Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(3): e2317668121, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38194455

RESUMEN

Orofacial clefts of the lip and palate are widely recognized to result from complex gene-environment interactions, but inadequate understanding of environmental risk factors has stymied development of prevention strategies. We interrogated the role of DNA methylation, an environmentally malleable epigenetic mechanism, in orofacial development. Expression of the key DNA methyltransferase enzyme DNMT1 was detected throughout palate morphogenesis in the epithelium and underlying cranial neural crest cell (cNCC) mesenchyme, a highly proliferative multipotent stem cell population that forms orofacial connective tissue. Genetic and pharmacologic manipulations of DNMT activity were then applied to define the tissue- and timing-dependent requirement of DNA methylation in orofacial development. cNCC-specific Dnmt1 inactivation targeting initial palate outgrowth resulted in OFCs, while later targeting during palatal shelf elevation and elongation did not. Conditional Dnmt1 deletion reduced cNCC proliferation and subsequent differentiation trajectory, resulting in attenuated outgrowth of the palatal shelves and altered development of cNCC-derived skeletal elements. Finally, we found that the cellular mechanisms of cleft pathogenesis observed in vivo can be recapitulated by pharmacologically reducing DNA methylation in multipotent cNCCs cultured in vitro. These findings demonstrate that DNA methylation is a crucial epigenetic regulator of cNCC biology, define a critical period of development in which its disruption directly causes OFCs, and provide opportunities to identify environmental influences that contribute to OFC risk.


Asunto(s)
Labio Leporino , Fisura del Paladar , Animales , Ratones , Labio Leporino/genética , Metilación de ADN , Fisura del Paladar/genética , Cresta Neural , Metilasas de Modificación del ADN , Proliferación Celular
2.
Hum Mol Genet ; 32(24): 3312-3322, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37658766

RESUMEN

Autism spectrum disorders (ASD) are polygenic multifactorial disorders influenced by environmental factors. ASD-related differential DNA methylation has been found in human peripheral tissues, such as placenta, paternal sperm, buccal epithelium, and blood. However, these data lack direct comparison of DNA methylation levels with brain tissue from the same individual to determine the extent that peripheral tissues are surrogates for behavior-related disorders. Here, whole genome methylation profiling at all the possible sites throughout the mouse genome (>25 million) from both brain and blood tissues revealed novel insights into the systemic contributions of DNA methylation to ASD. Sixty-six differentially methylated regions (DMRs) share the same genomic coordinates in these two tissues, many of which are linked to risk genes for neurodevelopmental disorders and intellectual disabilities (e.g. Prkch, Ptn, Hcfc1, Mid1, and Nfia). Gene ontological pathways revealed a significant number of common terms between brain and blood (N = 65 terms), and nearly half (30/65) were associated with brain/neuronal development. Furthermore, seven DMR-associated genes among these terms contain methyl-sensitive transcription factor sequence motifs within the DMRs of both tissues; four of them (Cux2, Kcnip2, Fgf13, and Mrtfa) contain the same methyl-sensitive transcription factor binding sequence motifs (HES1/2/5, TBX2 and TFAP2C), suggesting DNA methylation influences the binding of common transcription factors required for gene expression. Together, these findings suggest that peripheral blood is a good surrogate tissue for brain and support that DNA methylation contributes to altered gene regulation in the pathogenesis of ASD.


Asunto(s)
Trastorno Autístico , Metilación de ADN , Embarazo , Femenino , Masculino , Humanos , Animales , Ratones , Metilación de ADN/genética , Trastorno Autístico/genética , Epigénesis Genética , Semen , Factores de Transcripción/genética , Hipocampo
3.
Genome Res ; 32(2): 266-279, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34949667

RESUMEN

Mouse knockouts of Cntnap2 show altered neurodevelopmental behavior, deficits in striatal GABAergic signaling, and a genome-wide disruption of an environmentally sensitive DNA methylation modification (5-hydroxymethylcytosine [5hmC]) in the orthologs of a significant number of genes implicated in human neurodevelopmental disorders. We tested adult Cntnap2 heterozygous mice (Cntnap2 +/-; lacking behavioral or neuropathological abnormalities) subjected to a prenatal stress and found that prenatally stressed Cntnap2 +/- female mice show repetitive behaviors and altered sociability, similar to the homozygote phenotype. Genomic profiling revealed disruptions in hippocampal and striatal 5hmC levels that are correlated to altered transcript levels of genes linked to these phenotypes (e.g., Reln, Dst, Trio, and Epha5). Chromatin immunoprecipitation coupled with high-throughput sequencing and hippocampal nuclear lysate pull-down data indicated that 5hmC abundance alters the binding of the transcription factor CLOCK near the promoters of these genes (e.g., Palld, Gigyf1, and Fry), providing a mechanistic role for 5hmC in gene regulation. Together, these data support gene-by-environment hypotheses for the origins of mental illness and provide a means to identify the elusive factors contributing to complex human diseases.


Asunto(s)
Interacción Gen-Ambiente , Trastornos del Neurodesarrollo , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Animales , Metilación de ADN , Epigénesis Genética , Femenino , Proteínas de la Membrana/metabolismo , Ratones , Proteínas del Tejido Nervioso/metabolismo , Embarazo
4.
Alzheimers Dement ; 20(2): 1050-1062, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37856321

RESUMEN

INTRODUCTION: DNA microarray-based studies report differentially methylated positions (DMPs) in blood between late-onset dementia due to Alzheimer's disease (AD) and cognitively unimpaired individuals, but interrogate < 4% of the genome. METHODS: We used whole genome methylation sequencing (WGMS) to quantify DNA methylation levels at 25,409,826 CpG loci in 281 blood samples from 108 AD and 173 cognitively unimpaired individuals. RESULTS: WGMS identified 28,038 DMPs throughout the human methylome, including 2707 differentially methylated genes (e.g., SORCS3, GABA, and PICALM) encoding proteins in biological pathways relevant to AD such as synaptic membrane, cation channel complex, and glutamatergic synapse. One hundred seventy-three differentially methylated blood-specific enhancers interact with the promoters of 95 genes that are differentially expressed in blood from persons with and without AD. DISCUSSION: WGMS identifies differentially methylated CpGs in known and newly detected genes and enhancers in blood from persons with and without AD. HIGHLIGHTS: Whole genome DNA methylation levels were quantified in blood from persons with and without Alzheimer's disease (AD). Twenty-eight thousand thirty-eight differentially methylated positions (DMPs) were identified. Two thousand seven hundred seven genes comprise DMPs. Forty-eight of 75 independent genetic risk loci for AD have DMPs. One thousand five hundred sixty-eight blood-specific enhancers comprise DMPs, 173 of which interact with the promoters of 95 genes that are differentially expressed in blood from persons with and without AD.


Asunto(s)
Enfermedad de Alzheimer , Metilación de ADN , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Epigénesis Genética , Secuenciación Completa del Genoma
5.
Hum Mol Genet ; 24(24): 7121-31, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26423458

RESUMEN

The autism spectrum disorders (ASD) comprise a broad group of behaviorally related neurodevelopmental disorders affecting as many as 1 in 68 children. The hallmarks of ASD consist of impaired social and communication interactions, pronounced repetitive behaviors and restricted patterns of interests. Family, twin and epidemiological studies suggest a polygenetic and epistatic susceptibility model involving the interaction of many genes; however, the etiology of ASD is likely to be complex and include both epigenetic and environmental factors. 5-hydroxymethylcytosine (5hmC) is a novel environmentally sensitive DNA modification that is highly enriched in post-mitotic neurons and is associated with active transcription of neuronal genes. Here, we used an established chemical labeling and affinity purification method coupled with high-throughput sequencing technology to generate a genome-wide profile of striatal 5hmC in an autism mouse model (Cntnap2(-/-) mice) and found that at 9 weeks of age the Cntnap2(-/-) mice have a genome-wide disruption in 5hmC, primarily in genic regions and repetitive elements. Annotation of differentially hydroxymethylated regions (DhMRs) to genes revealed a significant overlap with known ASD genes (e.g. Nrxn1 and Reln) that carried an enrichment of neuronal ontological functions, including axonogenesis and neuron projection morphogenesis. Finally, sequence motif predictions identified associations with transcription factors that have a high correlation with important genes in neuronal developmental and functional pathways. Together, our data implicate a role for 5hmC-mediated epigenetic modulation in the pathogenesis of autism and represent a critical step toward understanding the genome-wide molecular consequence of the Cntnap2 mutation, which results in an autism-like phenotype.


Asunto(s)
Trastorno Autístico/genética , Citosina/análogos & derivados , ADN/metabolismo , 5-Metilcitosina/análogos & derivados , Animales , Cuerpo Estriado/metabolismo , Citosina/metabolismo , Metilación de ADN , Modelos Animales de Enfermedad , Epigénesis Genética , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Anotación de Secuencia Molecular , Proteínas del Tejido Nervioso/genética , Proteína Reelina
6.
Neurobiol Dis ; 86: 99-108, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26598390

RESUMEN

Environmental stress is among the most important contributors to increased susceptibility to develop psychiatric disorders, including anxiety and post-traumatic stress disorder. While even acute stress alters gene expression, the molecular mechanisms underlying these changes remain largely unknown. 5-hydroxymethylcytosine (5hmC) is a novel environmentally sensitive DNA modification that is highly enriched in post-mitotic neurons and is associated with active transcription of neuronal genes. Recently, we found a hippocampal increase of 5hmC in the glucocorticoid receptor gene (Nr3c1) following acute stress, warranting a deeper investigation of stress-related 5hmC levels. Here we used an established chemical labeling and affinity purification method coupled with high-throughput sequencing technology to generate the first genome-wide profile of hippocampal 5hmC following exposure to acute restraint stress and a one-hour recovery. This approach found a genome-wide disruption in 5hmC associated with acute stress response, primarily in genic regions, and identified known and potentially novel stress-related targets that have a significant enrichment for neuronal ontological functions. Integration of these data with hippocampal gene expression data from these same mice found stress-related hydroxymethylation correlated to altered transcript levels and sequence motif predictions indicated that 5hmC may function by mediating transcription factor binding to these transcripts. Together, these data reveal an environmental impact on this newly discovered epigenetic mark in the brain and represent a critical step toward understanding stress-related epigenetic mechanisms that alter gene expression and can lead to the development of psychiatric disorders.


Asunto(s)
Citosina/análogos & derivados , Hipocampo/metabolismo , Plasticidad Neuronal , Estrés Psicológico/genética , Estrés Psicológico/metabolismo , 5-Metilcitosina/análogos & derivados , Animales , Citosina/metabolismo , Metilación de ADN , Epigénesis Genética , Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL
7.
Neurobiol Dis ; 96: 54-66, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27576189

RESUMEN

Environmental stress is among the most important contributors to increased susceptibility to develop psychiatric disorders. While it is well known that acute environmental stress alters gene expression, the molecular mechanisms underlying these changes remain largely unknown. 5-hydroxymethylcytosine (5hmC) is a novel environmentally sensitive epigenetic modification that is highly enriched in neurons and is associated with active neuronal transcription. Recently, we reported a genome-wide disruption of hippocampal 5hmC in male mice following acute stress that was correlated to altered transcript levels of genes in known stress related pathways. Since sex-specific endocrine mechanisms respond to environmental stimulus by altering the neuronal epigenome, we examined the genome-wide profile of hippocampal 5hmC in female mice following exposure to acute stress and identified 363 differentially hydroxymethylated regions (DhMRs) linked to known (e.g., Nr3c1 and Ntrk2) and potentially novel genes associated with stress response and psychiatric disorders. Integration of hippocampal expression data from the same female mice found stress-related hydroxymethylation correlated to altered transcript levels. Finally, characterization of stress-induced sex-specific 5hmC profiles in the hippocampus revealed 778 sex-specific acute stress-induced DhMRs some of which were correlated to altered transcript levels that produce sex-specific isoforms in response to stress. Together, the alterations in 5hmC presented here provide a possible molecular mechanism for the adaptive sex-specific response to stress that may augment the design of novel therapeutic agents that will have optimal effectiveness in each sex.


Asunto(s)
5-Metilcitosina/análogos & derivados , Epigénesis Genética/efectos de los fármacos , Hipocampo/metabolismo , Estrés Psicológico/inducido químicamente , Estrés Psicológico/patología , 5-Metilcitosina/toxicidad , Animales , Inmunoprecipitación de Cromatina , Modelos Animales de Enfermedad , Epigénesis Genética/genética , Femenino , Ontología de Genes , Hipocampo/efectos de los fármacos , Masculino , Metilación/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Factores Sexuales
8.
BMC Genomics ; 15: 131, 2014 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-24524199

RESUMEN

BACKGROUND: Methylation on the fifth position of cytosine (5-mC) is an essential epigenetic mark that is linked to both normal neurodevelopment and neurological diseases. The recent identification of another modified form of cytosine, 5-hydroxymethylcytosine (5-hmC), in both stem cells and post-mitotic neurons, raises new questions as to the role of this base in mediating epigenetic effects. Genomic studies of these marks using model systems are limited, particularly with array-based tools, because the standard method of detecting DNA methylation cannot distinguish between 5-mC and 5-hmC and most methods have been developed to only survey the human genome. RESULTS: We show that non-human data generated using the optimization of a widely used human DNA methylation array, designed only to detect 5-mC, reproducibly distinguishes tissue types within and between chimpanzee, rhesus, and mouse, with correlations near the human DNA level (R(2) > 0.99). Genome-wide methylation analysis, using this approach, reveals 6,102 differentially methylated loci between rhesus placental and fetal tissues with pathways analysis significantly overrepresented for developmental processes. Restricting the analysis to oncogenes and tumor suppressor genes finds 76 differentially methylated loci, suggesting that rhesus placental tissue carries a cancer epigenetic signature. Similarly, adapting the assay to detect 5-hmC finds highly reproducible 5-hmC levels within human, rhesus, and mouse brain tissue that is species-specific with a hierarchical abundance among the three species (human > rhesus >> mouse). Annotation of 5-hmC with respect to gene structure reveals a significant prevalence in the 3'UTR and an association with chromatin-related ontological terms, suggesting an epigenetic feedback loop mechanism for 5-hmC. CONCLUSIONS: Together, these data show that this array-based methylation assay is generalizable to all mammals for the detection of both 5-mC and 5-hmC, greatly improving the utility of mammalian model systems to study the role of epigenetics in human health, disease, and evolution.


Asunto(s)
5-Metilcitosina/análisis , Encéfalo/metabolismo , Citosina/análogos & derivados , Genoma , Análisis de Secuencia por Matrices de Oligonucleótidos , Animales , Islas de CpG , Citosina/análisis , Metilación de ADN , Epigénesis Genética , Sitios Genéticos , Genoma Humano , Humanos , Macaca mulatta , Ratones
9.
Neurobiol Dis ; 49: 211-20, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22926190

RESUMEN

Voltage-gated sodium channels (VGSCs) are essential for the generation and propagation of action potentials in electrically excitable cells. Dominant mutations in SCN1A, which encodes the Nav1.1 VGSC α-subunit, underlie several forms of epilepsy, including Dravet syndrome (DS) and genetic epilepsy with febrile seizures plus (GEFS+). Electrophysiological analyses of DS and GEFS+ mouse models have led to the hypothesis that SCN1A mutations reduce the excitability of inhibitory cortical and hippocampal interneurons. To more directly examine the relative contribution of inhibitory interneurons and excitatory pyramidal cells to SCN1A-derived epilepsy, we first compared the expression of Nav1.1 in inhibitory parvalbumin (PV) interneurons and excitatory neurons from P22 mice using fluorescent immunohistochemistry. In the hippocampus and neocortex, 69% of Nav1.1 immunoreactive neurons were also positive for PV. In contrast, 13% and 5% of Nav1.1 positive cells in the hippocampus and neocortex, respectively, were found to co-localize with excitatory cells identified by CaMK2α immunoreactivity. Next, we reduced the expression of Scn1a in either a subset of interneurons (mainly PV interneurons) or excitatory cells by crossing mice heterozygous for a floxed Scn1a allele to either the Ppp1r2-Cre or EMX1-Cre transgenic lines, respectively. The inactivation of one Scn1a allele in interneurons of the neocortex and hippocampus was sufficient to reduce thresholds to flurothyl- and hyperthermia-induced seizures, whereas thresholds were unaltered following inactivation in excitatory cells. Reduced interneuron Scn1a expression also resulted in the generation of spontaneous seizures. These findings provide direct evidence for an important role of PV interneurons in the pathogenesis of Scn1a-derived epilepsies.


Asunto(s)
Interneuronas/fisiología , Canal de Sodio Activado por Voltaje NAV1.1/deficiencia , Parvalbúminas/metabolismo , Convulsiones Febriles/fisiopatología , Convulsiones/fisiopatología , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Susceptibilidad a Enfermedades/metabolismo , Fiebre , Flurotilo , Hipocampo/fisiopatología , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Canal de Sodio Activado por Voltaje NAV1.1/genética , Neocórtex/fisiopatología , Inhibición Neural/fisiología , Células Piramidales/fisiopatología
10.
Epilepsia ; 54(4): 649-57, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23409935

RESUMEN

PURPOSE: Epilepsy is a complex disease characterized by a predisposition toward seizures. There are numerous barriers to the successful treatment of epilepsy. For instance, current antiepileptic drugs have adverse side effects and variable efficacies. Furthermore, the pathophysiologic basis of epilepsy remains largely elusive. Therefore, investigating novel genes and biologic processes underlying epilepsy may provide valuable insight and enable the development of new therapeutic agents. We previously identified methylglyoxal (MG) as an endogenous γ-aminobutyric acid (GABAA ) receptor agonist. Here, we investigated the role of MG and its catabolic enzyme, glyoxalase 1 (GLO1), in seizures. METHODS: We pretreated mice with MG before seizure induction with picrotoxin or pilocarpine and then assessed seizures behaviorally or by electroencephalography (EEG). We then investigated the role of GLO1 in seizures by treating mice with a pharmacologic inhibitor of GLO1 before seizure induction with pilocarpine and measured subsequent seizure phenotypes. Next, we explored the genetic relationship between Glo1 expression and seizures. We analyzed seizure phenotypes among C57BL/6J × DBA/2J (BXD) recombinant inbred (RI) mice with differential Glo1 expression. Lastly, we investigated a causal role for Glo1 in seizures by administering pilocarpine to transgenic (Tg) mice that overexpress Glo1. KEY FINDINGS: Pretreatment with MG attenuated pharmacologically-induced seizures at both the behavioral and EEG levels. GLO1 inhibition, which increases MG concentration in vivo, also attenuated seizures. Among BXD RI mice, high Glo1 expression was correlated with increased seizure susceptibility. Tg mice overexpressing Glo1 displayed reduced MG concentration in the brain and increased seizure severity. SIGNIFICANCE: These data identify MG as an endogenous regulator of seizures. Similarly, inhibition of GLO1 attenuates seizures, suggesting that this may be a novel therapeutic approach for epilepsy. Furthermore, this system may represent an endogenous negative feedback loop whereby high metabolic activity increases inhibitory tone via local accumulation of MG. Finally, Glo1 may contribute to the genetic architecture of epilepsy, as Glo1 expression regulates both MG concentration and seizure severity.


Asunto(s)
Lactoilglutatión Liasa/fisiología , Piruvaldehído/farmacología , Convulsiones/prevención & control , Animales , Anticonvulsivantes/farmacología , Conducta Animal/fisiología , Bases de Datos Genéticas , Electroencefalografía , Inhibidores Enzimáticos/farmacología , Retroalimentación Fisiológica , Antagonistas del GABA , Regulación Enzimológica de la Expresión Génica/fisiología , Glutatión/análogos & derivados , Glutatión/farmacología , Lactoilglutatión Liasa/antagonistas & inhibidores , Lactoilglutatión Liasa/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Agonistas Muscarínicos , Picrotoxina , Pilocarpina , Receptores de GABA-A/fisiología , Convulsiones/inducido químicamente , Estado Epiléptico/inducido químicamente , Estado Epiléptico/fisiopatología
11.
Epilepsia ; 54(4): 625-34, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23311867

RESUMEN

PURPOSE: Mutations in the voltage-gated sodium channel (VGSC) gene SCN1A are responsible for a number of epilepsy disorders, including genetic epilepsy with febrile seizures plus (GEFS+) and Dravet syndrome. In addition to seizures, patients with SCN1A mutations often experience sleep abnormalities, suggesting that SCN1A may also play a role in the neuronal pathways involved in the regulation of sleep. However, to date, a role for SCN1A in the regulation of sleep architecture has not been directly examined. To fill this gap, we tested the hypothesis that SCN1A contributes to the regulation of sleep architecture, and by extension, that SCN1A dysfunction contributes to the sleep abnormalities observed in patients with SCN1A mutations. METHODS: Using immunohistochemistry we first examined the expression of mouse Scn1a in regions of the mouse brain that are known to be involved in seizure generation and sleep regulation. Next, we performed detailed analysis of sleep and wake electroencephalography (EEG) patterns during 48 continuous hours of baseline recordings in a knock-in mouse line that expresses the human SCN1A GEFS+ mutation R1648H (RH mutants). We also characterized the sleep-wake pattern following 6 h of sleep deprivation. KEY FINDINGS: Immunohistochemistry revealed broad expression of Scn1a in the neocortex, hippocampus, hypothalamus, thalamic reticular nuclei, dorsal raphe nuclei, pedunculopontine, and laterodorsal tegmental nuclei. Co-localization between Scn1a immunoreactivity and critical cell types within these regions was also observed. EEG analysis under baseline conditions revealed increased wakefulness and reduced non-rapid eye movement (NREM) and rapid eye movement (REM) sleep amounts during the dark phase in the RH mutants, suggesting a sleep deficit. Nevertheless, the mutants exhibited levels of NREM and REM sleep that were generally similar to wild-type littermates during the recovery period following 6 h of sleep deprivation. SIGNIFICANCE: These results establish a direct role for SCN1A in the regulation of sleep and suggest that patients with SCN1A mutations may experience chronic alterations in sleep, potentially leading to negative outcomes over time. In addition, the expression of Scn1a in specific cell types/brain regions that are known to play critical roles in seizure generation and sleep now provides a mechanistic basis for the clinical features (seizures and sleep abnormalities) associated with human SCN1A mutations.


Asunto(s)
Epilepsia/genética , Epilepsia/fisiopatología , Canal de Sodio Activado por Voltaje NAV1.1/genética , Convulsiones Febriles/genética , Convulsiones Febriles/fisiopatología , Sueño/genética , Sueño/fisiología , Análisis de Varianza , Animales , Ritmo Delta , Electroencefalografía , Electromiografía , Genotipo , Hipocampo/metabolismo , Hipocampo/fisiopatología , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Mutación/fisiología , Canal de Sodio Activado por Voltaje NAV1.1/biosíntesis , Privación de Sueño/fisiopatología , Sueño REM/fisiología , Vigilia/fisiología
12.
Environ Epigenet ; 9(1): dvad002, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36843857

RESUMEN

Human epidemiological studies reveal that dietary and environmental alterations influence the health of the offspring and that the effect is not limited to the F1 or F2 generations. Non-Mendelian transgenerational inheritance of traits in response to environmental stimuli has been confirmed in non-mammalian organisms including plants and worms and are shown to be epigenetically mediated. However, transgenerational inheritance beyond the F2 generation remains controversial in mammals. Our lab previously discovered that the treatment of rodents (rats and mice) with folic acid significantly enhances the regeneration of injured axons following spinal cord injury in vivo and in vitro, and the effect is mediated by DNA methylation. The potential heritability of DNA methylation prompted us to investigate the following question: Is the enhanced axonal regeneration phenotype inherited transgenerationally without exposure to folic acid supplementation in the intervening generations? In the present review, we condense our findings showing that a beneficial trait (i.e., enhanced axonal regeneration after spinal cord injury) and accompanying molecular alterations (i.e., DNA methylation), triggered by an environmental exposure (i.e., folic acid supplementation) to F0 animals only, are inherited transgenerationally and beyond the F3 generation.

13.
Commun Biol ; 6(1): 120, 2023 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-36717618

RESUMEN

While embryonic mammalian central nervous system (CNS) axons readily grow and differentiate, only a minority of fully differentiated mature CNS neurons are able to regenerate injured axons, leading to stunted functional recovery after injury and disease. To delineate DNA methylation changes specifically associated with axon regeneration, we used a Fluorescent-Activated Cell Sorting (FACS)-based methodology in a rat optic nerve transection model to segregate the injured retinal ganglion cells (RGCs) into regenerating and non-regenerating cell populations. Whole-genome DNA methylation profiling of these purified neurons revealed genes and pathways linked to mammalian RGC regeneration. Moreover, whole-methylome sequencing of purified uninjured adult and embryonic RGCs identified embryonic molecular profiles reactivated after injury in mature neurons, and others that correlate specifically with embryonic or adult axon growth, but not both. The results highlight the contribution to both embryonic growth and adult axon regeneration of subunits encoding the Na+/K+-ATPase. In turn, both biochemical and genetic inhibition of the Na+/K+-ATPase pump significantly reduced RGC axon regeneration. These data provide critical molecular insights into mammalian CNS axon regeneration, pinpoint the Na+/K+-ATPase as a key regulator of regeneration of injured mature CNS axons, and suggest that successful regeneration requires, in part, reactivation of embryonic signals.


Asunto(s)
Axones , Metilación de ADN , Animales , Ratas , Adenosina Trifosfatasas/metabolismo , Axones/metabolismo , Regeneración Nerviosa/genética , Células Ganglionares de la Retina/fisiología
14.
Sci Rep ; 12(1): 17177, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-36266402

RESUMEN

Adverse childhood experiences (ACEs, i.e., abuse, neglect, household dysfunction) represent a potential risk factor for a wide range of long-lasting diseases and shorter life expectancy. We recently described a 1-week residential group program, based on mindfulness training, artistic expression and EMDR group therapy, that significantly reduced PTSD-related symptoms and increased attention/awareness-related outcomes in adolescent girls with multiple ACEs in a randomized controlled study. Since epigenetic mechanisms (i.e., DNA methylation) have been associated with the long-lasting effects of ACEs, the present report extends these prior findings by exploring genome-wide DNA methylation changes following the program. Saliva samples from all participants (n = 44) were collected and genomic DNA was extracted prior (T1) and following (T2) the intervention. Genome-wide DNA methylation analysis using the MethylationEPIC beadchip array (Illumina) revealed 49 differentially methylated loci (DML; p value < 0.001; methylation change > 10%) that were annotated to genes with roles in biological processes linked to early childhood adversity (i.e., neural, immune, and endocrine pathways, cancer and cardiovascular disease). DNA sequences flanking these DML showed significant enrichment of transcription factor binding sites involved in inflammation, cancer, cardiovascular disease, and brain development. Methylation changes in SIRT5 and TRAPPC2L genes showed associations with changes in trauma-related psychological measures. Results presented here suggest that this multimodal group program for adolescents with multiple victimization modulates the DNA methylome at sites of potential relevance for health and behavioral disorders associated with ACEs.


Asunto(s)
Experiencias Adversas de la Infancia , Epigénesis Genética , Adolescente , Femenino , Humanos , Enfermedades Cardiovasculares/genética , Metilación de ADN , Factores de Transcripción/genética , Inflamación/genética , Neoplasias/genética
15.
J Biol Chem ; 285(22): 16553-61, 2010 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-20353942

RESUMEN

Voltage-gated sodium channels (VGSCs) are responsible for the initiation and propagation of transient depolarizing currents and play a critical role in the electrical signaling between neurons. A null mutation in the VGSC gene SCN8A, which encodes the transmembrane protein Na(v)1.6, was identified previously in a human family. Heterozygous mutation carriers displayed a range of phenotypes, including ataxia, cognitive deficits, and emotional instability. A possible role for SCN8A was also proposed in studies examining the genetic basis of attempted suicide and bipolar disorder. In addition, mice with a Scn8a loss-of-function mutation (Scn8a(med-Tg/+)) show altered anxiety and depression-like phenotypes. Because psychiatric abnormalities are often associated with altered sleep and hormonal patterns, we evaluated heterozygous Scn8a(med-jo/+) mutants for alterations in sleep-wake architecture, diurnal corticosterone levels, and behavior. Compared with their wild-type littermates, Scn8a(med-jo/+) mutants experience more non-rapid eye movement (non-REM) sleep, a chronic impairment of REM sleep generation and quantity, and a lowered and flattened diurnal rhythm of corticosterone levels. No robust differences were observed between mutants and wild-type littermates in locomotor activity or in behavioral paradigms that evaluate anxiety or depression-like phenotypes; however, Scn8a(med-jo/+) mutants did show enhanced spatial memory. This study extends the spectrum of phenotypes associated with mutations in Scn8a and suggests a novel role for altered sodium channel function in human sleep disorders.


Asunto(s)
Corticosterona/sangre , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Sueño/fisiología , Canales de Sodio/genética , Canales de Sodio/metabolismo , Conducta Espacial/fisiología , Animales , Conducta Animal , Ritmo Circadiano , Electrocardiografía/métodos , Genotipo , Heterocigoto , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación , Canal de Sodio Activado por Voltaje NAV1.6 , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/patología
16.
J Biol Chem ; 285(13): 9823-9834, 2010 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-20100831

RESUMEN

Voltage-gated sodium channels are required for the initiation and propagation of action potentials. Mutations in the neuronal voltage-gated sodium channel SCN1A are associated with a growing number of disorders including generalized epilepsy with febrile seizures plus (GEFS+),(7) severe myoclonic epilepsy of infancy, and familial hemiplegic migraine. To gain insight into the effect of SCN1A mutations on neuronal excitability, we introduced the human GEFS+ mutation SCN1A-R1648H into the orthologous mouse gene. Scn1a(RH/RH) mice homozygous for the R1648H mutation exhibit spontaneous generalized seizures and premature death between P16 and P26, whereas Scn1a(RH/+) heterozygous mice exhibit infrequent spontaneous generalized seizures, reduced threshold and accelerated propagation of febrile seizures, and decreased threshold to flurothyl-induced seizures. Inhibitory cortical interneurons from P5-P15 Scn1a(RH/+) and Scn1a(RH/RH) mice demonstrated slower recovery from inactivation, greater use-dependent inactivation, and reduced action potential firing compared with wild-type cells. Excitatory cortical pyramidal neurons were mostly unaffected. These results suggest that this SCN1A mutation predominantly impairs sodium channel activity in interneurons, leading to decreased inhibition. Decreased inhibition may be a common mechanism underlying clinically distinct SCN1A-derived disorders.


Asunto(s)
Regulación de la Expresión Génica , Interneuronas/metabolismo , Mutación , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Canales de Sodio/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Femenino , Homocigoto , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Canal de Sodio Activado por Voltaje NAV1.1 , Convulsiones/genética
17.
Hum Mol Genet ; 18(9): 1633-41, 2009 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-19254928

RESUMEN

In a chemical mutagenesis screen, we identified the novel Scn8a(8J) allele of the gene encoding the neuronal voltage-gated sodium channel Na(v)1.6. The missense mutation V929F in this allele alters an evolutionarily conserved residue in the pore loop of domain 2 of Na(v)1.6. Electroencephalography (EEG) revealed well-defined spike-wave discharges (SWD), the hallmark of absence epilepsy, in Scn8a(8J) heterozygotes and in heterozygotes for two classical Scn8a alleles, Scn8a(med) (null) and Scn8a(med-jo) (missense). Mouse strain background had a significant effect on SWD, with mutants on the C3HeB/FeJ strain showing a higher incidence than on C57BL/6J. The abnormal EEG patterns in heterozygous mutant mice and the influence of genetic background on SWD make SCN8A an attractive candidate gene for common human absence epilepsy, a genetically complex disorder.


Asunto(s)
Epilepsia Tipo Ausencia/genética , Epilepsia Tipo Ausencia/fisiopatología , Mutación , Proteínas del Tejido Nervioso/genética , Canales de Sodio/genética , Animales , Secuencia de Bases , Modelos Animales de Enfermedad , Electrofisiología , Epilepsia Tipo Ausencia/metabolismo , Heterocigoto , Humanos , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Transgénicos , Datos de Secuencia Molecular , Mutación Missense , Canal de Sodio Activado por Voltaje NAV1.6 , Proteínas del Tejido Nervioso/metabolismo , Fenotipo , Canales de Sodio/metabolismo
18.
Sleep ; 44(10)2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34145460

RESUMEN

STUDY OBJECTIVES: Patients with unexplained hypersomnolence have significant impairment related to daytime sleepiness and excessive sleep duration, the biological bases of which are poorly understood. This investigation sought to examine relationships between objectively measured hypersomnolence phenotypes and epigenetic modification of candidate hypersomnolence genes to advance this line of inquiry. METHODS: Twenty-eight unmedicated clinical patients with unexplained hypersomnolence were evaluated using overnight ad libitum polysomnography, multiple sleep latency testing, infrared pupillometry, and the psychomotor vigilance task. DNA methylation levels on CpG sites annotated to 11 a priori hypersomnolence candidate genes were assessed for statistical association with hypersomnolence measures using independent regression models with adjusted local index of significance (aLIS) P-value threshold of 0.05. RESULTS: Nine CpG sites exhibited significant associations between DNA methylation levels and total sleep time measured using ad libitum polysomnography (aLIS p-value < .05). All nine differentially methylated CpG sites were annotated to the paired box 8 (PAX8) gene and its related antisense gene (PAX8-AS1). Among these nine differentially methylated positions was a cluster of five CpG sites located in the body of the PAX8 gene and promoter of PAX8-AS1. CONCLUSIONS: This study demonstrates that PAX8/PAX8-AS1 DNA methylation levels are associated with total sleep time in persons with unexplained hypersomnolence. Given prior investigations that have implicated single nucleotide polymorphisms in PAX8/PAX8-AS1 with habitual sleep duration, further research that clarifies the role of DNA methylation levels on these genes in the phenotypic expression of total sleep time is warranted.


Asunto(s)
Metilación de ADN , Trastornos de Somnolencia Excesiva/genética , Factor de Transcripción PAX8/genética , ARN Largo no Codificante/genética , Humanos , Polisomnografía , Latencia del Sueño , Vigilia
19.
Epigenetics ; 16(1): 64-78, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32633672

RESUMEN

Alterations in environmentally sensitive epigenetic mechanisms (e.g., DNA methylation) influence axonal regeneration in the spinal cord following sharp injury. Conventional DNA methylation detection methods using sodium bisulphite treatment do not distinguish between methylated and hydroxymethylated forms of cytosine, meaning that past studies report a composite of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC). To identify the distinct contributions of DNA methylation modifications to axonal regeneration, we collected spinal cord tissue after sharp injury from untreated adult F3 male rats with enhanced regeneration of injured spinal axons or controls, derived from folate- or water-treated F0 lineages, respectively. Genomic DNA was profiled for genome-wide 5hmC levels, revealing 658 differentially hydroxymethylated regions (DhMRs). Genomic profiling with whole genome bisulphite sequencing disclosed regeneration-related alterations in composite 5mC + 5hmC DNA methylation levels at 2,260 differentially methylated regions (DMRs). While pathway analyses revealed that differentially hydroxymethylated and methylated genes are linked to biologically relevant axon developmental pathways, only 22 genes harbour both DhMR and DMRs. Since these differential modifications were more than 60 kilobases on average away from each other, the large majority of differential hydroxymethylated and methylated regions are unique with distinct functions in the axonal regeneration phenotype. These data highlight the importance of distinguishing independent contributions of 5mC and 5hmC levels in the central nervous system, and denote discrete roles for DNA methylation modifications in spinal cord injury and regeneration in the context of transgenerational inheritance.


Asunto(s)
Axones/metabolismo , Metilación de ADN , Regeneración Nerviosa/genética , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Animales , Epigénesis Genética , Femenino , Masculino , Ratas , Ratas Sprague-Dawley , Transcriptoma
20.
Epigenetics ; 16(10): 1085-1101, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33172347

RESUMEN

Maternal malnutrition remains one of the major adversities affecting brain development and long-term mental health outcomes, increasing the risk to develop anxiety and depressive disorders. We have previously shown that malnutrition-induced anxiety-like behaviours can be rescued by a social and sensory stimulation (enriched environment) in male mice. Here, we expand these findings to adult female mice and profiled genome-wide ventral hippocampal 5hmC levels related to malnutrition-induced anxiety-like behaviours and their rescue by an enriched environment. This approach revealed 508 differentially hydroxymethylated genes associated with protein malnutrition and that several genes (N = 34) exhibited a restored 5hmC abundance to control levels following exposure to an enriched environment, including genes involved in neuronal functions like dendrite outgrowth, axon guidance, and maintenance of neuronal circuits (e.g. Fltr3, Itsn1, Lman1, Lsamp, Nav, and Ror1) and epigenetic mechanisms (e.g. Hdac9 and Dicer1). Sequence motif predictions indicated that 5hmC may be modulating the binding of transcription factors for several of these transcripts, suggesting a regulatory role for 5hmC in response to perinatal malnutrition and exposure to an enriched environment. Together, these findings establish a role for 5hmC in early-life malnutrition and reveal genes linked to malnutrition-induced anxious behaviours that are mitigated by an enriched environment.


Asunto(s)
Metilación de ADN , Desnutrición , 5-Metilcitosina/análogos & derivados , Animales , Epigénesis Genética , Femenino , Masculino , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA