Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
1.
Nature ; 601(7894): 556-561, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35082421

RESUMEN

As the length scales of materials decrease, the heterogeneities associated with interfaces become almost as important as the surrounding materials. This has led to extensive studies of emergent electronic and magnetic interface properties in superlattices1-9. However, the interfacial vibrations that affect the phonon-mediated properties, such as thermal conductivity10,11, are measured using macroscopic techniques that lack spatial resolution. Although it is accepted that intrinsic phonons change near boundaries12,13, the physical mechanisms and length scales through which interfacial effects influence materials remain unclear. Here we demonstrate the localized vibrational response of interfaces in strontium titanate-calcium titanate superlattices by combining advanced scanning transmission electron microscopy imaging and spectroscopy, density functional theory calculations and ultrafast optical spectroscopy. Structurally diffuse interfaces that bridge the bounding materials are observed and this local structure creates phonon modes that determine the global response of the superlattice once the spacing of the interfaces approaches the phonon spatial extent. Our results provide direct visualization of the progression of the local atomic structure and interface vibrations as they come to determine the vibrational response of an entire superlattice. Direct observation of such local atomic and vibrational phenomena demonstrates that their spatial extent needs to be quantified to understand macroscopic behaviour. Tailoring interfaces, and knowing their local vibrational response, provides a means of pursuing designer solids with emergent infrared and thermal responses.

2.
Nature ; 577(7789): 199-203, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31915396

RESUMEN

Bulk amorphous materials have been studied extensively and are widely used, yet their atomic arrangement remains an open issue. Although they are generally believed to be Zachariasen continuous random networks1, recent experimental evidence favours the competing crystallite model in the case of amorphous silicon2-4. In two-dimensional materials, however,  the corresponding questions remain unanswered. Here we report the synthesis, by laser-assisted chemical vapour deposition5, of centimetre-scale, free-standing, continuous and stable monolayer amorphous carbon, topologically distinct from disordered graphene. Unlike in bulk materials, the structure of monolayer amorphous carbon can be determined by atomic-resolution imaging. Extensive characterization by Raman and X-ray spectroscopy and transmission electron microscopy reveals the complete absence of long-range periodicity and a threefold-coordinated structure with a wide distribution of bond lengths, bond angles, and five-, six-, seven- and eight-member rings. The ring distribution is not a Zachariasen continuous random network, but resembles the competing (nano)crystallite model6. We construct a corresponding model that enables density-functional-theory calculations of the properties of monolayer amorphous carbon, in accordance with observations. Direct measurements confirm that it is insulating, with resistivity values similar to those of boron nitride grown by chemical vapour deposition. Free-standing monolayer amorphous carbon is surprisingly stable and deforms to a high breaking strength, without crack propagation from the point of fracture. The excellent physical properties of this stable, free-standing monolayer amorphous carbon could prove useful for permeation and diffusion barriers in applications such as magnetic recording devices and flexible electronics.

3.
Nat Mater ; 22(5): 612-618, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36928385

RESUMEN

Correlation of lattice vibrational properties with local atomic configurations in materials is essential for elucidating functionalities that involve phonon transport in solids. Recent developments in vibrational spectroscopy in a scanning transmission electron microscope have enabled direct measurements of local phonon modes at defects and interfaces by combining high spatial and energy resolution. However, pushing the ultimate limit of vibrational spectroscopy in a scanning transmission electron microscope to reveal the impact of chemical bonding on local phonon modes requires extreme sensitivity of the experiment at the chemical-bond level. Here we demonstrate that, with improved instrument stability and sensitivity, the specific vibrational signals of the same substitutional impurity and the neighbouring carbon atoms in monolayer graphene with different chemical-bonding configurations are clearly resolved, complementary with density functional theory calculations. The present work opens the door to the direct observation of local phonon modes with chemical-bonding sensitivity, and provides more insights into the defect-induced physics in graphene.

4.
Nano Lett ; 23(4): 1298-1305, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36779843

RESUMEN

An atomic-scale ripple structure has been revealed by electron tomography based on sequential projected atomic-resolution images, but it requires harsh imaging conditions with negligible structure evolution of the imaged samples. Here, we demonstrate that the ripple structure in monolayer MoSe2 can be facilely reconstructed from a single-frame scanning transmission electron microscopy (STEM) image collected at designated collection angles. The intensity and shape of each Se2 atomic column in the single-frame projected STEM image are synergistically combined to precisely map the slight misalignments of two Se atoms induced by rippling, which is then converted to three-dimensional (3D) ripple distortions. The dynamics of 3D ripple deformation can thus be directly visualized at the atomic scale by sequential STEM imaging. In addition, the reconstructed images provide the first opportunity for directly testing the validity of the classical theory of thermal fluctuations. Our method paves the way for a 3D reconstruction of a dynamical process in two-dimensional materials with a reasonable temporal resolution.

5.
Nano Lett ; 22(9): 3598-3603, 2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35451844

RESUMEN

Spin spirals (SS) are a special case of noncollinear magnetism, where the magnetic-moment direction rotates along an axis. They have generated interest for novel phenomena, spintronics applications, and their potential formation in monolayers, but the search for monolayers exhibiting SS has not been particularly fruitful. Here, we employ density functional theory calculations to demonstrate that SS form in a recently synthesized monolayer, FeOCl. The SS wavelength and stability can be tuned by doping and uniaxial strain. The SS-state band gap is larger by 0.6 eV compared to the gap of both the ferromagnetic and antiferromagnetic state, enabling bandgap tuning and possibly an unusual formation of quantum wells in a single material via magnetic-field manipulation. The SS-induced out-of-plane ferroelectricity enables switching of the SS chirality by an electric field. Finally, forming heterostructures, for example, with graphene or boron nitride, maintains SS ordering and provides another method of modulation and a potential for magnetoelectric devices.

6.
Nano Lett ; 22(19): 8018-8024, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-35959969

RESUMEN

The structure of amorphous materials has been debated since the 1930s as a binary question: amorphous materials are either Zachariasen continuous random networks (Z-CRNs) or Z-CRNs containing crystallites. It was recently demonstrated, however, that amorphous diamond can be synthesized in either form. Here we address the question of the structure of single-atom-thick amorphous monolayers. We reanalyze the results of prior simulations for amorphous graphene and report kinetic Monte Carlo simulations based on alternative algorithms. We find that crystallite-containing Z-CRN is the favored structure of elemental amorphous graphene, as recently fabricated, whereas the most likely structure of binary monolayer amorphous BN is altogether different than either of the two long-debated options: it is a compositionally disordered "pseudo-CRN" comprising a mix of B-N and noncanonical B-B and N-N bonds and containing "pseudocrystallites", namely, honeycomb regions made of noncanonical hexagons. Implications for other nonelemental 2D and bulk amorphous materials are discussed.

7.
Small ; 18(4): e2102687, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34846103

RESUMEN

Since the advent of graphene ushered the era of 2D materials, many forms of hydrogenated graphene have been reported, exhibiting diverse properties ranging from a tunable bandgap to ferromagnetic ordering. Patterned hydrogenated graphene with micron-scale patterns has been fabricated by lithographic means. Here, successful millimeter-scale synthesis of an intrinsically honeycomb-patterned form of hydrogenated graphene on Ru(0001) by epitaxial growth followed by hydrogenation is reported. Combining scanning tunneling microscopy observations with density-functional-theory (DFT) calculations, it is revealed that an atomic-hydrogen layer intercalates between graphene and Ru(0001). The result is a hydrogen honeycomb structure that serves as a template for the final hydrogenation, which converts the graphene into graphane only over the template, yielding honeycomb-patterned hydrogenated graphene (HPHG). In effect, HPHG is a form of patterned graphane. DFT calculations find that the unhydrogenated graphene regions embedded in the patterned graphane exhibit spin-polarized edge states. This type of growth mechanism provides a new pathway for the fabrication of intrinsically patterned graphene-based materials.

8.
Proc Natl Acad Sci U S A ; 116(21): 10309-10316, 2019 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-31068468

RESUMEN

Interfaces between transition metal oxides are known to exhibit emerging electronic and magnetic properties. Here we report intriguing magnetic phenomena for La2/3Sr1/3MnO3 films on an SrTiO3 (001) substrate (LSMO/STO), where the interface governs the macroscopic properties of the entire monolithic thin film. The interface is characterized on the atomic level utilizing scanning transmission electron microscopy and electron energy loss spectroscopy (STEM-EELS), and density functional theory (DFT) is employed to elucidate the physics. STEM-EELS reveals mixed interfacial stoichiometry, subtle lattice distortions, and oxidation-state changes. Magnetic measurements combined with DFT calculations demonstrate that a unique form of antiferromagnetic exchange coupling appears at the interface, generating a novel exchange spring-type interaction that results in a remarkable spontaneous magnetic reversal of the entire ferromagnetic film, and an inverted magnetic hysteresis, persisting above room temperature. Formal oxidation states derived from electron spectroscopy data expose the fact that interfacial oxidation states are not consistent with nominal charge counting. The present work demonstrates the necessity of atomically resolved electron microscopy and spectroscopy for interface studies. Theory demonstrates that interfacial nonstoichiometry is an essential ingredient, responsible for the observed physical properties. The DFT-calculated electrostatic potential is flat in both the LSMO and STO sides (no internal electric field) for both Sr-rich and stoichiometric interfaces, while the DFT-calculated charge density reveals no charge transfer/accumulation at the interface, indicating that oxidation-state changes do not necessarily reflect charge transfer and that the concept of polar mismatch is not applicable in metal-insulator polar-nonpolar interfaces.

9.
Nat Mater ; 19(1): 43-48, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31740791

RESUMEN

The family of layered thio- and seleno-phosphates has gained attention as potential control dielectrics for the rapidly growing family of two-dimensional and quasi-two-dimensional electronic materials. Here we report a combination of density functional theory calculations, quantum molecular dynamics simulations and variable-temperature, -pressure and -bias piezoresponse force microscopy data to predict and verify the existence of an unusual ferroelectric property-a uniaxial quadruple potential well for Cu displacements-enabled by the van der Waals gap in copper indium thiophosphate (CuInP2S6). The calculated potential energy landscape for Cu displacements is strongly influenced by strain, accounting for the origin of the negative piezoelectric coefficient and rendering CuInP2S6 a rare example of a uniaxial multi-well ferroelectric. Experimental data verify the coexistence of four polarization states and explore the temperature-, pressure- and bias-dependent piezoelectric and ferroelectric properties, which are supported by bias-dependent molecular dynamics simulations. These phenomena offer new opportunities for both fundamental studies and applications in data storage and electronics.

10.
Nano Lett ; 20(9): 6666-6673, 2020 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32822183

RESUMEN

Indium selenide (InSe) has a high electron mobility and tunable direct band gap, enabling its potential applications to electronic and optoelectronic devices. Here, we report the fabrication of InSe photodetectors with high on/off ratios and ultrahigh photoresponsivity, using ferroelectric poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) copolymer films as the top-gate dielectric. Benefiting from the successful suppression of the dark current down to ∼10-14A in the InSe channel by tuning the three different polarization states in ferroelectric P(VDF-TrFE) and improved interface properties using h-BN as a substrate, the ferroelectric-gated InSe photodetectors show a high on/off ratio of over 108, a high photoresponsivity up to 14 250 AW-1, a high detectivity up to 1.63 × 1013 Jones, and a fast response time of 600 µs even at zero-gate voltage. The present results highlight the role of ferroelectric P(VDF-TrFE) in tuning the carrier transport of InSe and may provide an avenue for the development of InSe-based photodetectors.

11.
Nano Lett ; 20(4): 2674-2680, 2020 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-32125162

RESUMEN

Opening a band gap in bilayer graphene (BLG) is of significance for potential applications in graphene-based electronic and photonic devices. Here, we report the generation of a sizable band gap in BLG by intercalating silicene between BLG and Ru substrate. We first grow high-quality Bernal-stacked BLG on Ru(0001) and then intercalate silicene to the interface between the BLG and Ru, which is confirmed by low-energy electron diffraction and scanning tunneling microscopy. Raman spectroscopy shows that the G and 2D peaks of the intercalated BLG are restored to the freestanding-BLG features. Angle-resolved photoelectron spectroscopy measurements show that a band gap of about 0.2 eV opens in the BLG. Density functional theory calculations indicate that the large-gap opening results from a cooperative contribution of the doping and rippling/strain in the BLG. This work provides insightful understanding on the mechanism of band gap opening in BLG and enhances the potential of graphene-based device development.

12.
Nano Lett ; 20(12): 8584-8591, 2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33200603

RESUMEN

Graphene on SiO2 enables fabrication of Si-technology-compatible devices, but a transfer of these devices from other substrates and direct growth have severe limitations due to a relatively small grain size or device-contamination. Here, we show an efficient, transfer-free way to integrate centimeter-scale, single-crystal graphene, of a quality suitable for electronic devices, on an insulating SiO2 film. Starting with single-crystal graphene grown epitaxially on Ru(0001), a SiO2 film is grown under the graphene by stepwise intercalation of silicon and oxygen. Thin (∼1 nm) crystalline or thicker (∼2 nm) amorphous SiO2 has been produced. The insulating nature of the thick amorphous SiO2 is verified by transport measurements. The device-quality of the corresponding graphene was confirmed by the observation of Shubnikov-de Haas oscillations, an integer quantum Hall effect, and a weak antilocalization effect within in situ fabricated Hall bar devices. This work provides a reliable platform for applications of large-scale, high-quality graphene in electronics.

13.
Proc Natl Acad Sci U S A ; 114(26): E5062-E5069, 2017 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-28607082

RESUMEN

Interfaces between materials present unique opportunities for the discovery of intriguing quantum phenomena. Here, we explore the possibility that, in the case of superlattices, if one of the layers is made ultrathin, unexpected properties can be induced between the two bracketing interfaces. We pursue this objective by combining advanced growth and characterization techniques with theoretical calculations. Using prototype La2/3Sr1/3MnO3 (LSMO)/BaTiO3 (BTO) superlattices, we observe a structural evolution in the LSMO layers as a function of thickness. Atomic-resolution EM and spectroscopy reveal an unusual polar structure phase in ultrathin LSMO at a critical thickness caused by interfacing with the adjacent BTO layers, which is confirmed by first principles calculations. Most important is the fact that this polar phase is accompanied by reemergent ferromagnetism, making this system a potential candidate for ultrathin ferroelectrics with ferromagnetic ordering. Monte Carlo simulations illustrate the important role of spin-lattice coupling in LSMO. These results open up a conceptually intriguing recipe for developing functional ultrathin materials via interface-induced spin-lattice coupling.

14.
Nano Lett ; 19(8): 4897-4903, 2019 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-30973231

RESUMEN

Creation of functional patterns in two-dimensional (2D) materials provides opportunities to extend their potential for applications. Transition-metal dichalcogenides (TMDCs) are suitable 2D materials for pattern generation because of properties including alterable polymorphic phases, easy chalcogen-vacancy formation, metal-atom insertion, and alloying. Such patterning can be used for selective functionalization. Here we report the spontaneous formation of long-range, well-ordered 1D patterns in monolayer vanadium diselenide (VSe2) by a single annealing stage during growth. Atomic-resolution images in real space combined with density-functional-theory (DFT) calculations reveal the 1D features of patterned VSe2. Further experimental characterization of the intermediate states in the growth process confirm the spontaneous formation of the 1D pattern by annealing-induced Se-deficient linear defects. The 1D pattern can be reversibly transformed to homogenous VSe2 monolayer by reintroducing Se atoms. Moreover, additional experiments demonstrate that a dispersive deposition of Pt atoms along the 1D structures of patterned VSe2 is achieved, while DFT calculations find that their catalytic activity for hydrogen evolution reaction (HER) is as good as that of Pt surfaces. The formation of long-range, well-ordered 1D patterns not only demonstrates an effective way of dimension modulation in 2D materials but also enriches the potential of intrinsically patterned 2D materials for promising catalytic activities.

15.
J Am Chem Soc ; 141(4): 1742-1748, 2019 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-30592419

RESUMEN

The ability of substitution atoms to decrease thermal conductivity is usually ascribed to the enhanced phonon-impurity scattering by assuming the original phonon dispersion relations. In this study, we find that 10% SbGe alloying in GeTe modifies the phonon dispersions significantly, closes the acoustic-optical phonon band gap, increases the phonon-phonon scattering rates, and reduces the phonon group velocities. These changes, together with grain boundaries, nanoprecipitates, and planar vacancies, lead to a significant decrease in the lattice thermal conductivity. In addition, an extra 2-6% Zn alloying decreases the energy offset between valence band edges at L and Σ points in Ge1- xSb xTe that is found to be induced by the Ge 4s2 lone pairs. Since Zn is free of s2 lone pair electrons, substituting Ge with Zn atoms can consequently diminish the Ge 4s2 lone-pair characters and reduce the energy offset, resulting in two energetically merged valence band maxima. The refined band structures render a power factor up to 40 µW cm-1 K-2 in Ge0.86Sb0.1Zn0.04Te. Ultimately, a superhigh zT of 2.2 is achieved. This study clarifies the impacts of high-concentration substitutional atoms on phonon band structure, phonon-phonon scattering rates, and the convergence of electron valence band edges, which could provide guidelines for developing high-performance thermoelectric materials.

16.
J Am Chem Soc ; 141(22): 8928-8936, 2019 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-31090414

RESUMEN

The failure to achieve stable Ohmic contacts in two-dimensional material devices currently limits their promised performance and integration. Here we demonstrate that a phase transformation in a region of a layered semiconductor, PdSe2, can form a contiguous metallic Pd17Se15 phase, leading to the formation of seamless Ohmic contacts for field-effect transistors. This phase transition is driven by defects created by exposure to an argon plasma. Cross-sectional scanning transmission electron microscopy is combined with theoretical calculations to elucidate how plasma-induced Se vacancies mediate the phase transformation. The resulting Pd17Se15 phase is stable and shares the same native chemical bonds with the original PdSe2 phase, thereby forming an atomically sharp Pd17Se15/PdSe2 interface. These Pd17Se15 contacts exhibit a low contact resistance of ∼0.75 kΩ µm and Schottky barrier height of ∼3.3 meV, enabling nearly a 20-fold increase of carrier mobility in PdSe2 transistors compared to that of traditional Ti/Au contacts. This finding opens new possibilities in the development of better electrical contacts for practical applications of 2D materials.

17.
Phys Rev Lett ; 122(10): 106101, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30932633

RESUMEN

In addition to their unique optical and electronic properties, two-dimensional materials provide opportunities to directly observe atomic-scale defect dynamics. Here we use scanning transmission electron microscopy to observe substitutional Re impurities in monolayer MoS_{2} undergo direct exchanges with neighboring Mo atoms in the lattice. Density-functional-theory calculations find that the energy barrier for direct exchange, a process that has only been studied as a diffusion mechanism in bulk materials, is too large for either thermal activation or energy directly transferred from the electron beam. The presence of multiple sulfur vacancies next to the exchanged Re-Mo pair, as observed by electron microscopy, does not lower the energy barrier sufficiently to account for the observed atomic exchange. Instead, the calculations find that a Re dopant and surrounding sulfur vacancies introduce an ever-changing set of deep levels in the energy gap. We propose that these levels mediate an "explosive" recombination-enhanced migration via multiple electron-hole recombination events. As a proof of concept, we also show that Re-Mo direct exchange can be triggered via controlled creation of sulfur vacancies. The present experimental and theoretical findings lay a fundamental framework towards manipulating single substitutional dopants in two-dimensional materials.

18.
Nano Lett ; 18(6): 4034-4039, 2018 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-29804458

RESUMEN

Thermoelectricity offers a viable and reliable solution to convert waste heat into electricity. To enhance the performance and portability of thermoelectric materials, the crystal grain and pore structure should be simultaneously manipulated to achieve high electrical conductivity (σ), low thermal conductivity (κ), high figure of merit (zT), and low relative density. However, they cannot be synchronously realized using nanocrystals with uncontrolled domain size and shape as building blocks. Here, we employ solution-synthesized PbS nanocrystals with large grain size, controllable shape and tunable spatial packing to realize the aforementioned structural tuning. The as-sintered highly porous and well crystalline monolith exhibits high σ, low κ, high zT (1.06 at 838 K) and low relative density (82%). The phonon transport is studied by density functional theory highlighting the crucial role of phonon-pore scattering in reducing κ to enhance zT. Our strategy may benefit thermoelectrics and shed light on other technical fields such as catalysis, gas sensing, photovoltaics, and so forth.

19.
Nano Lett ; 18(3): 2016-2020, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29388778

RESUMEN

Two-dimensional (2D) materials have generated interest in the scientific community because of the advanced electronic applications they might offer. Powerful electron beam microscopes have been used not only to evaluate the structures of these materials but also to manipulate them by forming vacancies, nanofragments, and nanowires or joining nanoislands together. In this work, we show that the electron beam in a scanning transmission electron microscope (STEM) can be used in yet another way: to mediate the synthesis of 2D 1 H-MoSe2 from Mo-decorated 2D ß-FeSe and simultaneously image the process on the atomic scale. This is quite remarkable given the different crystal structures of the reactant (square lattice ß-FeSe) and the product (hexagonal lattice 1 H-MoSe2). The feasibility of the transformation was first explored by theoretical calculations that predicted that the reaction is exothermic. Furthermore, a theoretical reaction path to forming a stable 1 H-MoSe2 nucleation kernel within pure ß-FeSe was found, demonstrating that the pertinent energy barriers are smaller than the energy supplied by the STEM electron beam.

20.
Nano Lett ; 18(1): 482-490, 2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29253330

RESUMEN

The catalytic and magnetic properties of molybdenum disulfide (MoS2) are significantly enhanced by the presence of edge sites. One way to obtain a high density of edge sites in a two-dimensional (2D) film is by introducing porosity. However, the large-scale bottom-up synthesis of a porous 2D MoS2 film remains challenging and the correlation of growth conditions to the atomic structures of the edges is not well understood. Here, using molecular beam epitaxy, we prepare wafer-scale nanoporous MoS2 films under conditions of high Mo flux and study their catalytic and magnetic properties. Atomic-resolution electron microscopy imaging of the pores reveals two new types of reconstructed Mo-terminated edges, namely, a distorted 1T (DT) edge and the Mo-Klein edge. Nanoporous MoS2 films are magnetic up to 400 K, which is attributed to the presence of Mo-terminated edges with unpaired electrons, as confirmed by density functional theory calculation. The small hydrogen adsorption free energy at these Mo-terminated edges leads to excellent activity for the hydrogen evolution reaction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA