obtained. The compounds were examined in the patch clamp experiments for their influence on the kainate-induced currents, and 10 of them were found to have potentiating properties. The best potency was found for 2-methyl-4-(4-((2-methyl-5,6,7,8-tetrahydroquinazolin-4-yl)oxy)phenoxy)-6,7,8,9-tetrahydro-5H-cyclohepta[d]pyrimidine, which potentiated the kainate-induced currents by up to 77% in all tested concentrations (10-12-10-6 M). The results were rationalized via the modeling of modulator complexes with the dimeric ligand binding domain of the GluA2 AMPA receptor, using molecular docking and molecular dynamics simulation. The prediction of ADMET, physicochemical, and PAINS properties of the studied bis(pyrimidines) confirmed that PAMs of this type may act as the potential lead compounds for the development of neuroprotective drugs.


Asunto(s)
Pirimidinas , Receptores AMPA , Receptores AMPA/química , Receptores AMPA/metabolismo , Regulación Alostérica , Simulación del Acoplamiento Molecular , Pirimidinas/farmacología
18.
Molecules ; 27(21)2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36364474

RESUMEN

A series of new 1,2,4-triazolo-linked bis-indolyl conjugates (15a-r) were prepared by multistep synthesis and evaluated for their cytotoxic activity against various human cancer cell lines. It was observed that they were more susceptible to colon and breast cancer cells. Conjugates 15o (IC50 = 2.04 µM) and 15r (IC50 = 0.85 µM) illustrated promising cytotoxicity compared to 5-fluorouracil (5-FU, IC50 = 5.31 µM) against the HT-29 cell line. Interestingly, 15o and 15r induced cell cycle arrest at the G0/G1 phase and disrupted the mitochondrial membrane potential. Moreover, these conjugates led to apoptosis in HT-29 at 2 µM and 1 µM, respectively, and also enhanced the total ROS production as well as the mitochondrial-generated ROS. Immunofluorescence and Western blot assays revealed that these conjugates reduced the expression levels of the PI3K-P85, ß-catenin, TAB-182, ß-actin, AXIN-2, and NF-κB markers that are involved in the ß-catenin pathway of colorectal cancer. The results of the in silico docking studies of 15r and 15o further support their dual inhibitory behaviour against PI3K and tankyrase. Interestingly, the conjugates have adequate ADME-toxicity parameters based on the calculated results of the molecular dynamic simulations, as we found that these inhibitors (15r) influenced the conformational flexibility of the 4OA7 and 3L54 proteins.


Asunto(s)
Antineoplásicos , Tanquirasas , Humanos , beta Catenina/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proliferación Celular , Antineoplásicos/farmacología , Apoptosis , Fluorouracilo/farmacología , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Estructura Molecular
19.
Bioorg Med Chem Lett ; 39: 127871, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33662539

RESUMEN

3,7-Diazabicyclo[3.3.1]nonane scaffold can serve as a basis for the design of molecular switches stimulating the fast release of water soluble compounds under the influence of external factors from the liposomal containers having those switches incorporated into the lipid bilayer. It was demonstrated that liposomes having 3,7-dihexadecyl-1,5-diphenyl-3,7-diazabicyclo[3.3.1]nonan-9-one (3) incorporated into the liposomal membrane sharply increase the permeability upon pH decrease from 7.4 to 6.5, and compound 3 can serve as a pH-sensitive agent in the bilayer of liposomal nanocontainers. Similar but less pronounced effect was shown for liposomes modified with 3,7-bis(methyldodecylaminoacetyl)-1,5-dimethyl-3,7-diazabicyclo[3.3.1]nonane (5) and 3,7-didodecylsulfonyl-1,5-dimethyl-3,7-diazabicyclo[3.3.1]nonan-9-one (4). The structure (morphology) and size of modified liposomes were studied with scanned transmission electron microscopy.


Asunto(s)
Compuestos Aza/química , Compuestos Aza/síntesis química , Membrana Dobles de Lípidos/química , Liposomas/química , Microscopía Electrónica de Transmisión , Estructura Molecular
20.
Bioorg Chem ; 112: 104974, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34029971

RESUMEN

We synthesized eleven new amiridine-piperazine hybrids 5a-j and 7 as potential multifunctional agents for Alzheimer's disease (AD) treatment by reacting N-chloroacetylamiridine with piperazines. The compounds displayed mixed-type reversible inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Conjugates were moderate inhibitors of equine and human BChE with negligible fluctuation in anti-BChE activity, whereas anti-AChE activity was substantially dependent on N4-substitution of the piperazine ring. Compounds with para-substituted aromatic moieties (5g, 5h, and bis-amiridine 7) had the highest anti-AChE activity in the low micromolar range. Top-ranked compound 5h, N-(2,3,5,6,7,8-hexahydro-1H-cyclopenta[b]quinolin-9-yl)-2-[4-(4-nitro-phenyl)-piperazin-1-yl]-acetamide, had an IC50 for AChE = 1.83 ± 0.03 µM (Ki = 1.50 ± 0.12 and αKi = 2.58 ± 0.23 µM). The conjugates possessed low activity against carboxylesterase, indicating a likely absence of unwanted drug-drug interactions in clinical use. In agreement with analysis of inhibition kinetics and molecular modeling studies, the lead compounds were found to bind effectively to the peripheral anionic site of AChE and displace propidium, indicating their potential to block AChE-induced ß-amyloid aggregation. Similar propidium displacement activity was first shown for amiridine. Two compounds, 5c (R = cyclohexyl) and 5e (R = 2-MeO-Ph), exhibited appreciable antioxidant capability with Trolox equivalent antioxidant capacity values of 0.47 ± 0.03 and 0.39 ± 0.02, respectively. Molecular docking and molecular dynamics simulations provided insights into the structure-activity relationships for AChE and BChE inhibition, including the observation that inhibitory potencies and computed pKa values of hybrids were generally lower than those of the parent molecules. Predicted ADMET and physicochemical properties of conjugates indicated good CNS bioavailability and safety parameters comparable to those of amiridine and therefore acceptable for potential lead compounds at the early stages of anti-AD drug development.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Aminoquinolinas/farmacología , Antioxidantes/farmacología , Inhibidores de la Colinesterasa/farmacología , Fármacos Neuroprotectores/farmacología , Piperazina/farmacología , Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/metabolismo , Aminoquinolinas/química , Animales , Antioxidantes/síntesis química , Antioxidantes/química , Benzotiazoles/antagonistas & inhibidores , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Relación Dosis-Respuesta a Droga , Caballos , Humanos , Modelos Moleculares , Estructura Molecular , Fármacos Neuroprotectores/síntesis química , Fármacos Neuroprotectores/química , Estrés Oxidativo/efectos de los fármacos , Piperazina/química , Relación Estructura-Actividad , Ácidos Sulfónicos/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA