Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Phys Chem Chem Phys ; 24(31): 18729-18737, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35899998

RESUMEN

Herein, we report structural, computational, and conductivity studies on urea-directed self-assembled iodinated triphenylamine (TPA) derivatives. Despite numerous reports of conductive TPAs, the challenges of correlating their solid-state assembly with charge transport properties hinder the efficient design of new materials. In this work, we compare the assembled structures of a methylene urea bridged dimer of di-iodo TPA (1) and the corresponding methylene urea di-iodo TPA monomer (2) with a di-iodo mono aldehyde (3) control. These modifications lead to needle shaped crystals for 1 and 2 that are organized by urea hydrogen bonding, π⋯π stacking, I⋯I, and I⋯π interactions as determined by SC-XRD, Hirshfeld surface analysis, and X-ray photoelectron spectroscopy (XPS). The long needle shaped crystals were robust enough to measure the conductivity by two contact probe methods with 2 exhibiting higher conductivity values (∼6 × 10-7 S cm-1) compared to 1 (1.6 × 10-8 S cm-1). Upon UV-irradiation, 1 formed low quantities of persistent radicals with the simple methylurea 2 displaying less radical formation. The electronic properties of 1 were further investigated using valence band XPS, which revealed a significant shift in the valence band upon UV irradiation (0.5-1.9 eV), indicating the potential of these materials as dopant free p-type hole transporters. The electronic structure calculations suggest that the close packing of TPA promotes their electronic coupling and allows effective charge carrier transport. Our results show that ionic additives significantly improve the conductivity up to ∼2.0 × 10-6 S cm-1 in thin films, enabling their implementation in functional devices such as perovskite or solid-state dye sensitized solar cells.

2.
J Biomed Inform ; 97: 103254, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31352060

RESUMEN

Stomach cancer is one of the leading causes of cancer-related deaths worldwide. More than 80% diagnosis of this cancer occur at later stages leading to low 5-year survival rate. This emphasizes the need to have better prognostic techniques for stomach cancer. In this regard, the Next-Generation Sequencing of whole genome and multi-view approach to omics may reveal the underlying molecular complexity of stomach cancer using high throughput expression data of miRNA. Generally, miRNAs are small, non-coding RNAs, which cause downregulation of target mRNAs. They also show differential expression for a specific biological condition like stage or histological type of stomach cancer, highlighting their importance as potential biomarkers. Analyzing miRNA expression data is a challenging task due to the existence of large number of miRNAs and less sample size. A small set of miRNAs will be helpful in designing efficient diagnostic and prognostic tool. In this regard, here a computational framework is proposed that selects different sets of miRNAs for five different categories of clinical outcomes viz. condition, clinical stage, age, histological type, and survival status. First, the miRNAs are ranked using four feature ranking methods. These ranks are used to find an ensemble rank based on adaptive weight. Second, the top 100 miRNAs from each category are used to find the miRNAs that are common to all categories as well as miRNAs that belong to only one category. Finally, the results have been validated quantitatively and through biological significance analysis.


Asunto(s)
Biomarcadores de Tumor/genética , MicroARNs/genética , Neoplasias Gástricas/genética , Biología Computacional , Detección Precoz del Cáncer/estadística & datos numéricos , Perfilación de la Expresión Génica/estadística & datos numéricos , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Estudio de Asociación del Genoma Completo/estadística & datos numéricos , Secuenciación de Nucleótidos de Alto Rendimiento/estadística & datos numéricos , Humanos , Pronóstico , RNA-Seq/estadística & datos numéricos , Neoplasias Gástricas/diagnóstico , Factores de Transcripción/genética
3.
J Mol Biol ; 434(15): 167684, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35700770

RESUMEN

MOTIVATION: Continuous emergence of new variants through appearance/accumulation/disappearance of mutations is a hallmark of many viral diseases. SARS-CoV-2 variants have particularly exerted tremendous pressure on global healthcare system owing to their life threatening and debilitating implications. The sheer plurality of variants and huge scale of genomic data have added to the challenges of tracing the mutations/variants and their relationship to infection severity (if any). RESULTS: We explored the suitability of virus-genotype guided machine-learning in infection prognosis and identification of features/mutations-of-interest. Total 199,519 outcome-traced genomes, representing 45,625 nucleotide-mutations, were employed. Among these, post data-cleaning, Low and High severity genomes were classified using an integrated model (employing virus genotype, epitopic-influence and patient-age) with consistently high ROC-AUC (Asia:0.97 ± 0.01, Europe:0.94 ± 0.01, N.America:0.92 ± 0.02, Africa:0.94 ± 0.07, S.America:0.93 ± 03). Although virus-genotype alone could enable high predictivity (0.97 ± 0.01, 0.89 ± 0.02, 0.86 ± 0.04, 0.95 ± 0.06, 0.9 ± 0.04), the performance was not found to be consistent and the models for a few geographies displayed significant improvement in predictivity when the influence of age and/or epitope was incorporated with virus-genotype (Wilcoxon p_BH < 0.05). Neither age or epitopic-influence or clade information could out-perform the integrated features. A sparse model (6 features), developed using patient-age and epitopic-influence of the mutations, performed reasonably well (>0.87 ± 0.03, 0.91 ± 0.01, 0.87 ± 0.03, 0.84 ± 0.08, 0.89 ± 0.05). High-performance models were employed for inferring the important mutations-of-interest using Shapley Additive exPlanations (SHAP). The changes in HLA interactions of the mutated epitopes of reference SARS-CoV-2 were then subsequently probed. Notably, we also describe the significance of a 'temporal-modeling approach' to benchmark the models linked with continuously evolving pathogens. We conclude that while machine learning can play a vital role in identifying relevant mutations and factors driving the severity, caution should be exercised in using the genotypic signatures for predictive prognosis.


Asunto(s)
COVID-19 , Aprendizaje Automático , SARS-CoV-2 , Índice de Severidad de la Enfermedad , COVID-19/virología , Genoma Viral/genética , Genotipo , Humanos , Mutación , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad
4.
Interdiscip Sci ; 13(4): 624-637, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33761117

RESUMEN

Identification of groups of co-expressed or co-regulated genes is critical for exploring the underlying mechanism behind a particular disease like cancer. Condition-specific (disease-specific) gene-expression profiles acquired from different platforms are widely utilized by researchers to get insight into the regulatory mechanism of the disease. Several clustering algorithms are developed using gene expression profiles to identify the group of similar genes. These algorithms are computationally efficient but are not able to capture the functional similarity present between the genes, which is very important from a biological perspective. In this study, an algorithm named CorGO is introduced, that specifically deals with the identification of functionally similar gene-clusters. Two types of relationships are calculated for this purpose. Firstly, the Correlation (Cor) between the genes are captured from the gene-expression data, which helps in deciphering the relationship between genes based on its expression across several diseased samples. Secondly, Gene Ontology (GO)-based semantic similarity information available for the genes is utilized, that helps in adding up biological relevance to the identified gene-clusters. A similarity measure is defined by integrating these two components that help in the identification of homogeneous and functionally similar groups of genes. CorGO is applied to four different types of gene expression profiles of different types of cancer. Gene-clusters identified by CorGO, are further validated by pathway enrichment, disease enrichment, and network analysis. These biological analyses demonstrated significant connectivity and functional relatedness within the genes of the same cluster. A comparative study with commonly used clustering algorithms is also performed to show the efficacy of the proposed method.


Asunto(s)
Algoritmos , Perfilación de la Expresión Génica , Análisis por Conglomerados , Ontología de Genes , Transcriptoma
5.
Virus Res ; 305: 198579, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34560183

RESUMEN

The SARS-CoV2 mediated Covid-19 pandemic has impacted humankind at an unprecedented scale. While substantial research efforts have focused towards understanding the mechanisms of viral infection and developing vaccines/ therapeutics, factors affecting the susceptibility to SARS-CoV2 infection and manifestation of Covid-19 remain less explored. Given that the Human Leukocyte Antigen (HLA) system is known to vary among ethnic populations, it is likely to affect the recognition of the virus, and in turn, the susceptibility to Covid-19. To understand this, we used bioinformatic tools to probe all SARS-CoV2 peptides which could elicit T-cell response in humans. We also tried to answer the intriguing question of whether these potential epitopes were equally immunogenic across ethnicities, by studying the distribution of HLA alleles among different populations and their share of cognate epitopes. Results indicate that the immune recognition potential of SARS-CoV2 epitopes tend to vary between different ethnic groups. While the South Asians are likely to recognize higher number of CD8-specific epitopes, Europeans are likely to identify higher number of CD4-specific epitopes. We also hypothesize and provide clues that the newer mutations in SARS-CoV2 are unlikely to alter the T-cell mediated immunogenic responses among the studied ethnic populations. The work presented herein is expected to bolster our understanding of the pandemic, by providing insights into differential immunological response of ethnic populations to the virus as well as by gaging the possible effects of mutations in SARS-CoV2 on efficacy of potential epitope-based vaccines through evaluating ∼40,000 viral genomes.


Asunto(s)
COVID-19/inmunología , Epítopos de Linfocito B/inmunología , Epítopos de Linfocito T/inmunología , Etnicidad , Genoma Viral , Antígenos HLA/inmunología , SARS-CoV-2/inmunología , África/epidemiología , Alelos , Secuencia de Aminoácidos , Asia/epidemiología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/virología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/virología , COVID-19/epidemiología , COVID-19/genética , COVID-19/patología , Biología Computacional/métodos , Susceptibilidad a Enfermedades , Epítopos de Linfocito B/clasificación , Epítopos de Linfocito B/genética , Epítopos de Linfocito T/clasificación , Epítopos de Linfocito T/genética , Europa (Continente)/epidemiología , Antígenos HLA/clasificación , Antígenos HLA/genética , Humanos , Medio Oriente/epidemiología , Oceanía/epidemiología , Análisis de Componente Principal , ARN Viral/genética , ARN Viral/inmunología , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA