Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 142(29): 12878-12889, 2020 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-32573213

RESUMEN

A catalytic system comprising a cobalt-diphosphine complex and a Lewis acid (LA) such as AlMe3 has been found to promote hydrocarbofunctionalization reactions of alkynes with Lewis basic and electron-deficient substrates such as formamides, pyridones, pyridines and related azines, imidazo[1,2-a]pyridines, and azole derivatives through site-selective C-H activation. Compared with known Ni/LA catalytic systems for analogous transformations, the present catalytic systems not only feature convenient setup using inexpensive and bench-stable precatalyst and ligand such as Co(acac)3 and 1,3-bis(diphenylphosphino)propane (dppp) but also display distinct site-selectivity toward C-H activation of pyridone and pyridine derivatives. In particular, a completely C4-selective alkenylation of pyridine has been achieved for the first time. Meanwhile, the present catalytic system proved to promote exclusively C5-selective alkenylation of imidazo[1,2-a]pyridine derivatives. Mechanistic studies including DFT calculations on the Co/Al-catalyzed addition of formamide to alkyne have suggested that the reaction involves cleavage of the carbamoyl C-H bond as the rate-limiting step, which proceeds through a ligand-to-ligand hydrogen transfer (LLHT) mechanism leading to an alkenyl(carbamoyl)cobalt intermediate.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA