Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Cell Mol Med ; 25(12): 5572-5585, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33934486

RESUMEN

Ageing presents adverse effects on the retina and is the primary risk factor for age-related macular degeneration (AMD). We report the first RNA-seq analysis of age-related transcriptional changes in the human retinal pigment epithelium (RPE), the primary site of AMD pathogenesis. Whole transcriptome sequencing of RPE from human donors ranging in age from 31 to 93 reveals that ageing is associated with increasing transcription of main RPE-associated visual cycle genes (including LRAT, RPE65, RDH5, RDH10, RDH11; pathway enrichment BH-adjusted P = 4.6 × 10-6 ). This positive correlation is replicated in an independent set of 28 donors and a microarray dataset of 50 donors previously published. LRAT expression is positively regulated by retinoid by-products of the visual cycle (A2E and all-trans-retinal) involving modulation by retinoic acid receptor alpha transcription factor. The results substantiate a novel age-related positive feedback mechanism between accumulation of retinoid by-products in the RPE and the up-regulation of visual cycle genes.


Asunto(s)
Envejecimiento , Proteínas del Ojo/metabolismo , Regulación de la Expresión Génica , RNA-Seq/métodos , Epitelio Pigmentado de la Retina/metabolismo , Transcriptoma , Vías Visuales/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Proteínas del Ojo/genética , Humanos , Persona de Mediana Edad , Transcripción Genética
2.
Int J Mol Sci ; 22(24)2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34948253

RESUMEN

DNA methylation age (DNAm age) estimation is a powerful biomarker of human ageing. To date, epigenetic clocks have not been evaluated in age-related macular degeneration (AMD). Here, we perform genome-wide DNA methylation analyses in blood of AMD patients with a documented smoking history (14 AMD, 16 Normal), identifying loci of differential methylation (DML) with a relaxed p-value criterion (p ≤ 10-4). We conduct DNAm age analyses using the Horvath-multi tissue, Hannum and Skin & Blood epigenetic clocks in both blood and retinal pigment epithelium (RPE). We perform Ingenuity Pathway Analysis Causal Network Analysis (IPA CNA) on the topmost significantly differentially methylated CpG probes in blood and RPE. Results show poor performance of epigenetic clocks in RPE. Epigenetic age acceleration (EAA) was not observed in AMD. However, we observe positive EAA in blood of smokers, and in smokers with AMD. DML analysis revealed hypomethylation at cg04953735 within RPTOR (p = 6.51 × 10-5; Δß = -11.95%). IPA CNA in the RPE also identified RPTOR as the putative master regulator, predicted to be inhibited in AMD. In conclusion, this is the first study evaluating an association of epigenetic ageing in AMD. We posit a role for RPTOR as a common master regulator of methylation changes in the RPE in AMD.


Asunto(s)
Metilación de ADN/genética , Epigénesis Genética/genética , Degeneración Macular/genética , Factores de Edad , Anciano , Envejecimiento/genética , Biomarcadores/metabolismo , Epigenómica/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Epitelio Pigmentado de la Retina/metabolismo , Fumar/efectos adversos , Fumar/genética
3.
Int J Mol Sci ; 22(9)2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-33946898

RESUMEN

Oxidative stress-induced cell damage and death of the retinal pigmented epithelium (RPE), a polarized monolayer that maintains retinal health and homeostasis, lead to the development of age-related macular degeneration (AMD). Several studies show that the naturally occurring antioxidant Lutein (Lut) can protect RPE cells from oxidative stress. However, the poor solubility and low oral bioavailability limit the potential of Lut as a therapeutic agent. In this study, lutein diglutaric acid (Lut-DG), a prodrug of Lut, was synthesized and its ability to protect human ARPE-19 cells from oxidative stress was tested compared to Lut. Both Lut and Lut-DG significantly decreased H2O2-induced reactive oxygen species (ROS) production and protected RPE cells from oxidative stress-induced death. Moreover, the immunoblotting analysis indicated that both drugs exerted their protective effects by modulating phosphorylated MAPKs (p38, ERK1/2 and SAPK/JNK) and downstream molecules Bax, Bcl-2 and Cytochrome c. In addition, the enzymatic antioxidants glutathione peroxidase (GPx) and catalase (CAT) and non-enzymatic antioxidant glutathione (GSH) were enhanced in cells treated with Lut and Lut-DG. In all cases, Lut-DG was more effective than its parent drug against oxidative stress-induced damage to RPE cells. These findings highlight Lut-DG as a more potent compound than Lut with the protective effects against oxidative stress in RPE cells through the modulation of key MAPKs, apoptotic and antioxidant molecular pathways.


Asunto(s)
Antioxidantes/farmacología , Células Epiteliales/efectos de los fármacos , Luteína/análogos & derivados , Estrés Oxidativo/efectos de los fármacos , Profármacos/farmacología , Epitelio Pigmentado de la Retina/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/biosíntesis , Proteínas Reguladoras de la Apoptosis/genética , Catalasa/biosíntesis , Catalasa/genética , Línea Celular , Citocromos c/biosíntesis , Citocromos c/genética , Evaluación Preclínica de Medicamentos , Células Epiteliales/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Glutatión/biosíntesis , Glutatión/genética , Glutatión Peroxidasa/biosíntesis , Glutatión Peroxidasa/genética , Humanos , Peróxido de Hidrógeno/toxicidad , Luteína/química , Luteína/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Degeneración Macular/tratamiento farmacológico , Estructura Molecular , Especies Reactivas de Oxígeno/metabolismo , Epitelio Pigmentado de la Retina/citología
4.
J Cell Mol Med ; 23(1): 405-416, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30338926

RESUMEN

The retinal pigment epithelium (RPE) plays a central role in neuroretinal homoeostasis throughout life. Altered proteolysis and inflammatory processes involving RPE contribute to the pathophysiology of age-related macular degeneration (AMD), but the link between these remains elusive. We report for the first time the effect of advanced glycation end products (AGE)-known to accumulate on the ageing RPE's underlying Bruch's membrane in situ-on both key lysosomal cathepsins and NF-κB signalling in RPE. Cathepsin L activity and NF-κB effector levels decreased significantly following 2-week AGE exposure. Chemical cathepsin L inhibition also decreased total p65 protein levels, indicating that AGE-related change of NF-κB effectors in RPE cells may be modulated by cathepsin L. However, upon TNFα stimulation, AGE-exposed cells had significantly higher ratio of phospho-p65(Ser536)/total p65 compared to non-AGEd controls, with an even higher fold increase than in the presence of cathepsin L inhibition alone. Increased proportion of active p65 indicates an AGE-related activation of NF-κB signalling in a higher proportion of cells and/or an enhanced response to TNFα. Thus, NF-κB signalling modulation in the AGEd environment, partially regulated via cathepsin L, is employed by RPE cells as a protective (para-inflammatory) mechanism but renders them more responsive to pro-inflammatory stimuli.


Asunto(s)
Catepsina L/metabolismo , Productos Finales de Glicación Avanzada/metabolismo , FN-kappa B/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Transducción de Señal/fisiología , Factor de Necrosis Tumoral alfa/metabolismo , Células Cultivadas , Humanos , Degeneración Macular/metabolismo
5.
Int J Mol Sci ; 20(13)2019 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-31323999

RESUMEN

Oxidative stress-induced damage to the retinal pigmented epithelium (RPE), a specialised post-mitotic monolayer that maintains retinal homeostasis, contributes to the development of age-related macular degeneration (AMD). Curcumin (Cur), a naturally occurring antioxidant, was previously shown to have the ability to protect RPE cells from oxidative stress. However, poor solubility and bioavailability makes Cur a poor therapeutic agent. As prodrug approaches can mitigate these limitations, we compared the protective properties of the Cur prodrug curcumin diethyl disuccinate (CurDD) against Cur in relation to oxidative stress induced in human ARPE-19 cells. Both CurDD and Cur significantly decreased H2O2-induced reactive oxygen species (ROS) production and protected RPE cells from oxidative stress-induced death. Both drugs exerted their protective effects through the modulation of p44/42 (ERK) and the involvement of downstream molecules Bax and Bcl-2. Additionally, the expression of antioxidant enzymes HO-1 and NQO1 was also enhanced in cells treated with CurDD and Cur. In all cases, CurDD was more effective than its parent drug against oxidative stress-induced damage to ARPE-19 cells. These findings highlight CurDD as a more potent drug compared to Cur against oxidative stress and indicate that its protective effects are exerted through modulation of key apoptotic and antioxidant molecular pathways.


Asunto(s)
Curcumina/análogos & derivados , Peróxido de Hidrógeno/farmacología , Degeneración Macular/metabolismo , Estrés Oxidativo/efectos de los fármacos , Profármacos/farmacología , Epitelio Pigmentado de la Retina/citología , Succinatos/farmacología , Western Blotting , Línea Celular , Supervivencia Celular/efectos de los fármacos , Curcumina/farmacología , Humanos , Especies Reactivas de Oxígeno/metabolismo
6.
BMC Genomics ; 18(1): 575, 2017 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-28774272

RESUMEN

BACKGROUND: Human polymorphisms with derived alleles that are protective against disease may provide powerful translational opportunities. Here we report a method to identify such candidate polymorphisms and apply it to common non-synonymous SNPs (nsSNPs) associated with common diseases. Our study also sought to establish which of the identified protective nsSNPs show evidence of positive selection, taking this as indirect evidence that the protective variant has a beneficial effect on phenotype. Further, we performed an analysis to quantify the predicted effect of each protective variant on protein function/structure. RESULTS: An initial analysis of eight SNPs previously identified as associated with age-related macular degeneration (AMD), revealed that two of them have a derived allele that is protective against developing the disease. One is in the complement component 2 gene (C2; E318D) and the other is in the complement factor B gene (CFB; R32Q). Then, combining genomewide ancestral allele information with known common disease-associated nsSNPs from the GWAS catalog, we found 32 additional SNPs which have a derived allele that is disease protective. Out of the total 34 identified candidate protective variants (CPVs), we found that 30 show stronger evidence of positive selection than the protective variant in lipoprotein lipase (LPL; S447X), which has already been translated into gene therapy. Furthermore, 11 of these CPVs have a higher probability of affecting protein structure than the lipoprotein lipase protective variant (LPL; S447X). CONCLUSIONS: We identify 34 CPVs from the human genome. Diseases they confer protection against include, but are not limited to, type 2 diabetes, inflammatory bowel disease, age-related macular degeneration, multiple sclerosis and rheumatoid arthritis. We propose that those 30 CPVs with evidence of stronger positive selection than the LPL protective variant, may be considered as priority candidates for therapeutic approaches. The next step towards translation will require testing the hypotheses generated by our analyses, specifically whether the CPV arose from a gain-of-function or a loss-of-function mutation.


Asunto(s)
Genómica , Degeneración Macular/genética , Polimorfismo de Nucleótido Simple , Alelos , Mutación con Ganancia de Función , Estudio de Asociación del Genoma Completo , Humanos , Lipoproteína Lipasa/genética
7.
Br J Cancer ; 115(8): 983-992, 2016 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-27584665

RESUMEN

BACKGROUND: PERP (p53 apoptosis effector related to PMP-22), a transcriptional target of p53, is downregulated and contributes to the impairment of apoptosis in uveal melanoma (UM). Intriguingly, PERP is not induced in UM despite functional p53. p63, located on chromosome 3, which is characteristically altered in high-risk UM, can transactivate PERP. Here, we determine the functional role of p63 expression in the initiation of p53/PERP-mediated apoptosis in UM. METHODS: PERP expression was monitored by quantitative PCR (qPCR) and immunoblotting in UM cell lines treated with DNA-damaging agents. The functional role of p63 was assessed by transient expression of p63-turbo GFP (p63-tGFP) in the apoptosis- resistant, 3q-deficient OCM-1 cells. Expression and localisation of p63, PERP and p53, and induction of apoptosis were characterised by qPCR, immunoblotting and live cell confocal microscopy. RESULTS: PERP expression was significantly downregulated in all UM cell lines. DNA-damaging treatments failed to induce apoptosis and activate PERP in OCM-1 cells, which displayed non-functional levels of p63. Expression of p63-tGFP induced apoptosis with marked increase in PERP expression and associated p53 accumulation. CONCLUSIONS: Lack of p63 contributes to reduced PERP levels and impaired p53-mediated apoptosis in UM. p63 expression is required for PERP-mediated apoptosis in UM.


Asunto(s)
Apoptosis/fisiología , Melanoma/patología , Factores de Transcripción/fisiología , Proteínas Supresoras de Tumor/fisiología , Neoplasias de la Úvea/patología , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Línea Celular Tumoral , Daño del ADN , Regulación Neoplásica de la Expresión Génica , Humanos , Immunoblotting , Melanoma/genética , Melanoma/metabolismo , Microscopía Confocal , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Recombinantes de Fusión/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética , Activación Transcripcional , Proteínas Supresoras de Tumor/biosíntesis , Proteínas Supresoras de Tumor/genética , Rayos Ultravioleta , Neoplasias de la Úvea/genética , Neoplasias de la Úvea/metabolismo
8.
Cell Microbiol ; 17(6): 843-59, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25486861

RESUMEN

Salmonella enterica Typhimurium induces intestinal inflammation through the activity of type III secreted effector (T3SE) proteins. Our prior results indicate that the secretion of the T3SE SipA and the ability of SipA to induce epithelial cell responses that lead to induction of polymorphonuclear transepithelial migration are not coupled to its direct delivery into epithelial cells from Salmonella. We therefore tested the hypothesis that SipA interacts with a membrane protein located at the apical surface of intestinal epithelial cells. Employing a split ubiquitin yeast-two-hybrid screen, we identified the tetraspanning membrane protein, p53 effector related to PMP-22 (PERP), as a SipA binding partner. SipA and PERP appear to have intersecting activities as we found PERP to be involved in proinflammatory pathways shown to be regulated by SipA. In sum, our studies reveal a critical role for PERP in the pathogenesis of S. Typhimurium, and for the first time demonstrate that SipA, a T3SE protein, can engage a host protein at the epithelial surface.


Asunto(s)
Proteínas Bacterianas/metabolismo , Interacciones Huésped-Patógeno , Inflamación/microbiología , Inflamación/patología , Proteínas de la Membrana/metabolismo , Proteínas de Microfilamentos/metabolismo , Salmonella typhimurium/inmunología , Línea Celular , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Genes Supresores de Tumor , Humanos , Unión Proteica , Mapeo de Interacción de Proteínas , Migración Transendotelial y Transepitelial , Técnicas del Sistema de Dos Híbridos
9.
Hum Genet ; 134(7): 705-15, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25893795

RESUMEN

Age-related macular degeneration (AMD) and Alzheimer's disease (AD) are degenerative, multifactorial diseases involving age-related accumulation of extracellular deposits linked to dysregulation of protein homeostasis. Here, we strengthen the evidence that an nsSNP (p.Ala25Thr) in the cysteine proteinase inhibitor cystatin C gene CST3, previously confirmed by meta-analysis to be associated with AD, is associated with exudative AMD. To our knowledge, this is the first report highlighting a genetic variant that increases the risk of developing both AD and AMD. Furthermore, we demonstrate that the risk associated with the mutant allele follows a recessive model for both diseases. We perform an AMD-CST3 case-control study genotyping 350 exudative AMD Caucasian individuals. Bringing together our data with the previously reported AMD-CST3 association study, the evidence of a recessive effect on AMD risk is strengthened (OR = 1.89, P = 0.005). This effect closely resembles the AD-CST3 recessive effect (OR = 1.73, P = 0.005) previously established by meta-analysis. This resemblance is substantiated by the high correlation between CST3 genotype and effect size across the two diseases (R(2) = 0.978). A recessive effect is in line with the known function of cystatin C, a potent enzyme inhibitor. Its potency means that, in heterozygous individuals, a single functional allele is sufficient to maintain its inhibitory function; only homozygous individuals will lack this form of proteolytic regulation. Our findings support the hypothesis that recessively acting variants account for some of the missing heritability of multifactorial diseases. Replacement therapy represents a translational opportunity for individuals homozygous for the mutant allele.


Asunto(s)
Enfermedad de Alzheimer/genética , Cistatina C/genética , Enfermedades Genéticas Congénitas/genética , Predisposición Genética a la Enfermedad , Degeneración Macular/genética , Mutación Missense , Anciano , Anciano de 80 o más Años , Alelos , Enfermedad de Alzheimer/metabolismo , Cistatina C/metabolismo , Femenino , Enfermedades Genéticas Congénitas/metabolismo , Heterocigoto , Homocigoto , Humanos , Degeneración Macular/metabolismo , Masculino , Factores de Riesgo
10.
Exp Eye Res ; 134: 1-14, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25753839

RESUMEN

Recently, thrombospondin-1 (TSP-1) has been reported to be critical for maintaining a healthy ocular surface. The purpose of the study was to characterize the expression of TSP-1 and of its receptors CD36 and CD47 in corneal and conjunctival epithelial cells and determine the effect of exogenous TSP-1 treatment on these cells, following the induction of inflammation- and apoptosis-related changes. The expression of TSP-1, CD36 and CD47 by corneal and conjunctival cell lines was firstly characterized by ELISA, immunofluorescence analysis, Western blotting and reverse transcription polymerase chain reaction (RT-PCR). Benzalkonium chloride (BAC) exposure for 5 or 15 min was used as pro-inflammatory and pro-apoptotic stimulus for corneal or conjunctival epithelial cells, respectively. To analyze inflammation and apoptosis-related changes, IL-6 and TGF-ß2 secretion determined by ELISA was used as inflammatory markers, while activated caspase-3/7 levels and cell viability, determined by CellEvent™ Caspase-3/7 Green Detection Reagent and XTT cytotoxicity assay, respectively, were used as apoptotic markers. Changes in CD36 and CD47 mRNA expression were quantified by real time RT-PCR. Corneal epithelial cells secreted and expressed higher protein levels of TSP-1 than conjunctival epithelial cells, although TSP-1 mRNA expression levels were similar and had lower CD36 and CD47, both at protein and mRNA levels. Both cell lines responded to exogenous TSP-1 treatment increasing CD36 at protein and mRNA levels. Blocking experiments revealed a predominance of TSP-1/CD47 rather than TSP-1/CD36 interactions to up-regulate CD36 levels in conjunctival epithelial cells, but not in corneal epithelial cells. BAC exposure increased IL-6 secretion and caspase-3/7 levels and decreased cell viability in both, corneal and conjunctival epithelial cells. Moreover, BAC exposure increased latent TGF-ß2 levels in conjunctival epithelial cells. Interestingly, CD36 mRNA expression was down-regulated after BAC exposure in both cell lines. Exogenous TSP-1 treatment reduced TGF-ß2 up-regulated levels by BAC exposure in conjunctival epithelial cells and less pronounced reduced IL-6 in BAC-exposed corneal epithelial cells. The effect on CD36 and CD47 regulation was less pronounced or even opposite depending on the inflammation- and apoptosis-related markers tested. Our results show evidence of the capacity of corneal and conjunctival epithelial cells to respond to TSP-1 via CD36 or CD47. Experimental simulation of inflammation- and apoptosis-related conditions changed the effects differentially elicited by TSP-1 on corneal and conjunctival epithelial cells, suggesting an unexpected and relevant contribution of TSP-1 on ocular surface homeostasis regulation.


Asunto(s)
Apoptosis/fisiología , Conjuntiva/efectos de los fármacos , Córnea/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Trombospondina 1/farmacología , Western Blotting , Antígenos CD36/genética , Antígenos CD36/metabolismo , Antígeno CD47/genética , Antígeno CD47/metabolismo , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Línea Celular , Conjuntiva/citología , Conjuntiva/metabolismo , Córnea/citología , Córnea/metabolismo , Ensayo de Inmunoadsorción Enzimática , Células Epiteliales/metabolismo , Técnica del Anticuerpo Fluorescente Indirecta , Regulación de la Expresión Génica/fisiología , Homeostasis , Humanos , Inflamación/metabolismo , Interleucina-6/metabolismo , Quinolinas/toxicidad , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Trombospondina 1/genética , Factor de Crecimiento Transformador beta2/metabolismo
11.
J Cell Mol Med ; 17(7): 833-43, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23663427

RESUMEN

The structural and functional integrity of the retinal pigment epithelium (RPE) is fundamental for maintaining the function of the neuroretina. These specialized cells form a polarized monolayer that acts as the retinal-blood barrier, separating two distinct environments with highly specialized functions: photoreceptors of the neuroretina at the apical side and Bruch's membrane/highly vascularized choriocapillaris at the basal side. The polarized nature of the RPE is essential for the health of these two regions, not only in nutrient and waste transport but also in the synthesis and directional secretion of proteins required in maintaining retinal homoeostasis and function. Although multiple malfunctions within the RPE cells have been associated with development of age-related macular degeneration (AMD), the leading cause of legal blindness, clear causative processes have not yet been conclusively characterized at the molecular and cellular level. This article focuses on the involvement of directionally secreted RPE proteins in normal functioning of the retina and on the potential association of incorrect RPE protein secretion with development of AMD. Understanding the importance of RPE polarity and the correct secretion of essential structural and regulatory components emerge as critical factors for the development of novel therapeutic strategies targeting AMD.


Asunto(s)
Proteínas del Ojo/metabolismo , Regulación de la Expresión Génica , Degeneración Macular/metabolismo , Retina/fisiología , Epitelio Pigmentado de la Retina/fisiología , Animales , Lámina Basal de la Coroides/metabolismo , Coroides/fisiología , Homeostasis , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Epitelio Pigmentado de la Retina/metabolismo
12.
Cells ; 12(5)2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36899848

RESUMEN

Cystatin C, a secreted cysteine protease inhibitor, is abundantly expressed in retinal pigment epithelium (RPE) cells. A mutation in the protein's leader sequence, corresponding to formation of an alternate variant B protein, has been linked with an increased risk for both age-related macular degeneration (AMD) and Alzheimer's disease (AD). Variant B cystatin C displays intracellular mistrafficking with partial mitochondrial association. We hypothesized that variant B cystatin C interacts with mitochondrial proteins and impacts mitochondrial function. We sought to determine how the interactome of the disease-related variant B cystatin C differs from that of the wild-type (WT) form. For this purpose, we expressed cystatin C Halo-tag fusion constructs in RPE cells to pull down proteins interacting with either the WT or variant B form, followed by identification and quantification by mass spectrometry. We identified a total of 28 interacting proteins, of which 8 were exclusively pulled down by variant B cystatin C. These included 18 kDa translocator protein (TSPO) and cytochrome B5 type B, both of which are localized to the mitochondrial outer membrane. Variant B cystatin C expression also affected RPE mitochondrial function with increased membrane potential and susceptibility to damage-induced ROS production. The findings help us to understand how variant B cystatin C differs functionally from the WT form and provide leads to RPE processes adversely affected by the variant B genotype.


Asunto(s)
Cistatina C , Degeneración Macular , Humanos , Epitelio Pigmentado de la Retina/metabolismo , Proteínas Mitocondriales/metabolismo , Degeneración Macular/metabolismo , Mitocondrias/metabolismo , Receptores de GABA/metabolismo
13.
Sci Rep ; 13(1): 22974, 2023 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-38151503

RESUMEN

Placenta-derived mesenchymal stem cells (PL-MSCs) have therapeutic potential in various clinical contexts due to their regenerative and immunomodulatory properties. However, with increasing age or extensive in vitro culture, their viability and function are gradually lost, thus restricting their therapeutic application. The primary cause of this deterioration is oxidative injury from free radicals. Therefore, enhancing cell viability and restoring cellular repair mechanisms of PL-MSCs in an oxidative stress environment are crucial in this context. Fucoxanthin, a carotenoid derived from brown seaweed, demonstrates antioxidant activity by increasing the production of antioxidant enzymes and lowering the levels of reactive oxygen species (ROS). This study aimed to determine whether fucoxanthin protects PL-MSCs from hydrogen peroxide (H2O2)-induced oxidative stress. After characterization, PL-MSCs were co-treated with fucoxanthin and H2O2 for 24 h (co-treatment) or pre-treated with fucoxanthin for 24 h followed by H2O2 for 24 h (pre-treatment). The effects of fucoxanthin on cell viability and proliferation were examined using an MTT assay. The expression of antioxidant enzymes, PI3K/Akt/Nrf-2 and intracellular ROS production were investigated in fucoxanthin-treated PL-MSCs compared to the untreated group. The gene expression and involvement of specific pathways in the cytoprotective effect of fucoxanthin were investigated by high-throughput NanoString nCounter analysis. The results demonstrated that co-treatment and pre-treatment with fucoxanthin restored the viability and proliferative capacity of PL-MSCs. Fucoxanthin treatment increased the expression of antioxidant enzymes in PL-MSCs cultured under oxidative stress conditions and decreased intracellular ROS accumulation. Markedly, fucoxanthin treatment could restore PI3K/Akt/Nrf-2 expression in H2O2-treated PL-MSCs. High-throughput analysis revealed up-regulation of genes involved in cell survival pathways, including cell cycle and proliferation, DNA damage repair pathways, and down-regulation of genes in apoptosis and autophagy pathways. This study demonstrated that fucoxanthin protects and rescues PL-MSCs from oxidative stress damage through the PI3K/Akt/Nrf-2 pathway. Our data provide the supporting evidence for the use of fucoxanthin as an antioxidant cytoprotective agent to improve the viability and proliferation capacity of PL-MSCs both in vitro and in vivo required to increase the effectiveness of MSC expansion for therapeutic applications.


Asunto(s)
Antioxidantes , Células Madre Mesenquimatosas , Humanos , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Peróxido de Hidrógeno/toxicidad , Peróxido de Hidrógeno/metabolismo , Estrés Oxidativo , Apoptosis
14.
Sci Rep ; 12(1): 13324, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35922637

RESUMEN

Retinal pigment epithelium (RPE) performs essential functions for ensuring retinal homeostasis and is a key site for pathogenic changes leading to age-related macular degeneration (AMD). Compromised proteostasis in RPE results in ER stress and ER stress-dependent antioxidant, apoptosis and autophagic responses. ER stress induces the unfolded protein response (UPR) in which EIF2AK3, encoding the protein kinase RNA-like ER kinase (PERK), acts as a key regulator. Downregulated EIF2AK3 gene expression has recently been identified in AMD using human donor RPE, however the molecular mechanisms that integrate the various ER-mediated cellular pathways underpinning progressive RPE dysfunction in AMD have not been fully characterised. This study investigated the downstream effects of PERK downregulation in response to Brefeldin A (BFA)-induced ER stress in ARPE-19 cells. PERK downregulation resulted in increased ER stress and impaired apoptosis induction, antioxidant responses and autophagic flux. ARPE-19 cells were unable to efficiently induce autophagy following PERK downregulation and PERK presented a role in regulating the rate of autophagy induction. The findings support PERK downregulation as an integrative event facilitating dysregulation of RPE processes critical to cell survival known to contribute to AMD development and highlight PERK as a potential future therapeutic target for AMD.


Asunto(s)
Antioxidantes , Estrés del Retículo Endoplásmico , Antioxidantes/metabolismo , Apoptosis , Autofagia , Células Epiteliales/metabolismo , Humanos , Estrés Oxidativo , Pigmentos Retinianos/metabolismo , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo
15.
Front Cell Neurosci ; 16: 786926, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35308121

RESUMEN

Thymoquinone is a naturally occurring compound and is the major component of Nigella sativa, also known as black seed or black cumin. For centuries thymoquinone has been used especially in the Middle East traditionally to treat wounds, asthma, allergies, fever, headache, cough, hypertension, and diabetes. Studies have suggested beneficial effects of thymoquinone to be attributed to its antioxidant, antibacterial, anti-oxidative stress, anti-inflammatory, and neuroprotective properties. Recently, there has been a surge of interest in thymoquinone as a treatment for neurodegeneration in the brain, such as that seen in Alzheimer's (AD) and Parkinson's diseases (PD). In vitro and in vivo studies on animal models of AD and PD suggest the main neuroprotective mechanisms are based on the anti-inflammatory and anti-oxidative properties of thymoquinone. Neurodegenerative conditions of the eye, such as Age-related Macular Degeneration (AMD) and glaucoma share at least in part similar mechanisms of neuronal cell death with those occurring in AD and PD. This review aims to summarize and critically analyze the evidence to date of the effects and potential neuroprotective actions of thymoquinone in the eye and ocular neurodegenerations.

16.
Front Aging Neurosci ; 14: 1016293, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36408112

RESUMEN

The retinal pigment epithelium (RPE) and the choroid are ocular tissues with fundamental roles in supporting neuroretinal function. The pathogenesis of age-related macular degeneration (AMD), a leading cause of irreversible blindness for which aging is the highest risk factor is closely linked with progressive impairment of various functions of these tissues. Cellular senescence, marked by cell cycle arrest and secretion of proinflammatory factors, is known to be associated with aging and has been proposed as a potential driver of AMD. Here, we investigated the role played by intercellular communication in the RPE/choroid within the context of aging, senescence and AMD. We inferred cell-cell interactions in the RPE/choroid by applying CellChat and scDiffCom on a publicly available scRNA-seq dataset from three human donors with and without AMD. We identified age-regulated ligand and receptor genes by using limma on a separate publicly available bulk microarray dataset providing RPE/choroid samples at multiple time points. Cellular senescence was investigated by assigning a score to each cell and each sample of these scRNA-seq and microarray datasets, respectively, based on the expression of key signature genes determined by a previous senescence meta-analysis. We identified VEGF-, BMP-and tenascin-mediated pathways supporting some of the strongest cell-cell interactions between RPE cells, fibroblasts and choroidal endothelial cells and as strong intercellular communication pathways related to both aging and senescence. Their signaling strength was enhanced between subpopulations of cells having high senescence scores. Predominant ligands of these pathways were upregulated with age whereas predominant receptors were downregulated. Globally, we also observed that cells from AMD samples presented slightly bigger senescence scores than normal cells and that the senescence score positively correlated with age in bulk samples (R = 0.26, value of p < 0.01). Hence, our analysis provides novel information on RPE/choroid intercellular communication that gives insights into the connection between aging, senescence and AMD.

17.
Sci Rep ; 12(1): 11341, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35790790

RESUMEN

Cholangiocarcinoma (CCA) is an aggressive malignancy arising from the damaged epithelial cells of the biliary tract. Previous studies have reported that the multi-potent mesenchymal stem cells (MSCs) activate a series of tumor signaling pathways by releasing several cytokines to influence tumor cell development. However, the roles and mechanisms of human chorion-derived MSCs (CH-MSCs) in cholangiocarcinoma progression have not been fully addressed. This present study aims to examine the effects of conditioned media derived from CH-MSCs (CH-CM) on CCA cell lines and investigate the respective underlying mechanism of action. For this purpose, MSCs were isolated from chorion tissue, and three cholangiocarcinoma cell lines, namely KKU100, KKU213A, and KKU213B, were used. MTT assay, annexin V/PI analysis, and JC-1 staining were used to assess the effects of CH-CM on proliferation and apoptosis of CCA cells, respectively. Moreover, the effect of CH-CM on caspase-dependent apoptotic pathways was also evaluated. The western blotting assay was also used for measuring the expression of JAK2/STAT3 signaling pathway-associated proteins. The results showed that CH-CM suppressed proliferation and promoted apoptosis of CCA cell lines. CH-CM treatment-induced loss of mitochondrial membrane potential (∆Ψm) in CCA cell lines. The factors presented in the CH-CM also inhibited JAK2/STAT3 signaling, reduced the expression of BCL-2, and increased BAX expression in CCA cells. In conclusion, our study suggests that the CH-CM has a potent anti-cancer effect on cholangiocarcinoma cells and thus provides opportunities for use in alternative cell therapy or in combination with a conventional chemotherapeutic drug to increase the efficiency of CCA treatment.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Células Madre Mesenquimatosas , Apoptosis , Conductos Biliares Intrahepáticos , Línea Celular , Corion , Humanos , Factores Inmunológicos , Janus Quinasa 2 , Neutropenia , Factor de Transcripción STAT3 , Transducción de Señal
18.
Nat Commun ; 12(1): 2345, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33879792

RESUMEN

Age is the most important risk factor for cancer, as cancer incidence and mortality increase with age. However, how molecular alterations in tumours differ among patients of different age remains largely unexplored. Here, using data from The Cancer Genome Atlas, we comprehensively characterise genomic, transcriptomic and epigenetic alterations in relation to patients' age across cancer types. We show that tumours from older patients present an overall increase in genomic instability, somatic copy-number alterations (SCNAs) and somatic mutations. Age-associated SCNAs and mutations are identified in several cancer-driver genes across different cancer types. The largest age-related genomic differences are found in gliomas and endometrial cancer. We identify age-related global transcriptomic changes and demonstrate that these genes are in part regulated by age-associated DNA methylation changes. This study provides a comprehensive, multi-omics view of age-associated alterations in cancer and underscores age as an important factor to consider in cancer research and clinical practice.


Asunto(s)
Envejecimiento/genética , Neoplasias/etiología , Neoplasias/genética , Factores de Edad , Envejecimiento/metabolismo , Variaciones en el Número de Copia de ADN , Metilación de ADN , Bases de Datos Genéticas , Epigénesis Genética , Femenino , Duplicación de Gen , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Genoma Humano , Inestabilidad Genómica , Genómica , Humanos , Pérdida de Heterocigocidad , Masculino , Mutación , Neoplasias/metabolismo , Oncogenes , Factores de Riesgo , Transducción de Señal/genética , Secuenciación Completa del Genoma
19.
Biochim Biophys Acta Rev Cancer ; 1874(1): 188393, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32679166

RESUMEN

The tetraspan plasma membrane protein PERP (p53 apoptosis effector related to PMP22) is a lesser-known transcriptional target of p53 and p63. A member of the PMP22/GAS3/EMP membrane protein family, PERP was originally identified as a p53 target specifically trans-activated during apoptosis, but not during cell-cycle arrest. Several studies have since shown downregulation of PERP expression in numerous cancers, suggesting that PERP is a tumour suppressor protein. This review focusses on the important advances made in elucidating the mechanisms regulating PERP expression and its function as a tumour suppressor in diverse human cancers, including breast cancer and squamous cell carcinoma. Investigating PERP's role in clinically-aggressive uveal melanoma has revealed that PERP engages a positive-feedback loop with p53 to regulate its own expression, and that p63 is required beside p53 to achieve pro-apoptotic levels of PERP in this cancer. Furthermore, the recent discovery of the apoptosis-mediating interaction of PERP with SERCA2b at the plasma membrane-endoplasmic reticulum interface demonstrates a novel mechanism of PERP stabilisation, and how PERP can mediate Ca2+ signalling to facilitate apoptosis. The multi-faceted role of PERP in cancer, involving well-documented functions in mediating apoptosis and cell-cell adhesion is discussed, alongside PERP's emerging roles in epithelial-mesenchymal transition, and PERP crosstalk with inflammation signalling pathways, and other signalling pathways. The potential for restoring PERP expression as a means of cancer therapy is also considered.


Asunto(s)
Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Neoplasias/patología , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Apoptosis , Señalización del Calcio , Adhesión Celular , Regulación Neoplásica de la Expresión Génica , Genes Supresores de Tumor , Humanos , Inflamación , Neoplasias/genética , Neoplasias/metabolismo , Factores de Transcripción/genética , Proteína p53 Supresora de Tumor/genética , Proteínas Supresoras de Tumor/genética
20.
Invest Ophthalmol Vis Sci ; 61(2): 9, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-32049341

RESUMEN

Purpose: Variant B precursor cysteine protease inhibitor cystatin C, a known recessive risk factor for developing exudative age-related macular degeneration (AMD), presents altered intracellular trafficking and reduced secretion from retinal pigment epithelial (RPE) cells. Because cystatin C inhibits multiple extracellular matrix (ECM)-degrading cathepsins, this study evaluated the role of this mutation in inducing ECM-related functional changes in RPE cellular behavior. Methods: Induced pluripotent stem cells gene-edited bi-allelically by CRISPR/Cas9 to express the AMD-linked cystatin C variant were differentiated to RPE cells and assayed for their ability to degrade fluorescently labeled ECM proteins. Cellular migration and adhesion on multiple ECM proteins, differences in transepithelial resistance and polarized protein secretion were tested. Vessel formation induced by gene edited cells-conditioned media was quantified using primary human dermal microvascular epithelial cells. Results: Variant B cystatin C-expressing induced pluripotent stem cells-derived RPE cells displayed a significantly higher rate of laminin and fibronectin degradation 3 days after seeding on fluorescently labeled ECM (P < 0.05). Migration on matrigel, collagen IV and fibronectin was significantly faster for edited cells compared with wild-type (WT) cells. Both edited and WT cells displayed polarized secretion of cystatin C, but transepithelial resistance was lower in gene-edited cells after 6 weeks culture, with significantly lower expression of tight junction protein claudin-3. Media conditioned by gene-edited cells stimulated formation of significantly longer microvascular tubes (P < 0.05) compared with WT-conditioned media. Conclusions: Reduced levels of cystatin C lead to changes in the RPE ability to degrade, adhere, and migrate supporting increased invasiveness and angiogenesis relevant for AMD pathology.


Asunto(s)
Cistatina C/fisiología , Células Madre Pluripotentes Inducidas/fisiología , Degeneración Macular/patología , Epitelio Pigmentado de la Retina/citología , Movimiento Celular/fisiología , Células Cultivadas , Cistatina C/genética , Cistatina C/metabolismo , Fibronectinas/metabolismo , Edición Génica , Humanos , Laminina/metabolismo , Mutación Puntual/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA