Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Exp Dermatol ; 33(1): e15000, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38284201

RESUMEN

Cutaneous tissues is among the main target of outdoor stressors such as ozone (O3 ), particulate matter (PM), and ultraviolet radiation (UV) all involved in inducing extrinsic skin aging. Only a few reports have studied the multipollutant interaction and its effect on skin damage. In the present work, we intended to evaluate the ability of pollutants such as O3 and PM to further aggravate cutaneous UV damage. In addition, the preventive properties of a cosmeceutical formulation mixture (AOX mix) containing 15% vitamin C (L-ascorbic acid), 1% vitamin E (α-tocopherol) and 0.5% ferulic acid was also investigated. Skin explants obtained from three different subjects were exposed to 200 mJ UV light, 0.25 ppm O3 for 2 h, and 30 min of diesel engine exhaust (DEE), alone or in combination for 4 days (time point D1 and D4). The results showed a clear additive effect of O3 and DEE in combination with UV in terms of keratin 10, Desmocollin and Claudin loss. In addition, the multipollutant exposure significantly induced the inflammatory response measured as NLRP1/ASC co-localization suggesting the activation of the inflammasome machinery. Finally, the loss of Aquaporin3 was also affected by the combined outdoor stressors. Furthermore, daily topical pre-treatment with the AOX Mix significantly prevented the cutaneous changes induced by the multipollutants. In conclusion, this study is among the first to investigate the combined effects of three of the most harmful outdoor stressors on human skin and confirms that daily topical of an antioxidant application may prevent pollution-induced skin damage.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Ambientales , Humanos , Ácido Ascórbico/farmacología , Rayos Ultravioleta/efectos adversos , Vitaminas , Antioxidantes/farmacología , Material Particulado/toxicidad
2.
IUBMB Life ; 74(1): 62-73, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34289226

RESUMEN

Airborne pollution has become a leading cause of global death in industrialized cities and the exposure to environmental pollutants has been demonstrated to have adverse effects on human health. Among the pollutants, particulate matter (PM) is one of the most toxic and although its exposure has been more commonly correlated with respiratory diseases, gastrointestinal (GI) complications have also been reported as a consequence to PM exposure. Due to its composition, PM is able to exert on intestinal mucosa both direct damaging effects, (by reaching it either via direct ingestion of contaminated food and water or indirect inhalation and consequent macrophagic mucociliary clearance) and indirect ones via generation of systemic inflammation. The relationship between respiratory and GI conditions is well described by the lung-gut axis and more recently, has become even clearer during coronavirus disease 2019 (COVID-19) pandemic, when respiratory symptoms were associated with gastrointestinal conditions. This review aims at pointing out the mechanisms and the models used to evaluate PM induced GI tract damage.


Asunto(s)
COVID-19/etiología , Tracto Gastrointestinal/lesiones , Material Particulado/toxicidad , SARS-CoV-2 , Administración por Inhalación , Administración Oral , COVID-19/fisiopatología , COVID-19/prevención & control , Tracto Gastrointestinal/fisiopatología , Humanos , Mucosa Intestinal/lesiones , Mucosa Intestinal/fisiopatología , Máscaras , Microplásticos/toxicidad , Modelos Biológicos , Depuración Mucociliar/fisiología , Política Nutricional , Pandemias/prevención & control , Material Particulado/administración & dosificación , Sistema Respiratorio/lesiones , Sistema Respiratorio/fisiopatología
3.
Molecules ; 26(13)2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34206295

RESUMEN

The present study investigated the effect of spray-dried algae-rosemary particles against pollution-induced damage using ex-vivo human biopsies exposed to diesel engine exhaust (DEE). For this, the complexation of hydroalcoholic rosemary extract with Chlorella (RCH) and Spirulina (RSP) protein powders was conducted. The process efficiency and concentration of rosmarinic acid (RA), carnosic acid (CA), and carnosol (CR) phenolic compounds of both products were compared. The RSP spray-dried production was more efficient, and RSP particles presented higher CR and CA and similar RA concentrations. Therefore, spray-dried RSP particles were prioritized for the preparation of a gel formulation that was investigated for its ability to mitigate pollution-induced skin oxinflammatory responses. Taken altogether, our ex-vivo data clearly demonstrated the ability of RSP gel to prevent an oxinflammatory phenomenon in cutaneous tissue by decreasing the levels of 4-hydroxynonenal protein adducts (4HNE-PA) and active matrix metalloproteinase-9 (MMP-9) as well as by limiting the loss of filaggrin induced by DEE exposure. Our results suggest that the topical application of spirulina-rosemary gel is a good approach to prevent pollution-induced skin aging/damage.


Asunto(s)
Antioxidantes , Chlorella/química , Cinamatos/química , Depsidos/química , Exposición a Riesgos Ambientales/efectos adversos , Rosmarinus/química , Envejecimiento de la Piel/efectos de los fármacos , Piel , Antioxidantes/química , Antioxidantes/farmacología , Células Cultivadas , Proteínas Filagrina , Humanos , Piel/lesiones , Piel/metabolismo , Piel/patología , Ácido Rosmarínico
4.
Arch Biochem Biophys ; 685: 108355, 2020 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-32268137

RESUMEN

Psoriasis is a skin disease characterized by abnormal keratinocyte proliferation and inflammation. Currently, there are no cures for this disease, so the goal of treatment is to decrease inflammation and slow down the associated rapid cell growth and shedding. Recent advances have led to the usage of phosphodiesterase 4 (PDE4) inhibitors for treatment of this condition. For example, apremilast is an oral, selective PDE4 inhibitor that is able to reduce skin inflammation and is Food and Drug Administration (FDA)-approved to treat adults with moderate to severe psoriasis and/or psoriatic arthritis. However, common target-related adverse events, including diarrhea, nausea, headache, and insomnia limit the usage of this drug. To circumvent these effects, the usage of PDE4 inhibitors specifically designed for topical treatment, such as CHF6001, may combine local anti-inflammatory activity with limited systemic exposure, improving tolerability. In this study, we showed that CHF6001, currently undergoing clinical development for COPD, suppresses human keratinocyte proliferation as assessed via BrdU incorporation. We also observed decreased re-epithelialization in a scratch-wound model after CHF6001 treatment. At the molecular level, CHF6001 inhibited translocation of phosphorylated NF-κB subunit p65, promoting loss of nuclear cyclin D1 accumulation and an increase of cell cycle inhibitor p21. Furthermore, CHF6001 decreased oxidative stress, measured by assessing lipid peroxidation (4-HNE adduct formation), through the inactivation of the NADPH oxidase. These results suggest that CHF6001 has the potential to treat skin disorders associated with hyperproliferative keratinocytes, such as psoriasis by targeting oxidative stress, abnormal re-epithelization, and inflammation.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Queratinocitos/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Inhibidores de Fosfodiesterasa 4/farmacología , Sulfonamidas/farmacología , para-Aminobenzoatos/farmacología , Aldehídos/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Ciclina D1/metabolismo , Humanos , NADPH Oxidasas/metabolismo , Inhibidores de Fosfodiesterasa 4/toxicidad , Psoriasis/tratamiento farmacológico , Sulfonamidas/toxicidad , Factor de Transcripción ReIA/metabolismo , para-Aminobenzoatos/toxicidad
5.
Arch Biochem Biophys ; 690: 108416, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32502471

RESUMEN

Alkaptonuria (AKU) is a rare metabolic disease correlated with the deficiency of homogentisate 1,2-dioxygenase and leading to an accumulation of the metabolite homogentisic acid (HGA) which can be subjected to oxidation and polymerization reactions. These events are considered a trigger for the induction of oxidative stress in AKU but, despite the large description of an altered redox status, the underlying pathogenetic processes are still unstudied. In the present study, we investigated the molecular mechanisms responsible for the oxidative damage present in an osteoblast-based cellular model of AKU. Bone, in fact, is largely affected in AKU patients: severe osteoclastic resorption, osteoporosis, even for pediatric cases, and an altered rate of remodeling biomarkers have been reported. In our AKU osteoblast cell model, we found a clear altered redox homeostasis, determined by elevated hydrogen peroxide (H2O2) levels and 4HNE protein adducts formation. These findings were correlated with increased NADPH oxidase (NOX) activity and altered mitochondrial respiration. In addition, we observed a decreased activity of superoxide dismutase (SOD) and reduced levels of thioredoxin (TRX) that parallel the decreased Nrf2-DNA binding. Overall, our results reveal that HGA is able to alter the cellular redox homeostasis by modulating the endogenous ROS production via NOX activation and mitochondrial dysfunctions and impair the cellular response mechanism. These findings can be useful for understanding the pathophysiology of AKU, not yet well studied in bones, but which is an important source of comorbidities that affect the life quality of the patients.


Asunto(s)
Alcaptonuria/metabolismo , Homeostasis/fisiología , Línea Celular , Proteínas de Unión al ADN/metabolismo , Ácido Homogentísico/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , NADPH Oxidasas/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Osteoblastos/citología , Oxidación-Reducción , Estrés Oxidativo/fisiología , Transducción de Señal , Superóxido Dismutasa/metabolismo , Tiorredoxinas/metabolismo
6.
Clin Cosmet Investig Dermatol ; 16: 1769-1776, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37448587

RESUMEN

Purpose: Exposure of the skin to ultraviolet radiation (UV) or ozone (O3) results in stressed skin, leading to the alteration of the skin physical barrier and defence functions. In this work, the preventive benefit of a dermocosmetic, M89PF, containing Vichy mineralising water, probiotic fractions, antioxidant vitamins and hyaluronic acid, in the alteration of skin physical barrier and skin defence functions after exposure to O3 and UV, alone or combined, was assessed. Methods: Untreated and treated (M89PF) skin explants were exposed to O3, to UV rays or to O3+UV. Immunofluorescence was performed for skin barrier, oxidative stress, and inflammatory markers after one and four days of exposure to the pollutants. Results: M89PF significantly (p≤0.05) prevented the decrease of the expression level of different skin barrier markers, and significantly (p≤0.05) prevented the induction of OxInflammatory markers and inflammasome components by UV, O3, or both combined. Conclusion: M89PF prevents skin barrier damage, as well as oxidative stress and inflammatory markers induced by exposome factors, such as UV, O3, or both combined.

7.
Nutrients ; 15(4)2023 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-36839393

RESUMEN

Food-derived bioactive peptides (BAPs) obtained from edible insect-protein hold multiple activities promising the potential to target complex pathological mechanisms responsible for chronic health conditions such as hypertension development. In this study, enzymatic protein hydrolysates from non-mulberry edible silkworm Antheraea assama (Muga) and Philosomia ricini (Eri) pupae, specifically Alcalase (A. assama) and Papain (P. ricini) hydrolysates obtained after 60 and 240 min, exhibited the highest ACE-inhibitory and antioxidant properties. The hydrolysates' fractions (<3, 3-10 and >10 kDa), specifically Alc_M60min_F3 (≤3 kDa) and Pap_E240min_F3 (≤3 kDa), showed the highest antioxidant and ACE-inhibitory activities, respectively. Further RP-HPLC purified sub-fractions F4 and F6 showed the highest ACE inhibition as well as potent anti-oxinflammatory activities in lipopolysaccharide (LPS)-treated endothelial cells. Indeed, F4 and F6 ACE-inhibitory peptide fractions were effective in preventing p65 nuclear translocation after 3 h of LPS stimulation along with the inhibition of p38 MAPK phosphorylation in HUVEC cells. In addition, pretreatment with F4 and F6 ACE-inhibitory peptide fractions significantly prevented the LPS-induced upregulation of COX-2 expression and IL-1ß secretion, while the expression of NRF2 (nuclear factor erythroid 2-related factor 2)-regulated enzymes such as HO-1 and NQO1 was induced by both peptide fractions. The derived peptides from edible pupae protein hydrolysates have potentialities to be explored as nutritional approaches against hypertension and related cardiovascular diseases.


Asunto(s)
Bombyx , Hipertensión , Animales , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Antioxidantes/farmacología , Hidrolisados de Proteína/farmacología , Pupa , Células Endoteliales , Lipopolisacáridos , Péptidos/farmacología , Hidrólisis
8.
Sci Rep ; 13(1): 16013, 2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37749125

RESUMEN

Being the more apparent organ exposed to the outdoor stressors, the effect of pollution on the skin has been widely studied in the last few decades. Although UV light is known as the most aggressive stressor to which our cutaneous tissue is daily exposed, other components of the tropospheric pollution have also shown to affect skin health and functionality. Among them, ozone has been proven to be one of the most toxic due to its high reactivity with the epidermal lipids. Studying the cutaneous effect of pollution in a laboratory setting presents challenges, therefore it becomes critical to employ appropriate and tailored models that aim to answer specific questions. Several skin models are available nowadays: in vitro models (2D cell lines and 3D cutaneous tissues), ex vivo skin explants and in vivo approaches (animals and humans). Although in the last 20 years researchers developed skin models that closely resemble human skin (3D cutaneous tissues), ex vivo skin explants still remain one of the best models to study cutaneous responses. Unfortunately, one important cutaneous property that is not present in the traditional ex vivo human skin explants is the physiological tension, which has been shown to be a cardinal player in skin structure, homeostasis, functional properties and responses to external stimuli. For this reason, in this study, to confirm and further comprehend the harmful mechanism of ozone exposure on the integumentary system, we have performed experiments using the state of art in cutaneous models: the innovative TenSkin™ model in which ex vivo human skin explants are cultured under physiologically relevant tension during the whole experimental procedure. Specifically, we were interested in corroborating previous findings showing that ozone exposure modulates the expression of cutaneous antimicrobial peptides (AMPs). The present work demonstrates that cutaneous exposure to ozone induces AMPs gene and protein levels (CAMP/LL-37, hBD2, hBD3) and that the presence of tension can further modulate their expression. In addition, different responses between tension and non-tension cultured skin were also observed during the evaluation of OxInflammatory markers [cyclooxygenase-2 (COX2), aryl hydrocarbon receptor (AhR), matrix-metallo-proteinase 9 (MMP9) and 4-hydroxy-nonenal (4HNE)]. This current study supports our previous findings confirming the ability of pollution to induce the cutaneous expression of AMPs via redox signaling and corroborates the principle that skin explants are a good and reliable model to study skin responses even though it underlines the need to holistically consider the role of skin tension before extrapolating the data to real life.


Asunto(s)
Epidermis , Piel , Animales , Humanos , Integumento Común , Agresión , Péptidos Antimicrobianos
9.
J Pers Med ; 12(2)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35207665

RESUMEN

Epigenetic alterations are a driving force of the carcinogenesis process. MicroRNAs play a role in silencing mutated oncogenes, thus defending the cell against the adverse consequences of genotoxic damages induced by environmental pollutants. These processes have been well investigated in lungs; however, although skin is directly exposed to a great variety of environmental pollutants, more research is needed to better understand the effect on cutaneous tissue. Therefore, we investigated microRNA alteration in human skin biopsies exposed to diesel fumes, ozone, and UV light for over 24 h of exposure. UV and ozone-induced microRNA alteration right after exposure, while the peak of their deregulations induced by diesel fumes was reached only at the end of the 24 h. Diesel fumes mainly altered microRNAs involved in the carcinogenesis process, ozone in apoptosis, and UV in DNA repair. Accordingly, each tested pollutant induced a specific pattern of microRNA alteration in skin related to the intrinsic mechanisms activated by the specific pollutant. These alterations, over a short time basis, reflect adaptive events aimed at defending the tissue against damages. Conversely, whenever environmental exposure lasts for a long time, the irreversible alteration of the microRNA machinery results in epigenetic damage contributing to the pathogenesis of inflammation, dysplasia, and cancer induced by environmental pollutants.

10.
Redox Biol ; 56: 102440, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36027676

RESUMEN

NLRP1 is one of the major inflammasomes modulating the cutaneous inflammatory responses and therefore linked to a variety of cutaneous conditions. Although NLRP1 has been the first inflammasome to be discovered, only in the past years a significant progress was achieved in understanding the molecular mechanism and the stimuli behind its activation. In the past decades a crescent number of studies have highlighted the role of air pollutants as Particulate Matter (PM), Cigarette Smoke (CS) and Ozone (O3) as trigger stimuli for inflammasomes activation, especially via Reactive Oxygen Species (ROS) mediators. However, whether NLRP1 can be modulated by air pollutants via oxidative stress and the mechanism behind its activation is still poorly understood. Here we report for the first time that O3, one of the most toxic pollutants, activates the NLRP1 inflammasome in human keratinocytes via oxidative stress mediators as hydrogen peroxide (H2O2) and 4-hydroxy-nonenal (4HNE). Our data suggest that NLRP1 represents a target protein for 4HNE adduction that possibly leads to its proteasomal degradation and activation via the possible involvement of E3 ubiquitin ligase UBR2. Of note, Catalase (Cat) treatment prevented inflammasome assemble and inflammatory cytokines release as well as NLRP1 ubiquitination in human keratinocytes upon O3 exposure. The present work is a mechanistic study that follows our previous work where we have showed the ability of O3 to induce cutaneous inflammasome activation in humans exposed to this pollutant. In conclusion, our results suggest that O3 triggers the cutaneous NLRP1 inflammasome activation by ubiquitination and redox mechanism.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Ambientales , Ozono , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Catalasa/metabolismo , Citocinas/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Inflamasomas/metabolismo , Proteínas NLR/metabolismo , Oxidación-Reducción , Ozono/metabolismo , Material Particulado , Especies Reactivas de Oxígeno/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
11.
Antioxidants (Basel) ; 10(12)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34943031

RESUMEN

Skin is one of the main targets of the outdoor stressors. Considering that pollution levels are rising progressively, it is not surprising that several cutaneous conditions have been associated with its exposure. Among the pollutants, diesel engine exhaust (DEE) represents one of the most toxic, as it is composed of a mixture of many different noxious chemicals generated during the compression cycle, for ignition rather than an electrical spark as in gasoline engines. The toxic chemicals of most concern in DEE, besides the oxides of nitrogen, sulfur dioxide and various hydrocarbons, are metals that can induce oxidative stress and inflammation. The present study aimed to evaluate the effects of topical application, singularly or in combination, of the iron-chelator deferoxamine and a commercially available formulation, CE Ferulic, in up to 4-day DEE-exposed skin. DEE induced a significant increase in the oxidative marker 4-hydroxy-nonenal (4HNE) and matrix-metallopeptidase-9 (MMP-9), the loss of cutaneous-barrier-associated proteins (filaggrin and involucrin) and a decrease in collagen-1, while the formulations prevented the cutaneous damage in an additive manner. In conclusion, this study suggests that iron plays a key role in DEE-induced skin damage and its chelation could be an adjuvant strategy to reinforce antioxidant topical formulations.

12.
Redox Biol ; 41: 101952, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33839421

RESUMEN

Ozone (O3) exposure has been reported to contribute to various cutaneous inflammatory conditions, such as eczema, psoriasis, rush etc. via a redox-inflammatory pathway. O3 is too reactive to penetrate cutaneous tissue; it interacts with lipids present in the outermost layer of skin, resulting in formation of oxidized molecules and hydrogen peroxide (H2O2). Interestingly, several inflammatory skin pathologies demonstrate altered levels of antimicrobial peptides (AMPs). These small, cationic peptides are found in various cells, including keratinocytes, eccrine gland cells, and seboctyes. Classically, AMPs function as antimicrobial agents. Recent studies indicate that AMPs also play roles in inflammation, angiogenesis, and wound healing. Since altered levels of AMPs have been detected in pollution-associated skin pathologies, we hypothesized that exposure to O3 could affect the levels of AMPs in the skin. We examined levels of AMPs using qRT-PCR, Western blotting, and immunofluorescence in vitro (human keratinocytes), ex vivo (human skin explants), and in vivo (human volunteer subjects exposed to O3) and observed increased levels of all the measured AMPs upon O3 exposure. In addition, in vitro studies have confirmed the redox regulation of AMPs in keratinocytes. This novel finding suggests that targeting AMPs could be a possible defensive strategy to combat pollution-associated skin conditions.


Asunto(s)
Peróxido de Hidrógeno , Enfermedades de la Piel , Humanos , Queratinocitos , Proteínas Citotóxicas Formadoras de Poros , Piel
13.
Toxicol Lett ; 338: 40-50, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33279629

RESUMEN

Air pollution represents one of the main risks for both environment and human health. The rapid urbanization has been leading to a continuous release of harmful manmade substances into the atmosphere which are associated to the exacerbation of several pathologies. The skin is the main barrier of our body against the external environment and it is the main target for the outdoor stressors. Among the pollutants, Ozone (O3) is one of the most toxic, able to initiate oxidative reactions and activate inflammatory response, leading to the onset of several skin conditions. Moreover, skin is daily subjected to the activity of Ultraviolet Radiation which are well known to induce harmful cutaneous effects including skin aging and sunburn. Even though both UV and O3 are able to affect the skin homeostasis, very few studies have investigated their possible additive effect. Therefore, in this study we evaluated the effect of the combined exposure of O3 and UV in inducing skin damage, by exposing human skin explants to UV alone or in combination with O3 for 4-days. Markers related to inflammation, redox homeostasis and tissue structure were analyzed. Our results demonstrated that O3 is able to amplify the UV induced skin oxinflammation markers.


Asunto(s)
Ozono/toxicidad , Piel/efectos de los fármacos , Piel/efectos de la radiación , Rayos Ultravioleta/efectos adversos , Proteínas Filagrina , Humanos , Mediadores de Inflamación/metabolismo , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/efectos de la radiación , Piel/metabolismo , Piel/patología , Proteínas de Uniones Estrechas/metabolismo , Técnicas de Cultivo de Tejidos
14.
Free Radic Biol Med ; 166: 324-336, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33596456

RESUMEN

Along with the AgNP applications development, the concern about their possible toxicity has increasingly gained attention. As the respiratory system is one of the main exposure routes, the aim of this study was to evaluate the harmful effects developed in the lung after an acute AgNP exposure. In vivo studies using Balb/c mice intranasally instilled with 0.1 mg AgNP/kg b.w, were performed. 99mTc-AgNP showed the lung as the main organ of deposition, where, in turn, AgNP may exert barrier injury observed by increased protein content and total cell count in BAL samples. In vivo acute exposure showed altered lung tissue O2 consumption due to increased mitochondrial active respiration and NOX activity. Both O2 consumption processes release ROS triggering the antioxidant system as observed by the increased SOD, catalase and GPx activities and a decreased GSH/GSSG ratio. In addition, increased protein oxidation was observed after AgNP exposure. In A549 cells, exposure to 2.5 µg/mL AgNP during 1 h resulted in augment NOX activity, decreased mitochondrial ATP associated respiration and higher H2O2 production rate. Lung 3D tissue model showed AgNP-initiated barrier alterations as TEER values decreased and morphological alterations. Taken together, these results show that AgNP exposure alters O2 metabolism leading to alterations in oxygen metabolism lung toxicity. AgNP-triggered oxidative damage may be responsible for the impaired lung function observed due to alveolar epithelial injury.


Asunto(s)
Nanopartículas del Metal , Plata , Animales , Peróxido de Hidrógeno , Pulmón , Nanopartículas del Metal/toxicidad , Ratones , Oxígeno
15.
Oxid Med Cell Longev ; 2020: 9571490, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32855770

RESUMEN

The World Health Organization estimates that 7 million people die every year due to pollution exposure. Among the different pollutants to which living organism are exposed, ozone (O3) represents one of the most toxic, because its location which is the skin is one of the direct tissues exposed to the outdoor environment. Chronic exposure to outdoor stressors can alter cutaneous redox state resulting in the activation of inflammatory pathways. Recently, a new player in the inflammation mechanism was discovered: the multiprotein complex NLRP1 inflammasome, which has been shown to be also expressed in the skin. The topical application of natural compounds has been studied for the last 40 years as a possible approach to prevent and eventually cure skin conditions. Recently, the possibility to use blueberry (BB) extract to prevent pollution-induced skin toxicity has been of great interest in the cosmeceutical industry. In the present study, we analyzed the cutaneous protective effect of BB extract in several skin models (2D, 3D, and human skin explants). Specifically, we observed that in the different skin models used, BB extracts were able to enhance keratinocyte wound closure and normalize proliferation and migration responses previously altered by O3. In addition, pretreatment with BB extracts was able to prevent ozone-induced ROS production and inflammasome activation measured as NRLP1-ASC scaffold formation and also prevent the transcripts of key inflammasome players such as CASP1 and IL-18, suggesting that this approach as a possible new technology to prevent cutaneous pollution damage. Our data support the hypothesis that BB extracts can effectively reduce skin inflammation and be a possible new technology against cutaneous pollution-induced damage.


Asunto(s)
Arándanos Azules (Planta)/química , Inflamasomas/metabolismo , Ozono/toxicidad , Extractos Vegetales/farmacología , Piel/patología , Biopsia , Muerte Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células HaCaT , Humanos , Peróxido de Hidrógeno/metabolismo , Queratinocitos/efectos de los fármacos , Queratinocitos/patología , Modelos Biológicos , Estrés Oxidativo/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos , Piel/efectos de los fármacos
16.
Redox Biol ; 34: 101481, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32336667

RESUMEN

Since the skin is one of the targets of the harmful effects of environmental insults, several studies have investigated the effects of outdoor stressors on cutaneous tissue. Ozone (O3), particulate matter (PM), and ultraviolet radiation (UV) have all been shown to induce skin damage through disruption of tissue redox homeostasis, resulting in the so called "OxInflammation" condition. However, few studies have explored whether these stressors can act synergistically in cutaneous tissues. In the present work, we evaluated whether O3, PM, and UV, which are the most common environmental skin insults, act synergistically in inducing skin damage, and whether this effect could be prevented through topical application of a cosmeceutical formulation mixture (CF Mix) containing 15% vitamin C (l-ascorbic acid), 1% vitamin E (α-tocopherol), and 0.5% ferulic acid. Human skin explants obtained from three different subjects were sequentially exposed to 200 mJ UV light, 0.25 ppm O3 for 2 h, and 30 min of diesel engine exhaust (DEE), alone or in combination for 4 days (time point D1 and D4). We observed a clear additive effect of O3 and DEE in combination with UV in increasing levels of several oxidative (4HNE, HO-1) and inflammatory (COX2, NF-κB) markers and loss of barrier-associated proteins, such as filaggrin and involucrin. Furthermore, daily topical pre-treatment with the CF Mix prevented upregulation of the inflammatory and oxidative markers and the loss of both involucrin and filaggrin. In conclusion, this study is the first to investigate the combined effects of three of the most harmful outdoor stressors on human skin and suggests that daily topical application may prevent pollution-induced skin damage.


Asunto(s)
Cosmecéuticos , Contaminantes Ambientales , Cosmecéuticos/metabolismo , Contaminantes Ambientales/metabolismo , Proteínas Filagrina , Humanos , Oxidación-Reducción , Piel/metabolismo , Rayos Ultravioleta/efectos adversos
17.
Artículo en Inglés | MEDLINE | ID: mdl-32384765

RESUMEN

(1) Background: The gastrointestinal tract (GI) tract is one of the main organs exposed to particulate matter (PM) directly through ingestion of contaminated food or indirectly through inhalation. Previous studies have investigated the effects of chronic PM exposure on intestinal epithelia in vitro using Caco-2 cells and in vivo using mice. In this study, we hypothesized that chronic PM exposure would increase epithelial permeability and decrease barrier function due to altered redox homeostasis, which alters levels and/or localization of barrier-associated proteins in human three-dimensional (3D) intestinal tissues. (2) Methods: Transepithelial electrical resistance (TEER) in tissues exposed to 50, 100, 150, 250, and 500 µg/cm2 of PM for 1 week and 2 weeks was analyzed. Levels and localization of tight junction proteins zonula occludens protein 1 (ZO-1) and claudin-1 and desmosome-associated desmocollin were analyzed using immunofluorescence. As a marker of oxidative stress, levels of 4-hydroxy-nonenal (4HNE) adducts were measured. (3) Results: No differences in TEER measurements were observed between exposed and un-exposed tissues. However, increased levels of 4HNE adducts in exposed tissues were observed. Additionally, decreased levels of ZO-1, claudin-1, and desmocollin were demonstrated. (4) Conclusion: These data suggest that chronic PM exposure results in an increase of oxidative stress; modified levels of barrier-associated proteins could possibly link to GI tract inflammatory conditions.


Asunto(s)
Células CACO-2 , Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/metabolismo , Mucosa Intestinal/metabolismo , Material Particulado/farmacología , Uniones Estrechas/metabolismo , Animales , Células CACO-2/efectos de los fármacos , Células CACO-2/fisiología , Humanos , Intestinos/fisiopatología , Proteínas de la Membrana/metabolismo , Ratones , Oxidación-Reducción , Material Particulado/administración & dosificación , Proteínas de Uniones Estrechas
18.
Free Radic Biol Med ; 152: 561-570, 2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-31778733

RESUMEN

Several pollutants have been shown to affect skin physiology, among which ozone (O3) is one of the most toxic. Prolonged exposure to O3 leads to increased oxidative damage and cutaneous inflammation. The correlation between O3 exposure and inflammatory cutaneous conditions (atopic dermatitis, psoriasis, acne and eczema) has been already suggested, although the mechanism involved is still unclear. In the last few decades, a new multiprotein complex, the inflammasome, has been discovered and linked to tissue inflammation, including inflammatory skin conditions. The inflammasome activates inflammatory responses and contributes to the maturation of cytokines such as interleukin 1ß (IL-1ß) and interleukin 18. This complex is also responsive to reactive oxygen species (ROS), which plays a role in triggering the activation of the complex. On this basis it is possible hypothesize that the activation of the inflammasome could be the link between the inflammatory skin conditions associated to O3 exposure. In the present work, the ability of O3 to induce inflammasome activation was determined in different skin models, ranging from 2D (human keratinocytes) to 3D models in vitro and ex vivo. Results clearly showed that O3 exposure increased both transcript and protein levels of the main inflammasome complex, such as ASC and caspase-1. Furthermore, by using both immunofluorescence and an ASC oligomerization assay the formation of the complex was determined together with increased secreted levels of both IL-18 and IL-1ß. Of note is that H2O2 and to a less extent 4HNE (both considered the main mediators of O3 interaction with cellular membranes) were also able to activate skin inflammasome while the use of catalase prevents the activation. This study demonstrated that O3 can activate cutaneous inflammasome in a redox dependent manner suggesting a possible role of this new pathway in pollution induced inflammatory skin conditions.


Asunto(s)
Inflamasomas , Ozono , Caspasa 1/metabolismo , Humanos , Peróxido de Hidrógeno , Inflamasomas/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Oxidación-Reducción , Ozono/toxicidad , Especies Reactivas de Oxígeno
19.
Oxid Med Cell Longev ; 2017: 4256519, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29290903

RESUMEN

While surgery is the definitive treatment for early-stage melanoma, the current therapies against advanced melanoma do not yet provide an effective, long-lasting control of the lesions and a satisfactory impact on patient survival. Thus, research is also focused on novel treatments that could potentiate the current therapies. In the present study, we evaluated the effect of potassium ascorbate with ribose (PAR) treatment on the human melanoma cell line, A375, in 2D and 3D models. In the 2D model, in line with the current literature, the pharmacological treatment with PAR decreased cell proliferation and viability. In addition, an increase in Connexin 43 mRNA and protein was observed. This novel finding was confirmed in PAR-treated melanoma cells cultured in 3D, where an increase in functional gap junctions and a higher spheroid compactness were observed. Moreover, in the 3D model, a remarkable decrease in the size and volume of spheroids was observed, further supporting the treatment efficacy observed in the 2D model. In conclusion, our results suggest that PAR could be used as a safe adjuvant approach in support to conventional therapies for the treatment of melanoma.


Asunto(s)
Antineoplásicos/farmacología , Ácido Ascórbico/química , Proliferación Celular/efectos de los fármacos , Potasio/química , Ribosa/química , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Conexina 43/genética , Conexina 43/metabolismo , Humanos , Melanoma/tratamiento farmacológico , Melanoma/patología , Microscopía Electrónica de Rastreo , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/ultraestructura
20.
Eur J Med Chem ; 138: 438-457, 2017 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-28689095

RESUMEN

The manuscript deals with the design, synthesis and biological evaluation of novel benzoxazinone-based and indole-based compounds as multifunctional neuroprotective agents. These compounds inhibit human adenosine kinase (hAK) and human glycogen synthase kinase 3 beta (hGSK-3ß) enzymes. Computational analysis based on a molecular docking approach underlined the potential structural requirements for simultaneously targeting both proteins' allosteric sites. In silico hints drove the synthesis of appropriately decorated benzoxazinones and indoles (5a-s, and 6a-c) and biochemical analysis revealed their behavior as allosteric inhibitors of hGSK-3ß. For both our hit 4 and the best compounds of the series (5c,l and 6b) the potential antioxidant profile was assessed in human neuroblastoma cell lines (IMR 32, undifferentiated and neuronal differentiated), by evaluating the protective effect of selected compounds against H2O2 cytotoxicity and reactive oxygen species (ROS) production. Results showed a strong efficacy of the tested compounds, even at the lower doses, in counteracting the induced oxidative stress (50 µM of H2O2) and in preventing ROS formation. In addition, the tested compounds did not show any cytotoxic effect determined by the LDH release, at the concentration range analyzed (from 0.1 to 50 µM). This study allowed the identification of compound 5l, as the first dual hAK/hGSK-3ß inhibitor reported to date. Compound 5l, which behaves as an effective antioxidant, holds promise for the development of new series of potential therapeutic agents for the treatment of neurodegenerative diseases characterized by an innovative pharmacological profile.


Asunto(s)
Adenosina Quinasa/antagonistas & inhibidores , Antioxidantes/farmacología , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Neuroblastoma/metabolismo , Fármacos Neuroprotectores/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Adenosina Quinasa/metabolismo , Antioxidantes/síntesis química , Antioxidantes/química , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Peróxido de Hidrógeno/antagonistas & inhibidores , Peróxido de Hidrógeno/farmacología , Estructura Molecular , Neuroblastoma/patología , Fármacos Neuroprotectores/síntesis química , Fármacos Neuroprotectores/química , Estrés Oxidativo/efectos de los fármacos , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Especies Reactivas de Oxígeno/metabolismo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA