Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 604(7906): 502-508, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35396580

RESUMEN

Schizophrenia has a heritability of 60-80%1, much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including 16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factor SP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies.


Asunto(s)
Estudio de Asociación del Genoma Completo , Esquizofrenia , Alelos , Predisposición Genética a la Enfermedad/genética , Genómica , Humanos , Polimorfismo de Nucleótido Simple/genética , Esquizofrenia/genética
2.
Neurobiol Dis ; 180: 106082, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36925053

RESUMEN

Humans are thought to be more susceptible to neurodegeneration than equivalently-aged primates. It is not known whether this vulnerability is specific to anatomically-modern humans or shared with other hominids. The contribution of introgressed Neanderthal DNA to neurodegenerative disorders remains uncertain. It is also unclear how common variants associated with neurodegenerative disease risk are maintained by natural selection in the population despite their deleterious effects. In this study, we aimed to quantify the genome-wide contribution of Neanderthal introgression and positive selection to the heritability of complex neurodegenerative disorders to address these questions. We used stratified-linkage disequilibrium score regression to investigate the relationship between five SNP-based signatures of natural selection, reflecting different timepoints of evolution, and genome-wide associated variants of the three most prevalent neurodegenerative disorders: Alzheimer's disease, amyotrophic lateral sclerosis and Parkinson's disease. We found no evidence for enrichment of positively-selected SNPs in the heritability of Alzheimer's disease, amyotrophic lateral sclerosis and Parkinson's disease, suggesting that common deleterious disease variants are unlikely to be maintained by positive selection. There was no enrichment of Neanderthal introgression in the SNP-heritability of these disorders, suggesting that Neanderthal admixture is unlikely to have contributed to disease risk. These findings provide insight into the origins of neurodegenerative disorders within the evolution of Homo sapiens and addresses a long-standing debate, showing that Neanderthal admixture is unlikely to have contributed to common genetic risk of neurodegeneration in anatomically-modern humans.


Asunto(s)
Enfermedad de Alzheimer , Esclerosis Amiotrófica Lateral , Hombre de Neandertal , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Animales , Humanos , Hombre de Neandertal/genética , Enfermedades Neurodegenerativas/genética , Selección Genética
3.
Mol Psychiatry ; 27(12): 5135-5143, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36131045

RESUMEN

Polygenic risk prediction remains an important aim of genetic association studies. Currently, the predictive power of schizophrenia polygenic risk scores (PRSs) is not large enough to allow highly accurate discrimination between cases and controls and thus is not adequate for clinical integration. Since PRSs are rarely used to reveal biological functions or to validate candidate pathways, to fill this gap, we investigated whether their predictive ability could be improved by building genome-wide (GW-PRSs) and pathway-specific PRSs, using distance- or expression quantitative trait loci (eQTLs)- based mapping between genetic variants and genes. We focused on five pathways (glutamate, oxidative stress, GABA/interneurons, neuroimmune/neuroinflammation and myelin) which belong to a critical hub of schizophrenia pathophysiology, centred on redox dysregulation/oxidative stress. Analyses were first performed in the Lausanne Treatment and Early Intervention in Psychosis Program (TIPP) study (n = 340, cases/controls: 208/132), a sample of first-episode of psychosis patients and matched controls, and then validated in an independent study, the epidemiological and longitudinal intervention program of First-Episode Psychosis in Cantabria (PAFIP) (n = 352, 224/128). Our results highlighted two main findings. First, GW-PRSs for schizophrenia were significantly associated with early psychosis status. Second, oxidative stress was the only significantly associated pathway that showed an enrichment in both the TIPP (p = 0.03) and PAFIP samples (p = 0.002), and exclusively when gene-variant linking was done using eQTLs. The results suggest that the predictive accuracy of polygenic risk scores could be improved with the inclusion of information from functional annotations, and through a focus on specific pathways, emphasizing the need to build and study functionally informed risk scores.


Asunto(s)
Trastornos Psicóticos , Esquizofrenia , Humanos , Trastornos Psicóticos/genética , Esquizofrenia/genética , Factores de Riesgo , Herencia Multifactorial , Estrés Oxidativo , Estudio de Asociación del Genoma Completo , Predisposición Genética a la Enfermedad
4.
Eur Arch Psychiatry Clin Neurosci ; 273(1): 253-267, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35727357

RESUMEN

Psychoses in Alzheimer's disease (AD) are associated with worse prognosis. Genetic vulnerability for schizophrenia (SCZ) may drive AD-related psychoses, yet its impact on brain constituents is still unknown. This study aimed to investigate the association between polygenic risk scores (PRSs) for SCZ and psychotic experiences (PE) and grey matter (GM) volume in patients with AD with (AD-PS) and without (AD-NP) psychosis. Clinical, genetic and T1-weighted MRI data for 800 participants were extracted from the ADNI database: 203 healthy controls, 121 AD-PS and 476 AD-NP. PRSs were calculated using a Bayesian approach and analysed at ten p-value thresholds. Standard voxel-based morphometry was used to process MRI data. Logistic regression models including both PRSs for SCZ and PE, and an AD-PRS were used to predict psychosis in AD. Associations between PRSs and GM volume were investigated in the whole sample and the three groups independently. Only the AD-PRS predicted psychosis in AD. Inconsistent associations between the SCZ-PRS and PE-PRS and GM volumes were found across groups. The SCZ-PRS was negatively associated with medio-temporal/subcortical volumes and positively with medial/orbitofrontal volumes in the AD-PS group. Only medio-temporal areas were more atrophic in the AD-PS group, while there was no significant correlation between psychosis severity and GM volume. Although not associated with psychoses, the SCZ-PRS was correlated with smaller medio-temporal and larger orbitofrontal volumes in AD-PS. Similar alterations have also been observed in SCZ patients. This finding suggest a possible disconnection between these regions associated with psychoses in more advanced AD.


Asunto(s)
Enfermedad de Alzheimer , Trastornos Psicóticos , Humanos , Teorema de Bayes , Encéfalo , Neuroimagen
5.
Hum Mol Genet ; 29(20): 3341-3349, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-32959868

RESUMEN

Many medical treatments, from oncology to psychiatry, can lower white blood cell counts and thus access to these treatments can be restricted to individuals with normal levels of white blood cells, principally in order to minimize risk of serious infection. This adversely affects individuals of African or Middle Eastern ancestries who have on average a reduced number of circulating white blood cells, because of the Duffy-null (CC) genotype at rs2814778 in the ACKR1 gene. Here, we investigate whether the Duffy-null genotype is associated with the risk of infection using the UK Biobank sample and the iPSYCH Danish case-cohort study, two population-based samples from different countries and age ranges. We found that a high proportion of those with the Duffy-null genotype (21%) had a neutrophil count below the threshold often used as a cut-off for access to relevant treatments, compared with 1% of those with the TC/TT genotype. In addition we found that despite its strong association with lower average neutrophil counts, the Duffy-null genotype was not associated with an increased risk of infection, viral or bacterial. These results have widespread implications for the clinical treatment of individuals of African ancestry and indicate that neutrophil thresholds to access treatments could be lowered in individuals with the Duffy-null genotype without an increased risk of infection.


Asunto(s)
Población Negra/genética , Sistema del Grupo Sanguíneo Duffy/genética , Infecciones/etiología , Polimorfismo de Nucleótido Simple , Población Blanca/genética , Bancos de Muestras Biológicas , Estudios de Cohortes , Femenino , Genotipo , Humanos , Infecciones/patología , Masculino , Persona de Mediana Edad
6.
Hum Mol Genet ; 29(1): 159-167, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31691811

RESUMEN

Schizophrenia is a complex highly heritable disorder. Genome-wide association studies (GWAS) have identified multiple loci that influence the risk of developing schizophrenia, although the causal variants driving these associations and their impacts on specific genes are largely unknown. We identify a significant correlation between schizophrenia risk and expression at 89 genes in the dorsolateral prefrontal cortex (P ≤ 9.43 × 10-6), including 20 novel genes. Genes whose expression correlate with schizophrenia were enriched for those involved in abnormal CNS synaptic transmission (PFDR = 0.02) and antigen processing and presentation of peptide antigen via MHC class I (PFDR = 0.02). Within the CNS synaptic transmission set, we identify individual significant candidate genes to which we assign direction of expression changes in schizophrenia. The findings provide strong candidates for experimentally probing the molecular basis of synaptic pathology in schizophrenia.


Asunto(s)
Esquizofrenia/genética , Esquizofrenia/patología , Transcriptoma/genética , Encéfalo/metabolismo , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo/métodos , Humanos , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética
7.
Mol Psychiatry ; 26(6): 2070-2081, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32398722

RESUMEN

Substantial genetic liability is shared across psychiatric disorders but less is known about risk variants that are specific to a given disorder. We used multi-trait conditional and joint analysis (mtCOJO) to adjust GWAS summary statistics of one disorder for the effects of genetically correlated traits to identify putative disorder-specific SNP associations. We applied mtCOJO to summary statistics for five psychiatric disorders from the Psychiatric Genomics Consortium-schizophrenia (SCZ), bipolar disorder (BIP), major depression (MD), attention-deficit hyperactivity disorder (ADHD) and autism (AUT). Most genome-wide significant variants for these disorders had evidence of pleiotropy (i.e., impact on multiple psychiatric disorders) and hence have reduced mtCOJO conditional effect sizes. However, subsets of genome-wide significant variants had larger conditional effect sizes consistent with disorder-specific effects: 15 of 130 genome-wide significant variants for schizophrenia, 5 of 40 for major depression, 3 of 11 for ADHD and 1 of 2 for autism. We show that decreased expression of VPS29 in the brain may increase risk to SCZ only and increased expression of CSE1L is associated with SCZ and MD, but not with BIP. Likewise, decreased expression of PCDHA7 in the brain is linked to increased risk of MD but decreased risk of SCZ and BIP.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno Bipolar , Esquizofrenia , Trastorno por Déficit de Atención con Hiperactividad/genética , Trastorno Bipolar/genética , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Humanos , Polimorfismo de Nucleótido Simple/genética , Esquizofrenia/genética
8.
Mol Psychiatry ; 26(7): 2977-2990, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33077856

RESUMEN

Genes encoding the mRNA targets of fragile X mental retardation protein (FMRP) are enriched for genetic association with psychiatric disorders. However, many FMRP targets possess functions that are themselves genetically associated with psychiatric disorders, including synaptic transmission and plasticity, making it unclear whether the genetic risk is truly related to binding by FMRP or is alternatively mediated by the sampling of genes better characterised by another trait or functional annotation. Using published common variant, rare coding variant and copy number variant data, we examined the relationship between FMRP binding and genetic association with schizophrenia, major depressive disorder and bipolar disorder. High-confidence targets of FMRP, derived from studies of multiple tissue types, were enriched for common schizophrenia risk alleles, as well as rare loss-of-function and de novo nonsynonymous variants in schizophrenia cases. Similarly, through common variation, FMRP targets were associated with major depressive disorder, and we present novel evidence of association with bipolar disorder. These relationships could not be explained by other functional annotations known to be associated with psychiatric disorders, including those related to synaptic structure and function. This study reinforces the evidence that targeting by FMRP captures a subpopulation of genes enriched for genetic association with a range of psychiatric disorders.


Asunto(s)
Trastorno Bipolar , Trastorno Depresivo Mayor , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Trastornos Mentales , Esquizofrenia , Trastorno Bipolar/genética , Trastorno Depresivo Mayor/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Humanos , Trastornos Mentales/genética , Esquizofrenia/genética
9.
Mol Biol Evol ; 37(12): 3642-3653, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-32642779

RESUMEN

Inferring changes in effective population size (Ne) in the recent past is of special interest for conservation of endangered species and for human history research. Current methods for estimating the very recent historical Ne are unable to detect complex demographic trajectories involving multiple episodes of bottlenecks, drops, and expansions. We develop a theoretical and computational framework to infer the demographic history of a population within the past 100 generations from the observed spectrum of linkage disequilibrium (LD) of pairs of loci over a wide range of recombination rates in a sample of contemporary individuals. The cumulative contributions of all of the previous generations to the observed LD are included in our model, and a genetic algorithm is used to search for the sequence of historical Ne values that best explains the observed LD spectrum. The method can be applied from large samples to samples of fewer than ten individuals using a variety of genotyping and DNA sequencing data: haploid, diploid with phased or unphased genotypes and pseudohaploid data from low-coverage sequencing. The method was tested by computer simulation for sensitivity to genotyping errors, temporal heterogeneity of samples, population admixture, and structural division into subpopulations, showing high tolerance to deviations from the assumptions of the model. Computer simulations also show that the proposed method outperforms other leading approaches when the inference concerns recent timeframes. Analysis of data from a variety of human and animal populations gave results in agreement with previous estimations by other methods or with records of historical events.


Asunto(s)
Técnicas Genéticas , Desequilibrio de Ligamiento , Modelos Genéticos , Densidad de Población , Recombinación Genética , Algoritmos , Animales , Simulación por Computador , Humanos
10.
Am J Phys Anthropol ; 175(3): 611-625, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33336804

RESUMEN

OBJECTIVES: In this paper, we introduce the use of generalized linear mixed models (GLMM) as a better alternative to traditional statistical methods for studying factors associated to the prevalence of degenerative joint disease (DJD) in bioarchaeological contexts. MATERIALS AND METHODS: DJD prevalence was assessed for the appendicular joints and the spine of a Spanish population dated from the 15th to the 18th century. Data were analyzed using contingency tables, logistic regression models, and logistic GLMM. RESULTS: In general, results from GLMMs find agreement in other methods. However, by being able to analyze the data at the level of individual bones instead of aggregated joints or limbs, GLMMs are capable of revealing associations that are not evident in other frameworks. DISCUSSION: Currently widely available in statistical analysis software, GLMMs can accommodate a wide array of data distributions, account for hierarchical correlations, and return estimates of DJD prevalence within individuals and skeletal locations that are unbiased by the effect of covariates. This gives clear advantages for the analysis of bioarchaeological datasets which can lead to more robust and comparable analyses across populations.


Asunto(s)
Artropatías , Programas Informáticos , Humanos , Modelos Lineales , Modelos Logísticos , Prevalencia
11.
Hum Mol Genet ; 27(20): 3498-3506, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-29945223

RESUMEN

Whilst the role of the Disrupted-in-Schizophrenia 1 (DISC1) gene in the aetiology of major mental illnesses is debated, the characterization of its function lends it credibility as a candidate. A key aspect of this functional characterization is the determination of the role of common non-synonymous polymorphisms on normal variation within these functions. The common allele (A) of the DISC1 single-nucleotide polymorphism (SNP) rs821616 encodes a serine (ser) at the Ser704Cys polymorphism, and has been shown to increase the phosphorylation of extracellular signal-regulated protein Kinases 1 and 2 (ERK1/2) that stimulate the phosphorylation of tyrosine hydroxylase, the rate-limiting enzyme for dopamine biosynthesis. We therefore set out to test the hypothesis that human ser (A) homozygotes would show elevated dopamine synthesis capacity compared with cysteine (cys) homozygotes and heterozygotes (TT and AT) for rs821616. [18F]-DOPA positron emission tomography (PET) was used to index striatal dopamine synthesis capacity as the influx rate constant Kicer in healthy volunteers DISC1 rs821616 ser homozygotes (N = 46) and healthy volunteers DISC1 rs821616 cys homozygotes and heterozygotes (N = 56), matched for age, gender, ethnicity and using three scanners. We found DISC1 rs821616 ser homozygotes exhibited a significantly higher striatal Kicer compared with cys homozygotes and heterozygotes (P = 0.012) explaining 6.4% of the variance (partial η2 = 0.064). Our finding is consistent with its previous association with heightened activation of ERK1/2, which stimulates tyrosine hydroxylase activity for dopamine synthesis. This could be a potential mechanism mediating risk for psychosis, lending further credibility to the fact that DISC1 is of functional interest in the aetiology of major mental illness.


Asunto(s)
Cuerpo Estriado/metabolismo , Dopamina/biosíntesis , Predisposición Genética a la Enfermedad , Proteínas del Tejido Nervioso/genética , Polimorfismo de Nucleótido Simple , Esquizofrenia/genética , Adulto , Cuerpo Estriado/diagnóstico por imagen , Dihidroxifenilalanina/análogos & derivados , Femenino , Humanos , Sistema de Señalización de MAP Quinasas , Masculino , Proteínas del Tejido Nervioso/metabolismo , Tomografía de Emisión de Positrones , Trastornos Psicóticos/genética , Trastornos Psicóticos/metabolismo , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/metabolismo , Adulto Joven
12.
Br J Psychiatry ; 216(5): 259-266, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31155017

RESUMEN

BACKGROUND: Around 30% of individuals with schizophrenia remain symptomatic and significantly impaired despite antipsychotic treatment and are considered to be treatment resistant. Clinicians are currently unable to predict which patients are at higher risk of treatment resistance. AIMS: To determine whether genetic liability for schizophrenia and/or clinical characteristics measurable at illness onset can prospectively indicate a higher risk of treatment-resistant psychosis (TRP). METHOD: In 1070 individuals with schizophrenia or related psychotic disorders, schizophrenia polygenic risk scores (PRS) and large copy number variations (CNVs) were assessed for enrichment in TRP. Regression and machine-learning approaches were used to investigate the association of phenotypes related to demographics, family history, premorbid factors and illness onset with TRP. RESULTS: Younger age at onset (odds ratio 0.94, P = 7.79 × 10-13) and poor premorbid social adjustment (odds ratio 1.64, P = 2.41 × 10-4) increased risk of TRP in univariate regression analyses. These factors remained associated in multivariate regression analyses, which also found lower premorbid IQ (odds ratio 0.98, P = 7.76 × 10-3), younger father's age at birth (odds ratio 0.97, P = 0.015) and cannabis use (odds ratio 1.60, P = 0.025) increased the risk of TRP. Machine-learning approaches found age at onset to be the most important predictor and also identified premorbid IQ and poor social adjustment as predictors of TRP, mirroring findings from regression analyses. Genetic liability for schizophrenia was not associated with TRP. CONCLUSIONS: People with an earlier age at onset of psychosis and poor premorbid functioning are more likely to be treatment resistant. The genetic architecture of susceptibility to schizophrenia may be distinct from that of treatment outcomes.


Asunto(s)
Edad de Inicio , Resistencia a Medicamentos , Fumar Marihuana , Edad Paterna , Trastornos Psicóticos , Esquizofrenia , Adulto , Envejecimiento , Antipsicóticos/uso terapéutico , Variaciones en el Número de Copia de ADN , Resistencia a Medicamentos/genética , Femenino , Predisposición Genética a la Enfermedad , Humanos , Pruebas de Inteligencia , Masculino , Edad Materna , Herencia Multifactorial/genética , Oportunidad Relativa , Trastornos Psicóticos/tratamiento farmacológico , Trastornos Psicóticos/genética , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/genética , Ajuste Social , Resultado del Tratamiento , Adulto Joven
13.
Mol Psychiatry ; 24(3): 328-337, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30647433

RESUMEN

Individuals of African ancestry in the United States and Europe are at increased risk of developing schizophrenia and have poorer clinical outcomes. The antipsychotic clozapine, the only licensed medication for treatment-resistant schizophrenia, is under-prescribed and has high rates of discontinuation in individuals of African ancestry, due in part to increased rates of neutropenia. The genetic basis of lower neutrophil levels in those of African ancestry has not previously been investigated in the context of clozapine treatment. We sought to identify risk alleles in the first genome-wide association study of neutrophil levels during clozapine treatment, in 552 individuals with treatment-resistant schizophrenia and robustly inferred African genetic ancestry. Two genome-wide significant loci were associated with low neutrophil counts during clozapine treatment. The most significantly associated locus was driven by rs2814778 (ß = -0.9, P = 4.21 × 10-21), a known regulatory variant in the atypical chemokine receptor 1 (ACKR1) gene. Individuals homozygous for the C allele at rs2814778 were significantly more likely to develop neutropenia and have to stop clozapine treatment (OR = 20.4, P = 3.44 × 10-7). This genotype, also termed "Duffy-null", has previously been shown to be associated with lower neutrophil levels in those of African ancestry. Our results indicate the relevance of the rs2814778 genotype for those taking clozapine and its potential as a pharmacogenetic test, dependent on the outcome of additional safety studies, to assist decision making in the initiation and on-going management of clozapine treatment.


Asunto(s)
Clozapina/efectos adversos , Neutropenia/inducido químicamente , Neutropenia/genética , Alelos , Antipsicóticos/uso terapéutico , Población Negra/genética , Clozapina/administración & dosificación , Sistema del Grupo Sanguíneo Duffy/genética , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo/métodos , Humanos , Masculino , Neutropenia/sangre , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Neutrófilos/patología , Polimorfismo de Nucleótido Simple , Receptores de Superficie Celular/genética , Factores de Riesgo , Esquizofrenia/genética
14.
J Med Genet ; 56(3): 131-138, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30343275

RESUMEN

BACKGROUND: Genomic CNVs increase the risk for early-onset neurodevelopmental disorders, but their impact on medical outcomes in later life is still poorly understood. The UK Biobank allows us to study the medical consequences of CNVs in middle and old age in half a million well-phenotyped adults. METHODS: We analysed all Biobank participants for the presence of 54 CNVs associated with genomic disorders or clinical phenotypes, including their reciprocal deletions or duplications. After array quality control and exclusion of first-degree relatives, we compared 381 452 participants of white British or Irish origin who carried no CNVs with carriers of each of the 54 CNVs (ranging from 5 to 2843 persons). We used logistic regression analysis to estimate the risk of developing 58 common medical phenotypes (3132 comparisons). RESULTS AND CONCLUSIONS: Many of the CNVs have profound effects on medical health and mortality, even in people who have largely escaped early neurodevelopmental outcomes. Forty-six CNV-phenotype associations were significant at a false discovery rate threshold of 0.1, all in the direction of increased risk. Known medical consequences of CNVs were confirmed, but most identified associations are novel. Deletions at 16p11.2 and 16p12.1 had the largest numbers of significantly associated phenotypes (seven each). Diabetes, hypertension, obesity and renal failure were affected by the highest numbers of CNVs. Our work should inform clinicians in planning and managing the medical care of CNV carriers.


Asunto(s)
Variaciones en el Número de Copia de ADN , Trastornos del Neurodesarrollo/epidemiología , Adulto , Anciano , Bancos de Muestras Biológicas , Femenino , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Trastornos del Neurodesarrollo/genética , Oportunidad Relativa , Fenotipo , Vigilancia de la Población , Control de Calidad , Reino Unido/epidemiología
15.
Am J Phys Anthropol ; 153(4): 617-26, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24375152

RESUMEN

Genetic structural patterns of human populations are usually a combination of long-term evolutionary forces and short-term social, cultural, and demographic processes. Recently, using mitochondrial DNA and Y-chromosome loci, various studies in northern Spain have found evidence that the geographical distribution of Iron Age tribal peoples might have influenced current patterns of genetic structuring in several autochthonous populations. Using the wealth of data that are currently available from the whole territory of the Iberian Peninsula, we have evaluated its genetic structuring in the spatial scale of the Atlantic façade. Hierarchical tree modeling procedures, combined with a classic analysis of molecular variance (AMOVA), were used to model known sociocultural divisions from the third century BCE to the eighth century CE, contrasting them with uniparental marker data. Our results show that, while mountainous and abrupt areas of the Iberian North bear the signals of long-term isolation in their maternal and paternal gene pools, the makeup of the Atlantic façade as a whole can be related to tribal population groups that predate the Roman conquest of the Peninsula. The maintenance through time of such a structure can be related to the numerous geographic barriers of the Iberian mainland, which have historically conditioned its settlement patterns and the occurrence of genetic drift processes.


Asunto(s)
Cromosomas Humanos Y/genética , ADN Mitocondrial/genética , Marcadores Genéticos/genética , Población Blanca/genética , Análisis de Varianza , Antropología Física , Haploidia , Humanos , España
16.
Am J Hum Biol ; 26(6): 777-83, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25130626

RESUMEN

OBJECTIVES: There is an ongoing effort to characterize the genetic links between Africa and Europe, mostly using lineages and haplotypes that are specific to one continent but had an ancient origin in the other. Mitochondrial DNA has been proven to be a very useful tool for this purpose since a high number of putatively European-specific variants of the African L* lineages have been defined over the years. Due to their geographic locations, Spain and Portugal seem to be ideal places for searching for these lineages. METHODS: Five members of a minor branch of haplogroup L3f were found in recent DNA samplings in the region of Asturias (Northern Spain), which is known for its historical isolation. The frequency of L3f in this population (≈1%) is unexpectedly high in comparison with other related lineages in Europe. Complete mitochondrial DNA sequencing of these L3f lineages, as well phylogenetic and phylogeographic comparative analyses have been performed. RESULTS: The L3f variant found in Asturias seems to constitute an Iberian-specific haplogroup, distantly related to lineages in Northern Africa and with a deep ancestry in Western Africa. Coalescent algorithms estimate the minimum arrival time as 8,000 years ago, and a possible route through the Gibraltar Strait. CONCLUSIONS: Results are concordant with a previously proposed Neolithic connection between Southern Europe and Western Africa, which might be key to the proper understanding of the ancient links between these two continents.


Asunto(s)
Población Negra/genética , ADN Mitocondrial/genética , Población Blanca/genética , África Occidental , Genética de Población , Humanos , Filogenia , Análisis de Secuencia de ADN , España
17.
medRxiv ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38798390

RESUMEN

Background: Schizophrenia genome-wide association studies (GWASes) have identified >250 significant loci and prioritized >100 disease-related genes. However, gene prioritization efforts have mostly been restricted to locus-based methods that ignore information from the rest of the genome. Methods: To more accurately characterize genes involved in schizophrenia etiology, we applied a combination of highly-predictive tools to a published GWAS of 67,390 schizophrenia cases and 94,015 controls. We combined both locus-based methods (fine-mapped coding variants, distance to GWAS signals) and genome-wide methods (PoPS, MAGMA, ultra-rare coding variant burden tests). To validate our findings, we compared them with previous prioritization efforts, known neurodevelopmental genes, and results from the PsyOPS tool. Results: We prioritized 62 schizophrenia genes, 41 of which were also highlighted by our validation methods. In addition to DRD2, the principal target of antipsychotics, we prioritized 9 genes that are targeted by approved or investigational drugs. These included drugs targeting glutamatergic receptors (GRIN2A and GRM3), calcium channels (CACNA1C and CACNB2), and GABAB receptor (GABBR2). These also included genes in loci that are shared with an addiction GWAS (e.g. PDE4B and VRK2). Conclusions: We curated a high-quality list of 62 genes that likely play a role in the development of schizophrenia. Developing or repurposing drugs that target these genes may lead to a new generation of schizophrenia therapies. Rodent models of addiction more closely resemble the human disorder than rodent models of schizophrenia. As such, genes prioritized for both disorders could be explored in rodent addiction models, potentially facilitating drug development.

18.
JAMA Psychiatry ; 81(7): 681-690, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38536179

RESUMEN

Importance: Large-scale biobanks provide important opportunities for mental health research, but selection biases raise questions regarding the comparability of individuals with those in clinical research settings. Objective: To compare the genetic liability to psychiatric disorders in individuals with schizophrenia in the UK Biobank with individuals in the Psychiatric Genomics Consortium (PGC) and to compare genetic liability and phenotypic features with participants recruited from clinical settings. Design, Setting, and Participants: This cross-sectional study included participants from the population-based UK Biobank and schizophrenia samples recruited from clinical settings (CLOZUK, CardiffCOGS, Cardiff F-Series, and Cardiff Affected Sib-Pairs). Data were collected between January 1993 and July 2021. Data analysis was conducted between July 2021 and June 2023. Main Outcomes and Measures: A genome-wide association study of UK Biobank schizophrenia case-control status was conducted, and the results were compared with those from the PGC via genetic correlations. To test for differences with the clinical samples, polygenic risk scores (PRS) were calculated for schizophrenia, bipolar disorder, depression, and intelligence using PRS-CS. PRS and phenotypic comparisons were conducted using pairwise logistic regressions. The proportions of individuals with copy number variants associated with schizophrenia were compared using Firth logistic regression. Results: The sample of 517 375 participants included 1438 UK Biobank participants with schizophrenia (550 [38.2%] female; mean [SD] age, 54.7 [8.3] years), 499 475 UK Biobank controls (271 884 [54.4%] female; mean [SD] age, 56.5 [8.1] years), and 4 schizophrenia research samples (4758 [28.9%] female; mean [SD] age, 38.2 [21.0] years). Liability to schizophrenia in UK Biobank was highly correlated with the latest genome-wide association study from the PGC (genetic correlation, 0.98; SE, 0.18) and showed the expected patterns of correlations with other psychiatric disorders. The schizophrenia PRS explained 6.8% of the variance in liability for schizophrenia case status in UK Biobank. UK Biobank participants with schizophrenia had significantly lower schizophrenia PRS than 3 of the clinically ascertained samples and significantly lower rates of schizophrenia-associated copy number variants than the CLOZUK sample. UK Biobank participants with schizophrenia had higher educational attainment and employment rates than the clinically ascertained schizophrenia samples, lower rates of smoking, and a later age of onset of psychosis. Conclusions and Relevance: Individuals with schizophrenia in the UK Biobank, and likely other volunteer-based biobanks, represent those less severely affected. Their inclusion in wider studies should enhance the representation of the full spectrum of illness severity.


Asunto(s)
Bancos de Muestras Biológicas , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Herencia Multifactorial , Fenotipo , Esquizofrenia , Humanos , Esquizofrenia/genética , Esquizofrenia/epidemiología , Reino Unido/epidemiología , Femenino , Masculino , Estudios Transversales , Persona de Mediana Edad , Herencia Multifactorial/genética , Adulto , Estudios de Casos y Controles , Anciano , Variaciones en el Número de Copia de ADN/genética , Trastorno Bipolar/genética , Trastorno Bipolar/epidemiología , Biobanco del Reino Unido
19.
Eur Neuropsychopharmacol ; 80: 47-54, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38310750

RESUMEN

Clozapine is the only licensed medication for treatment-resistant schizophrenia (TRS). Few predictors for variation in response to clozapine have been identified, but clozapine metabolism is known to influence therapeutic response and adverse side effects. Here, we expand on genome-wide studies of clozapine metabolism, previously focused on common genetic variation, by analysing whole-exome sequencing data from 2062 individuals with schizophrenia taking clozapine in the UK. We investigated whether rare genomic variation in genes and gene sets involved in the clozapine metabolism pathway influences plasma concentrations of clozapine metabolites, assessed through the longitudinal analysis of 6585 pharmacokinetic assays. We observed a statistically significant association between the burden of rare damaging coding variants (MAF ≤ 1 %) in gene sets broadly related to drug pharmacokinetics and lower clozapine (ß = -0.054, SE = 0.019, P-value = 0.005) concentrations in plasma. We estimate that the effects in clozapine plasma concentrations of a single damaging allele in this gene set are akin to reducing the clozapine dose by about 35 mg/day. The gene-based analysis identified rare variants in CYP1A2, which encodes the enzyme responsible for converting clozapine to norclozapine, as having the strongest effects of any gene on clozapine metabolism (ß = 0.324, SE = 0.124, P = 0.009). Our findings support the hypothesis that rare genetic variants in known drug-metabolising enzymes and transporters can markedly influence clozapine plasma concentrations; these results suggest that pharmacogenomic efforts trying to predict clozapine metabolism and personalise drug therapy could benefit from the inclusion of rare damaging variants in pharmacogenes beyond those already identified and catalogued as PGx star alleles.


Asunto(s)
Antipsicóticos , Clozapina , Esquizofrenia , Humanos , Clozapina/efectos adversos , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/genética , Esquizofrenia/metabolismo , Antipsicóticos/efectos adversos , Farmacogenética , Alelos
20.
Transl Psychiatry ; 14(1): 194, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649377

RESUMEN

Recent research has highlighted the role of complement genes in shaping the microstructure of the brain during early development, and in contributing to common allele risk for Schizophrenia. We hypothesised that common risk variants for schizophrenia within complement genes will associate with structural changes in white matter microstructure within tracts innervating the frontal lobe. Results showed that risk alleles within the complement gene set, but also intergenic alleles, significantly predict axonal density in white matter tracts connecting frontal cortex with parietal, temporal and occipital cortices. Specifically, risk alleles within the Major Histocompatibility Complex region in chromosome 6 appeared to drive these associations. No significant associations were found for the orientation dispersion index. These results suggest that changes in axonal packing - but not in axonal coherence - determined by common risk alleles within the MHC genomic region - including variants related to the Complement system - appear as a potential neurobiological mechanism for schizophrenia.


Asunto(s)
Alelos , Predisposición Genética a la Enfermedad , Complejo Mayor de Histocompatibilidad , Esquizofrenia , Sustancia Blanca , Humanos , Esquizofrenia/genética , Esquizofrenia/patología , Sustancia Blanca/patología , Sustancia Blanca/diagnóstico por imagen , Femenino , Masculino , Adulto , Complejo Mayor de Histocompatibilidad/genética , Adulto Joven , Lóbulo Frontal/patología , Lóbulo Frontal/diagnóstico por imagen , Persona de Mediana Edad , Imagen de Difusión Tensora , Cromosomas Humanos Par 6/genética , Axones/patología , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA