Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 21(6): 2453-2460, 2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33651622

RESUMEN

To detect the magnetic component of arbitrary unknown optical fields, a candidate probe must meet a list of demanding requirements, including a spatially isotropic magnetic response, suppressed electric effect, and wide operating bandwidth. Here, we show that a silicon nanoparticle satisfies all these requirements, and its optical magnetism driven multiphoton luminescence enables direct mapping of the magnetic field intensity distribution of a tightly focused femtosecond laser beam with varied polarization orientation and spatially overlapped electric and magnetic components. Our work establishes a powerful nonlinear optics paradigm for probing unknown optical magnetic fields of arbitrary electromagnetic structures, which is not only essential for realizing subwavelength-scale optical magnetometry but also facilitates nanophotonic research in the magnetic light-matter interaction regime.

2.
Opt Express ; 26(16): 20051-20062, 2018 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-30119321

RESUMEN

Control and manipulation of radiation direction and directivity is highly desirable in future integrated optical circuits. Here, we investigate theoretically and numerically the scattering properties of a silicon nanosphere dimer illuminated by a focused radially polarized beam. As compared with single silicon nanospheres, a scattering peak with a significantly enhanced intensity and a dramatically reduced linewidth was observed in the scattering spectrum of the silicon nanosphere dimer. Relying on the multipole expansion method, it was revealed that the radiation at the scattering peak originates mainly from the total electric dipole and the magnetic quadrupole excited in the silicon nanosphere dimer. It was found that the radiation direction of the silicon dimer is parallel to its axis, implying a sharp (90°) bending of the radially polarized beam. In addition, the radiation directivity is significantly improved as compared with single silicon nanospheres because of the interference between the total electric dipole and magnetic quadrupole modes. For a homodimer composed of two identical silicon nanospheres, the scattering light is equally distributed in the two radiation directions. In comparison, the incident light is preferentially scattered to the small Si nanosphere for a heterodimer composed of two silicon nanospheres with different diameters. As a result, a unidirectional lateral scattering can be realized by using a single silicon nanosphere displaced appropriately from the focal point. Our findings are helpful for understanding the mode hybridization in silicon nanosphere dimers illuminated by a focused radially polarized beam and useful for designing photonic devices capable of manipulating the radiation direction and directivity of structured light.

3.
Opt Express ; 26(22): 28891-28901, 2018 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-30470059

RESUMEN

Efficiently controlling the direction of optical radiation at nanoscale dimensions is essential for various nanophotonics applications. All-dielectric nanoparticles can be used to engineer the direction of scattered light via overlapping of electric and magnetic resonance modes. Herein, we propose all-dielectric core-shell SiO2-Ge-SiO2 nanoparticles that can simultaneously achieve broadband zero backward scattering and enhanced forward scattering. Introducing higher-order electric and magnetic resonance modes satisfies the generalized first Kerker condition for breaking through the dipole approximation. Zero backward scattering occurs near the electric and magnetic resonant regions, this directional scattering is therefore efficient. Adjusting the nanoparticles' geometric parameters can shift the spectral position of the broadband zero backward scattering to the visible and near-infrared regions. The wavelength width of the zero backward scattering could be enlarged as high as 142 and 63 nm in the visible and near-infrared region. Due to these unique optical features the proposed core-shell nanoparticles are promising candidates for the design of high-performance nanoantennas, low-loss metamaterials, and photovoltaic devices.

4.
Opt Express ; 26(10): 12344-12362, 2018 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-29801270

RESUMEN

We propose an all-silicon-based nano-antenna that functions as not only a wavelength demultiplexer but also a polarization one. The nano-antenna is composed of two silicon cuboids with the same length and height but with different widths. The asymmetric structure of the nano-antenna with respect to the electric field of the incident light induced an electric dipole component in the propagation direction of the incident light. The interference between this electric dipole and the magnetic dipole induced by the magnetic field parallel to the long side of the cuboids is exploited to manipulate the radiation direction of the nano-antenna. The radiation direction of the nano-antenna at a certain wavelength depends strongly on the phase difference between the electric and magnetic dipoles interacting coherently, offering us the opportunity to realize wavelength demultiplexing. By varying the polarization of the incident light, the interference of the magnetic dipole induced by the asymmetry of the nano-antenna and the electric dipole induced by the electric field parallel to the long side of the cuboids can also be used to realize polarization demultiplexing in a certain wavelength range. More interestingly, the interference between the dipole and quadrupole modes of the nano-antenna can be utilized to shape the radiation directivity of the nano-antenna. We demonstrate numerically that radiation with adjustable direction and high directivity can be realized in such a nano-antenna which is compatible with the current fabrication technology of silicon chips.

5.
Opt Express ; 25(11): 12357-12371, 2017 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-28786592

RESUMEN

We investigated theoretically and numerically the optical pulling and pushing forces acting on silicon (Si) nanospheres (NSs) with strong coherent interaction between electric and magnetic resonances. We examined the optical pulling and pushing forces exerted on Si NSs by two interfering waves and revealed the underlying physical mechanism from the viewpoint of electric- and magnetic-dipole manipulation. As compared with a polystyrene (PS) NS, it was found that the optical pulling force for a Si NS with the same size is enlarged by nearly two orders of magnitude. In addition to the optical pulling force appearing at the long-wavelength side of the magnetic dipole resonance, very large optical pushing force is observed at the magnetic quadrupole resonance. The correlation between the optical pulling/pushing force and the directional scattering characterized by the ratio of the forward to backward scattering was revealed. More interestingly, it was found that the high-order electric and magnetic resonances in large Si NSs play an important role in producing optical pulling force which can be generated by not only s-polarized wave but also p-polarized one. Our finding indicates that the strong coherent interaction between the electric and magnetic resonances existing in nanoparticles with large refractive indices can be exploited to manipulate the optical force acting on them and the correlation between the optical force and the directional scattering can be used as guidance. The engineering and manipulation of optical forces will find potential applications in the trapping, transport and sorting of nanoparticles.

6.
J Phys Chem Lett ; 13(42): 9967-9974, 2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36260874

RESUMEN

Thin-film pervoskite lasers driven by a continuous wave (CW) laser with ultralow thresholds, which is crucial for the development of on-chip electrically driven lasers, have not yet been realized owing to the low excitation power density of the CW laser. Here, we reported the CW-laser-pumped lasing from a thin film of CsPbBr3 quantum dots (QDs) sandwiched by a SiNx and a Ag thin film and mediated by the whispering gallery modes of a SiO2 microsphere. The stable photoluminescence from CsPbBr3 QDs with a quantum efficiency of ∼45% is realized by encapsulating with a thin SiNx film. Upon CW-laser pumping, lasing from the whispering gallery modes with a threshold of ∼11.6 W/cm2 is successfully demonstrated at room temperature. The strong localization of electric field achieved in the particle-on-film system, which is revealed in the numerical simulations and lifetime measurements, plays a crucial role in the realization of the ultralow threshold lasing. Our findings open a new avenue for designing photostable CW-laser-pumped pervoskite lasers.

7.
Nat Commun ; 13(1): 2749, 2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35585064

RESUMEN

The low quantum efficiency of silicon (Si) has been a long-standing challenge for scientists. Although improvement of quantum efficiency has been achieved in porous Si or Si quantum dots, highly efficient Si-based light sources prepared by using the current fabrication technooloy of Si chips are still being pursued. Here, we proposed a strategy, which exploits the intrinsic excitation of carriers at high temperatures, to modify the carrier dynamics in Si nanoparticles. We designed a Si/SiO2 cuboid supporting a quasi-bound state in the continuum (quasi-BIC) and demonstrated the injection of dense electron-hole plasma via two-photon-induced absorption by resonantly exciting the quasi-BIC with femtosecond laser pulses. We observed a significant improvement in quantum efficiency by six orders of magnitude to ~13%, which is manifested in the ultra-bright hot electron luminescence emitted from the Si/SiO2 cuboid. We revealed that femtosecond laser light with transverse electric polarization (i.e., the electric field perpendicular to the length of a Si/SiO2 cuboid) is more efficient for generating hot electron luminescence in Si/SiO2 cuboids as compared with that of transverse magnetic polarization (i.e., the magnetic field perpendicular to the length of a Si/SiO2 cuboid). Our findings pave the way for realizing on-chip nanoscale Si light sources for photonic integrated circuits and open a new avenue for manipulating the luminescence properties of semiconductors with indirect bandgaps.

8.
Nanomaterials (Basel) ; 10(6)2020 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-32486133

RESUMEN

We investigate experimentally and numerically the scattering properties of liquid gallium nanoparticles coupled to a thin gold or silver film. The gallium nanoparticles are excited either directly by using inclined white light or indirectly by surface plasmon polaritons generated on the surface of the gold/silver film. In the former case, the scattering spectrum is always dominated by a scattering peak at ∼540 nm with a long-wavelength shoulder which is redshifted with increasing diameter of the gallium nanoparticle. Under the excitation of the surface plasmon polaritons, optical resonances with much narrower linewidths, which are dependent on the incidence angle of the white light, appear in the scattering spectra. In this case, the scattering spectrum depends weakly on the diameter of the gallium nanoparticle but the radiation pattern exhibits a strong dependence. In addition, a significant enhancement of electric field is expected in the gap region between the gallium nanoparticles and the gold film based on numerical simulation. As compared with the gallium nanoparticle coupled to the gold film which exhibit mainly yellow and orange colors, vivid scattering light spanning the visible light spectrum can be achieved in the gallium nanoparticles coupled to the silver film by simply varying the incidence angle. Gallium nanoparticles coupled to thin metal films may find potential applications in light-matter interaction and color display.

9.
Adv Mater ; 31(30): e1901371, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31172590

RESUMEN

Rapid and controllable formation of fluorescent carbon quantum dots (CQDs) is highly desirable in the fields of nanophotonics and biophotonics. Here, a novel strategy for creating CQDs, which emit white light efficiently under the excitation of either laser light or a mercury lamp, is proposed and demonstrated. The luminescent CQDs are generated by irradiating a poly(vinyl alcohol) (PVA) film doped with dense gold nanoparticles (AuNPs) with femtosecond laser pulses. The creation of CQDs from PVA is a two-step dehydration process mediated by AuNPs which act not only as heat sources but also as catalytic agents. The formation of CC, CC, and CO bonds is confirmed by infrared Fourier transformation spectroscopy and X-ray photoelectron spectroscopy. It is revealed both numerically and experimentally that a spatially localized temperature distribution at the deep subwavelength scale can be achieved in oligomers of AuNPs by resonantly exciting the Fano resonances formed in the oligomers of AuNPs, enabling the generation of CQDs with small diameters. As one of the potential applications, it is demonstrated that optical display and optical data storage with ultralow energy can be realized by selectively introducing luminescent CQDs in the AuNP/PVA film.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA