RESUMEN
Huntington's Disease (HD) is a progressive neurodegenerative disease caused by CAG repeat expansion in the huntingtin gene (HTT). The HTT gene was the first disease-associated gene mapped to a chromosome, but the pathophysiological mechanisms, genes, proteins or miRNAs involved in HD remain poorly understood. Systems bioinformatics approaches can divulge the synergistic relationships of multiple omics data and their integration, and thus provide a holistic approach to understanding diseases. The purpose of this study was to identify the differentially expressed genes (DEGs), HD-related gene targets, pathways and miRNAs in HD and, more specifically, between the pre-symptomatic and symptomatic HD stages. Three publicly available HD datasets were analysed to obtain DEGs for each HD stage from each dataset. In addition, three databases were used to obtain HD-related gene targets. The shared gene targets between the three public databases were compared, and clustering analysis was performed on the common shared genes. Enrichment analysis was performed on (i) DEGs identified for each HD stage in each dataset, (ii) gene targets from the public databases and (iii) the clustering analysis results. Furthermore, the hub genes shared between the public databases and the HD DEGs were identified, and topological network parameters were applied. Identification of HD-related miRNAs and their gene targets was obtained, and a miRNA-gene network was constructed. Enriched pathways identified for the 128 common genes revealed pathways linked to multiple neurodegeneration diseases (HD, Parkinson's disease, Spinocerebellar ataxia), MAPK and HIF-1 signalling pathways. Eighteen HD-related hub genes were identified based on network topological analysis of MCC, degree and closeness. The highest-ranked genes were FoxO3 and CASP3, CASP3 and MAP2 were found for betweenness and eccentricity and CREBBP and PPARGC1A were identified for the clustering coefficient. The miRNA-gene network identified eleven miRNAs (mir-19a-3p, mir-34b-3p, mir-128-5p, mir-196a-5p, mir-34a-5p, mir-338-3p, mir-23a-3p and mir-214-3p) and eight genes (ITPR1, CASP3, GRIN2A, FoxO3, TGM2, CREBBP, MTHFR and PPARGC1A). Our work revealed that various biological pathways seem to be involved in HD either during the pre-symptomatic or symptomatic stages of HD. This may offer some clues for the molecular mechanisms, pathways and cellular components underlying HD and how these may act as potential therapeutic targets for HD.
Asunto(s)
Enfermedad de Huntington , MicroARNs , Enfermedades Neurodegenerativas , Humanos , MicroARNs/genética , Caspasa 3/genética , Enfermedad de Huntington/metabolismo , Redes Reguladoras de Genes , Biología Computacional/métodosRESUMEN
Muscular dystrophies are a group of rare and severe inherited disorders mainly affecting the muscle tissue. Duchene Muscular Dystrophy, Myotonic Dystrophy types 1 and 2, Limb Girdle Muscular Dystrophy and Facioscapulohumeral Muscular Dystrophy are some of the members of this family of disorders. In addition to the current diagnostic tools, there is an increasing interest for the development of novel non-invasive biomarkers for the diagnosis and monitoring of these diseases. miRNAs are small RNA molecules characterized by high stability in blood thus making them ideal biomarker candidates for various diseases. In this study, we present the first genome-wide next-generation small RNA sequencing in serum samples of five different types of muscular dystrophy patients and healthy individuals. We identified many small RNAs including miRNAs, lncRNAs, tRNAs, snoRNAs and snRNAs, that differentially discriminate the muscular dystrophy patients from the healthy individuals. Further analysis of the identified miRNAs showed that some miRNAs can distinguish the muscular dystrophy patients from controls and other miRNAs are specific to the type of muscular dystrophy. Bioinformatics analysis of the target genes for the most significant miRNAs and the biological role of these genes revealed different pathways that the dysregulated miRNAs are involved in each type of muscular dystrophy investigated. In conclusion, this study shows unique signatures of small RNAs circulating in five types of muscular dystrophy patients and provides a useful resource for future studies for the development of miRNA biomarkers in muscular dystrophies and for their involvement in the pathogenesis of the disorders.
Asunto(s)
MicroARNs , Distrofias Musculares , Distrofia Miotónica , Biomarcadores , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , MicroARNs/genética , Distrofias Musculares/diagnóstico , Distrofias Musculares/genéticaRESUMEN
Background: Motor symptoms are well-characterized in Parkinson's disease (PD). However, non-motor symptoms, such as depression, are commonly observed and can appear up to 10 years before motor features, resulting in one-third of individuals being misdiagnosed with a neuropsychiatric disorder. Thus, identifying diagnostic biomarkers is crucial for accurate PD diagnosis during its prodromal or early stages. Methods: We employed an integrative approach, combining single nucleus RNA and bulk mRNA transcriptomics to perform comparative molecular signatures analysis between PD and major depressive disorder (MDD). We examined 39,834 nuclei from PD (GSE202210) and 32,707 nuclei from MDD (GSE144136) in the dorsolateral prefrontal cortex (dlPFC) of Brodmann area 9. Additionally, we analyzed bulk mRNA peripheral blood samples from PD compared to controls (GSE49126, GSE72267), as well as MDD compared to controls (GSE39653). Results: Our findings show a higher proportion of astrocytes, and oligodendrocyte cells in the dlPFC of individuals with PD vs. MDD. The excitatory to inhibitory neurons (E/I) ratio analysis indicates that MDD has a ratio close to normal 80/20, while PD has a ratio of 62/38, indicating increased inhibition in the dlPFC. Microglia displayed the most pronounced differences in gene expression profiles between the two conditions. In PD, microglia display a pro-inflammatory phenotype, while in MDD, they regulate synaptic transmission through oligodendrocyte-microglia crosstalk. Analysis of bulk mRNA blood samples revealed that the COL5A, MID1, ZNF148, and CD22 genes were highly expressed in PD, whereas the DENR and RNU1G2 genes were highly expressed in MDD. CD22 is involved in B-cell activation and the negative regulation of B-cell receptor signaling. Additionally, CD86, which provides co-stimulatory signals for T-cell activation and survival, was found to be a commonly differentially expressed gene in both conditions. Pathway analysis revealed several immune-related pathways common in both conditions, including the complement and coagulation cascade, and B-cell receptor signaling. Discussion: This study demonstrates that bulk peripheral immune cells play a role in both conditions, but neuroinflammation in the dlPFC specifically manifests in PD as evidenced by the analysis of single nucleus dlPFC datasets. Integrating these two omics levels offers a better understanding of the shared and distinct molecular pathophysiology of PD and MDD in both the periphery and the brain. These findings could lead to potential diagnostic biomarkers, improving accuracy and guiding pharmacological treatments.
RESUMEN
Huntington's disease (HD) is a rare progressive neurodegenerative disease characterised by autosomal dominant inheritance. The past decade saw a growing interest in the associations between the Mediterranean Diet (MD) and HD risk and outcomes. The aim of this case-control study was to assess the dietary intake and habits of Cypriot HD patients, comparing them to gender and age-matched controls, using the Cyprus Food Frequency Questionnaire (CyFFQ) and to assess adherence to the MD by disease outcomes. The method relied on the validated CyFFQ semi-quantitative questionnaire to assess energy, macro- and micronutrient intake over the past year in n = 36 cases and n = 37 controls. The MedDiet Score and the MEDAS score were used to assess adherence to the MD. Patients were grouped based on symptomatology such as movement and cognitive and behavioral impairment. The two-sample Wilcoxon rank-sum (Mann-Whitney) test was used to compare cases vs. controls. Statistically significant results were obtained for energy intake (kcal/day) (median (IQR): 4592 (3376) vs. 2488 (1917); p = 0.002) from cases and controls. Energy intake (kcal/day) (median (IQR): 3751 (1894) vs. 2488 (1917); p = 0.044) was also found to be significantly different between asymptomatic HD patients and controls. Symptomatic patients were also different from controls in terms of energy intake (kcal/day) (median (IQR): 5571 (2907) vs. 2488 (1917); p = 0.001); % energy monounsaturated fatty acids (median (IQR): 13.4 (5.2) vs. 15.5 (5.7); p = 0.0261) and several micronutrients. A significant difference between asymptomatic and symptomatic HD patients was seen in the MedDiet score (median (IQR): 31.1 (6.1) vs. 33.1 (8.1); p = 0.024) and a significant difference was observed between asymptomatic HD patient and controls (median (IQR): 5.5 (3.0) vs. 8.2 (2.0); p = 0.014) in the MEDAS score. This study confirmed previous findings that HD cases have a significantly higher energy intake than controls, revealing differences in macro and micronutrients and adherence to the MD by both patients and controls and by HD symptom severity. These findings are important as they are an effort to guide nutritional education within this population group and further understand diet-disease associations.
Asunto(s)
Dieta Mediterránea , Enfermedad de Huntington , Enfermedades Neurodegenerativas , Humanos , Estudios de Casos y Controles , Chipre , Ingestión de Energía , Micronutrientes , Ingestión de Alimentos , Encuestas y CuestionariosRESUMEN
Relapsing-remitting Multiple Sclerosis is the most common demyelinating neurodegenerative disease and is characterized by periods of relapses and generation of various motor symptoms. These symptoms are associated with the corticospinal tract integrity, which is quantified by means of corticospinal plasticity which can be probed via transcranial magnetic stimulation and assessed with corticospinal excitability measures. Several factors, such as exercise and interlimb coordination, can influence corticospinal plasticity. Previous work in healthy and in chronic stroke survivors showed that the greatest improvement in corticospinal plasticity occurred during in-phase bilateral exercises of the upper limbs. During in-phase bilateral movement, both upper limbs are moving simultaneously, activating the same muscle groups and triggering the same brain region respectively. Altered corticospinal plasticity due to bilateral cortical lesions is common in MS, yet, the impact of these type of exercises in this cohort is unclear. The aim of this concurrent multiple baseline design study is to investigate the effects of in-phase bilateral exercises on corticospinal plasticity and on clinical measures using transcranial magnetic stimulation and standardized clinical assessment in five people with relapsing-remitting MS. The intervention protocol will last for 12 consecutive weeks (30-60 minutes /session x 3 sessions/week) and include in-phase bilateral movements of the upper limbs, adapted to different sports activities and to functional training. To define functional relation between the intervention and the results on corticospinal plasticity (central motor conduction time, resting motor threshold, motor evoked potential amplitude and latency) and on clinical measures (balance, gait, bilateral hand dexterity and strength, cognitive function), we will perform a visual analysis and if there is a potential sizeable effect, we will perform statistical analysis. A possible effect from our study, will introduce a proof-of-concept for this type of exercise that will be effective during disease progression. Trial registration: ClinicalTrials.gov NCT05367947.
Asunto(s)
Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Enfermedades Neurodegenerativas , Humanos , Ejercicio Físico , Terapia por EjercicioRESUMEN
The discovery of reliable and sensitive blood biomarkers is useful for the diagnosis, monitoring and potential future therapy of diseases. Recently, microRNAs (miRNAs) have been identified in blood circulation and might have the potential to be used as biomarkers for several diseases and clinical conditions. Myotonic Dystrophy type 1 (DM1) is the most common form of adult-onset muscular dystrophy primarily characterized by muscle myotonia, weakness and atrophy. Previous studies have shown an association between miRNAs and DM1 in muscle tissue and, recently, in plasma. The aim of this study was to detect and assess muscle-specific miRNAs as potential biomarkers of DM1 muscle wasting, an important parameter in the disease's natural history. Disease stable or progressive DM1 patients with muscle weakness and wasting were recruited and enrolled in the study. RNA isolated from participants' serum was used to assess miRNA levels. Results suggest that the levels of muscle-specific miRNAs are correlated with the progression of muscle wasting and weakness observed in the DM1 patients. Specifically, miR-1, miR-133a, miR133b and miR-206 serum levels were found elevated in DM1 patients with progressive muscle wasting compared to disease stable DM1 patients. Based on these results, we propose that muscle-specific miRNAs might be useful molecular biomarkers for monitoring the progress of muscle atrophy in DM1 patients.
Asunto(s)
MicroARNs/sangre , Distrofia Miotónica/sangre , Adulto , Biomarcadores/sangre , Estudios de Casos y Controles , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Debilidad Muscular/sangre , Distrofia Miotónica/fisiopatología , Adulto JovenRESUMEN
UNLABELLED: OBJECTIVES. To define the incidence and prevalence of familial amyloidotic polyneuropathy (FAP) TTRVal30Met on the island of Cyprus. To study the clinical phenotype and genetic features of FAP TTRVal30Met in the Cypriot population. METHODS: The clinical and neurogenetic databases were used to identify probands with FAP TTRVal30Met and detailed family trees were constructed. Potential carriers of the mutation were identified from the family trees and assessed clinically and genetically. Transthyretin was completely sequenced in patients and potential carriers. RESULTS: Thirty-six patients carrying the TTRVal30Met mutation (one homozygote) from 22 families were identified. On 1 December 2003 the prevalence of FAP was 3.72/100,000 while the incidence is estimated to be 0.69/100,000 per year. The phenotype observed was characteristic for a length dependent sensorimotor and autonomic neuropathy with neuropathic pain. Mean age of onset was 46 years. Penetrance is estimated to be 28% and positive anticipation in the age of onset is found. CONCLUSION: FAP is relatively prevalent in Cyprus which may be considered as another endemic focus of the disease in Europe. The mean age of onset and penetrance is different from the Portuguese and Swedish populations. Understanding the biological factors that determine these differences could potentially lead to therapeutic advances.