Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cell ; 147(2): 320-31, 2011 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-22000012

RESUMEN

In budding yeast, the most abundantly spliced pre-mRNAs encode ribosomal proteins (RPs). To investigate the contribution of splicing to ribosome production and function, we systematically eliminated introns from all RP genes to evaluate their impact on RNA expression, pre-rRNA processing, cell growth, and response to stress. The majority of introns were required for optimal cell fitness or growth under stress. Most introns are found in duplicated RP genes, and surprisingly, in the majority of cases, deleting the intron from one gene copy affected the expression of the other in a nonreciprocal manner. Consistently, 70% of all duplicated genes were asymmetrically expressed, and both introns and gene deletions displayed copy-specific phenotypic effects. Together, our results indicate that splicing in yeast RP genes mediates intergene regulation and implicate the expression ratio of duplicated RP genes in modulating ribosome function.


Asunto(s)
Intrones , Proteínas Ribosómicas/genética , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Duplicación de Gen , Regulación Fúngica de la Expresión Génica , Viabilidad Microbiana , Biosíntesis de Proteínas , Proteínas Ribosómicas/metabolismo , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico
2.
Nature ; 565(7741): 612-617, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30651641

RESUMEN

Introns are ubiquitous features of all eukaryotic cells. Introns need to be removed from nascent messenger RNA through the process of splicing to produce functional proteins. Here we show that the physical presence of introns in the genome promotes cell survival under starvation conditions. A systematic deletion set of all known introns in budding yeast genes indicates that, in most cases, cells with an intron deletion are impaired when nutrients are depleted. This effect of introns on growth is not linked to the expression of the host gene, and was reproduced even when translation of the host mRNA was blocked. Transcriptomic and genetic analyses indicate that introns promote resistance to starvation by enhancing the repression of ribosomal protein genes that are downstream of the nutrient-sensing TORC1 and PKA pathways. Our results reveal functions of introns that may help to explain their evolutionary preservation in genes, and uncover regulatory mechanisms of cell adaptations to starvation.


Asunto(s)
Intrones/genética , Viabilidad Microbiana/genética , Nutrientes/deficiencia , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Regiones no Traducidas 5'/genética , Respiración de la Célula , Medios de Cultivo/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Privación de Alimentos , Regulación Fúngica de la Expresión Génica , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Viabilidad Microbiana/efectos de los fármacos , Biosíntesis de Proteínas , Proteínas Ribosómicas/genética , Ribosomas/genética , Ribosomas/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/crecimiento & desarrollo , Eliminación de Secuencia/genética , Transducción de Señal , Transcriptoma/genética
3.
Trends Genet ; 35(12): 923-934, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31668856

RESUMEN

Introns are ubiquitous in eukaryotic transcripts. They are often viewed as junk RNA but the huge energetic burden of transcribing, removing, and degrading them suggests a significant evolutionary advantage. Ostensibly, an intron functions within the host pre-mRNA to regulate its splicing, transport, and degradation. However, recent studies have revealed an entirely new class of trans-acting functions where the presence of intronic RNA in the cell impacts the expression of other genes in trans. Here, we review possible new mechanisms of intron functions, with a focus on the role of yeast introns in regulating the cell growth response to starvation.


Asunto(s)
Genoma , Genómica , Intrones , Animales , Células Eucariotas/metabolismo , Evolución Molecular , Expresión Génica , Regulación de la Expresión Génica , Genómica/métodos , Humanos , Precursores del ARN , Empalme del ARN , Estabilidad del ARN , Levaduras/genética
4.
Nucleic Acids Res ; 44(8): 3878-91, 2016 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-26945043

RESUMEN

Most budding yeast introns exist in the many duplicated ribosomal protein genes (RPGs) and it has been posited that they remain there to modulate the expression of RPGs and cell growth in response to stress. However, the mechanism by which introns regulate the expression of RPGs and their impact on the synthesis of ribosomal proteins remain unclear. In this study, we show that introns determine the ratio of ribosomal protein isoforms through asymmetric paralog-specific regulation of splicing. Exchanging the introns and 3' untranslated regions of the duplicated RPS9 genes altered the splicing efficiency and changed the ratio of the ribosomal protein isoforms. Mutational analysis of the RPS9 genes indicated that splicing is regulated by variations in the intron structure and the 3' untranslated region. Together these data suggest that preferential splicing of duplicated RPGs provides a means for adjusting the ratio of different ribosomal protein isoforms, while maintaining the overall expression level of each ribosomal protein.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Genes Duplicados , Intrones , Empalme del ARN , Proteínas Ribosómicas/genética , Regiones no Traducidas 3' , Biosíntesis de Proteínas , Isoformas de Proteínas/biosíntesis , Isoformas de Proteínas/genética , Proteína Ribosómica S9 , Proteínas Ribosómicas/biosíntesis , Proteínas Ribosómicas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Mol Cell Biol ; 23(22): 8363-76, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14585993

RESUMEN

Telomeres are associated with the nuclear matrix and are thought to be heterochromatic. We show here that in human cells the overexpression of green fluorescent protein-tagged heterochromatin protein 1 (GFP-HP1) or nontagged HP1 isoforms HP1(Hsalpha) or HP1(Hsbeta), but not HP1(Hsgamma), results in decreased association of a catalytic unit of telomerase (hTERT) with telomeres. However, reduction of the G overhangs and overall telomere sizes was found in cells overexpressing any of these three proteins. Cells overexpressing HP1(Hsalpha) or HP1(Hsbeta) also display a higher frequency of chromosome end-to-end associations and spontaneous chromosomal damage than the parental cells. None of these effects were observed in cells expressing mutants of GFP-DeltaHP1(Hsalpha), GFP-DeltaHP1(Hsbeta), or GFP-DeltaHP1(Hsgamma) that had their chromodomains deleted. An increase in the cell population doubling time and higher sensitivity to cell killing by ionizing radiation (IR) treatment was also observed for cells overexpressing HP1(Hsalpha) or HP1(Hsbeta). In contrast, cells expressing mutant GFP-DeltaHP1(Hsalpha) or GFP-DeltaHP1(Hsbeta) showed a decrease in population doubling time and decreased sensitivity to IR compared to the parental cells. The effects on cell doubling times were paralleled by effects on tumorigenicity in mice: overexpression of HP1(Hsalpha) or HP1(Hsbeta) suppressed tumorigenicity, whereas expression of mutant HP1(Hsalpha) or HP1(Hsbeta) did not. Collectively, the results show that human cells are exquisitely sensitive to the amount of HP1(Hsalpha) or HP1(Hsbeta) present, as their overexpression influences telomere stability, population doubling time, radioresistance, and tumorigenicity in a mouse xenograft model. In addition, the isoform-specific effects on telomeres reinforce the notion that telomeres are in a heterochromatinized state.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Heterocromatina/metabolismo , Telomerasa/metabolismo , Telómero/metabolismo , Animales , Proteínas Portadoras/genética , División Celular , Línea Celular , Supervivencia Celular/efectos de la radiación , Transformación Celular Neoplásica , Homólogo de la Proteína Chromobox 5 , Reparación del ADN , Proteínas de Unión al ADN , Proteínas Fluorescentes Verdes , Heterocromatina/genética , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Tolerancia a Radiación , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Telomerasa/genética , Trasplante Heterólogo
6.
FEBS Lett ; 579(21): 4873-8, 2005 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-16111683

RESUMEN

An increasing number of peptides translocate the plasma membrane of mammalian cells promising new avenues for drug delivery. However, only a few examples are known to penetrate the fungal cell wall. We compared the capacity of different fluorophore-labelled peptides to translocate into fission yeast and human cells and determined their intracellular distribution. Most of the 20 peptides tested were able to enter human cells, but only one, transportan 10 (TP10), efficiently penetrated fission yeast and was distributed uniformly inside the cells. The results show that the fungal cell wall may reduce, but does not block peptide uptake.


Asunto(s)
Endocitosis/fisiología , Péptidos/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Schizosaccharomyces/metabolismo , Pared Celular/metabolismo , Portadores de Fármacos , Colorantes Fluorescentes/metabolismo , Galanina , Células HeLa , Humanos , Schizosaccharomyces/citología , Venenos de Avispas
7.
Genetics ; 162(4): 1583-94, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12524334

RESUMEN

Saccharomyces cerevisiae strains lacking the Rad27p nuclease, a homolog of the mammalian FEN-1 protein, display an accumulation of extensive single-stranded G-tails at telomeres. Furthermore, the lengths of telomeric repeats become very heterogeneous. These phenotypes could be the result of aberrant Okazaki fragment processing of the C-rich strand, elongation of the G-rich strand by telomerase, or an abnormally high activity of the nucleolytic activities required to process leading-strand ends. To distinguish among these possibilities, we analyzed strains carrying a deletion of the RAD27 gene and also lacking genes required for in vivo telomerase activity. The results show that double-mutant strains died more rapidly than strains lacking only telomerase components. Furthermore, in such strains there is a significant reduction in the signals for G-tails as compared to those detected in rad27delta cells. The results from studies of the replication intermediates of a linear plasmid in rad27delta cells are consistent with the idea that only one end of the plasmid acquires extensive G-tails, presumably the end made by lagging-strand synthesis. These data further support the notion that chromosome ends have differential requirements for end processing, depending on whether the ends were replicated by leading- or lagging-strand synthesis.


Asunto(s)
Endodesoxirribonucleasas/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Telómero/metabolismo , Composición de Base , Secuencia de Bases , ADN de Hongos/química , ADN de Hongos/genética , ADN de Hongos/metabolismo , ADN de Cadena Simple/química , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Endodesoxirribonucleasas/genética , Endonucleasas de ADN Solapado , Eliminación de Gen , Genes Fúngicos , Modelos Biológicos , Fenotipo , Plásmidos/genética , Saccharomyces cerevisiae/genética , Telomerasa/genética , Telomerasa/metabolismo
8.
Cell Rep ; 13(11): 2516-2526, 2015 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-26686636

RESUMEN

In baker's yeast, the majority of ribosomal protein genes (RPGs) are duplicated, and it was recently proposed that such duplications are preserved via the functional specialization of the duplicated genes. However, the origin and nature of duplicated RPGs' (dRPGs) functional specificity remain unclear. In this study, we show that differences in dRPG functions are generated by variations in the modality of gene expression and, to a lesser extent, by protein sequence. Analysis of the sequence and expression patterns of non-intron-containing RPGs indicates that each dRPG is controlled by specific regulatory sequences modulating its expression levels in response to changing growth conditions. Homogenization of dRPG sequences reduces cell tolerance to growth under stress without changing the number of expressed genes. Together, the data reveal a model where duplicated genes provide a means for modulating the expression of ribosomal proteins in response to stress.


Asunto(s)
Proteínas Ribosómicas/metabolismo , Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico , Regiones no Traducidas 3' , Duplicación de Gen , Regiones Promotoras Genéticas , ARN Mensajero/metabolismo , ARN no Traducido/metabolismo , Proteínas Ribosómicas/genética
9.
Am J Cardiol ; 112(4): 567-73, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23683949

RESUMEN

We sought to determine whether preoperative baseline echocardiographic analysis and the type of surgical procedure are predictive of the magnitude and timing of postoperative left ventricular (LV) remodeling in patients undergoing valve surgery for pure severe mitral regurgitation (MR) secondary to leaflet prolapse. Seventy-two consecutive patients without coronary artery disease undergoing valve repair (MVr; n = 42) or replacement (MVR; n = 30) underwent preoperative, early (1 to 2 days) and late postoperative (4.5 ± 2.5 and 18 ± 8.0 months) echocardiography. Patients were categorized according to their baseline LV ejection fraction (EF) (Group 1: EF ≥60%, Group 2: EF = 50% to 59%, Group 3: EF <50%). Preservation of the subvalvular apparatus was achieved in most patients undergoing MV replacement (87%). Over a median follow-up period of 450 days, LVEF changed as follows: Group 1: 63% ± 2% to 60% ± 3% (p <0.0001); Group 2: 55% ± 3% to 52% ± 6% (p <0.0001); Group 3: 43% ± 4% to 42% ± 5% (p <0.01). Two-thirds of the observed changes in LV diameters and volumes occurred in the first 6 months. Preoperative LVEF was the best predictor of postoperative LVEF ≥60% (odds ratio 1.50, 95% confidence interval, 1.25 to 1.97; p <0.0001). No significant difference was found in LV remodeling parameters between patients undergoing MVr and MVR. In conclusion, patients with pure severe MR due to valve prolapse LVEF remained normal after surgery only in patients with baseline LVEF ≥60%. MVR with subvalvular preservation was associated with similar postoperative remodeling as MVr.


Asunto(s)
Insuficiencia de la Válvula Mitral/cirugía , Prolapso de la Válvula Mitral/cirugía , Remodelación Ventricular , Distribución de Chi-Cuadrado , Ecocardiografía , Femenino , Prótesis Valvulares Cardíacas , Humanos , Modelos Logísticos , Masculino , Persona de Mediana Edad , Insuficiencia de la Válvula Mitral/complicaciones , Insuficiencia de la Válvula Mitral/diagnóstico por imagen , Prolapso de la Válvula Mitral/complicaciones , Prolapso de la Válvula Mitral/diagnóstico por imagen , Valor Predictivo de las Pruebas , Estudios Retrospectivos , Estadísticas no Paramétricas , Resultado del Tratamiento
10.
Mol Biol Cell ; 19(5): 1932-41, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18287520

RESUMEN

Splicing regulates gene expression and contributes to proteomic diversity in higher eukaryotes. However, in yeast only 283 of the 6000 genes contain introns and their impact on cell function is not clear. To assess the contribution of introns to cell function, we initiated large-scale intron deletions in yeast with the ultimate goal of creating an intron-free model eukaryote. We show that about one-third of yeast introns are not essential for growth. Only three intron deletions caused severe growth defects, but normal growth was restored in all cases by expressing the intronless mRNA from a heterologous promoter. Twenty percent of the intron deletions caused minor phenotypes under different growth conditions. Strikingly, the combined deletion of all introns from the 15 cytoskeleton-related genes did not affect growth or strain fitness. Together, our results show that although the presence of introns may optimize gene expression and provide benefit under stress, a majority of introns could be removed with minor consequences on growth under laboratory conditions, supporting the view that many introns could be phased out of Saccharomyces cerevisiae without blocking cell growth.


Asunto(s)
Genes Fúngicos , Intrones/genética , Empalme del ARN/genética , Saccharomyces cerevisiae/genética , Eliminación de Secuencia , Citoesqueleto/genética , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Fenotipo , Regiones Promotoras Genéticas/genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Selección Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA