Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Rev Cardiovasc Med ; 25(5): 185, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-39076488

RESUMEN

Background: This study investigates the effects of a 12-week circuit exercise program on blood pressure, vascular function, and inflammatory cytokines in older obese women with sarcopenia. Methods: Twenty-eight older obese women with sarcopenia (mean age: 78.2 ± 3.7 years) were randomly divided into an exercise group (EG, n = 14) and a control group (CG, n = 14). The EG participated in a 12-week circuit exercise training regimen, conducted three times weekly, with each session lasting between 45 to 75 minutes (progressively increased over time). The CG was advised to maintain their regular daily routines throughout the intervention period. All dependent variables, including blood pressure, vascular function, and inflammation cytokines, were evaluated pre- and post-intervention. Results: Positive changes were observed in the EG in body composition (body fat mass; p < 0.001, body fat percentage; p < 0.01, free-fat mass; p < 0.01), blood pressure (heart rate; p < 0.05, rate pressure product; p < 0.01), vascular function (brachial-ankle pulse wave velocity; p < 0.05, flow-mediated dilation; p < 0.001), and inflammation cytokines (interleukin-6; p < 0.05). In the CG, there was an increase in body fat mass (p < 0.05) and body fat percentage (p < 0.05), while no changes were observed in other variables. Conclusions: The 12-week circuit exercise program significantly reduced blood pressure, improved vascular function, and decreased inflammatory cytokines in obese older women with sarcopenia. However, individual variations in response highlight the need for personalized exercise regimens.

2.
BMC Womens Health ; 24(1): 466, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39182070

RESUMEN

BACKGROUND: Despite the well-known health benefits of exercise, women's participation in exercise is low worldwide. As women are at risk of developing various chronic diseases as they age, suggesting effective exercise methods that can maximize energy consumption is needed to prevent such conditions. Excess post-exercise oxygen consumption (EPOC) can maximize energy consumption. In this crossover, randomized controlled trial, we aimed to compare the EPOC for different exercise modalities including continuous exercise (CE), interval exercise (IE), and accumulated exercise (AE) that spent the homogenized energy expenditure during exercise in healthy women. METHODS: Forty-four participants (age, 36.09 ± 11.73 years) were recruited and randomly allocated to three groups. The intensity of each modality was set as follows: CE was performed for 30 min at 60% peak oxygen uptake (VO2peak). IE was performed once for 2 min at 80% VO2peak, followed by 3 min at 80% VO2peak, and 1 min at 40% VO2peak, for a total of six times over 26 min. AE was performed for 10 min with a 60% VO2peak and was measured thrice a day. RESULTS: During exercise, energy metabolism was higher for IE and CE than that for AE. However, this was reversed for AE during EPOC. Consequently, the greatest energy metabolism was shown for AE during total time (exercise and EPOC). CONCLUSIONS: By encouraging regular exercises, AE can help maintain and improve body composition by increasing compliance with exercise participation, given its short exercise times, and by efficiently increasing energy consumption through the accumulation of EPOC. TRIAL REGISTRATION: Clinical number (KCT0007298), 18/05/2022, Institutional Review Board of Konkuk University (7001355-202201-E-160).


Asunto(s)
Estudios Cruzados , Metabolismo Energético , Ejercicio Físico , Consumo de Oxígeno , Humanos , Femenino , Consumo de Oxígeno/fisiología , Adulto , Ejercicio Físico/fisiología , Metabolismo Energético/fisiología , Persona de Mediana Edad , Adulto Joven
3.
Rev Cardiovasc Med ; 24(7): 196, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39077025

RESUMEN

Background: This study investigated the effects of 12-week resistance training on body composition, blood pressure, blood lipid levels, muscle cross-sectional area (CSA), isokinetic muscle function, and hemorheological properties in middle-aged obese women. Methods: Twenty-eight obese women with a mean age of 50.79 ± 5.80 years were randomly assigned to the control (CON, n = 13) or experimental (EXP, n = 15) group. The EXP group underwent a resistance training program composed of warm-up, main resistance exercise (deadlift, barbell squat, seated leg extension, and lying leg curl, bench press, preacher bench biceps curl, barbell rowing, and dumbbell shoulder press), and cool-down. The resistance exercise consisted of three sets of 8-10 repetitions (reps) performed with 70-80% of 1-rep maximum, and reps and sets were increased every 3 weeks. The training frequency was 80 min, 3 days per week for 12 weeks. The CON group maintained their daily lifestyle without training. All participants underwent measurements of body composition (weight, body mass index, lean body mass, fat mass, and % body fat), blood pressure (systolic blood pressure, diastolic blood pressure, mean arterial pressure, and pulse pressure), blood lipid levels (triglycerides, total cholesterol, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol), CSA of the muscles (quadriceps, hamstring, and total thigh muscle), isokinetic muscle function (peak torque [PT], relative PT, mean power, and total work [TW]), and hemorheological properties (erythrocyte deformability and aggregation) before and after 12 weeks of training. Results: The EXP group showed a significant improved muscle function, including PT (p < 0.001), relative PT (p < 0.001) in extension 60°/s, TW (p < 0.001) in extension 180°/s, and TW (p = 0.018) in flexion 180°/s. Regarding hemorheological properties, the EXP group showed significant improvement in erythrocyte aggregation (p < 0.001) and deformability (p < 0.001). Conclusions: The present study verified that our resistance training program resulted in greater muscle function, decreased fat mass, and improved hemorheological properties. Clinical Trial Registration: This study was registered with cris.nih.go.kr (No. KCT0007412).

4.
Sensors (Basel) ; 23(19)2023 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-37836879

RESUMEN

Issues of fairness and consistency in Taekwondo poomsae evaluation have often occurred due to the lack of an objective evaluation method. This study proposes a three-dimensional (3D) convolutional neural network-based action recognition model for an objective evaluation of Taekwondo poomsae. The model exhibits robust recognition performance regardless of variations in the viewpoints by reducing the discrepancy between the training and test images. It uses 3D skeletons of poomsae unit actions collected using a full-body motion-capture suit to generate synthesized two-dimensional (2D) skeletons from desired viewpoints. The 2D skeletons obtained from diverse viewpoints form the training dataset, on which the model is trained to ensure consistent recognition performance regardless of the viewpoint. The performance of the model was evaluated against various test datasets, including projected 2D skeletons and RGB images captured from diverse viewpoints. Comparison of the performance of the proposed model with those of previously reported action recognition models demonstrated the superiority of the proposed model, underscoring its effectiveness in recognizing and classifying Taekwondo poomsae actions.

5.
Rev Cardiovasc Med ; 23(5): 161, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-39077598

RESUMEN

Cardiovascular diseases (CVDs) are recognized as one of the major causes of morbidity and mortality worldwide. Generally, most CVDs can be prevented by addressing behavioral risk factors, including smoking, unhealthy diet and obesity, lack of physical activity, and alcohol abuse. Therefore, it is important to have a healthy lifestyle by performing regular physical activity to improve cardiovascular health and diseases. However, a majority of adults worldwide do not meet the minimum recommendations for regular aerobic exercise, and overweight and obesity ratio continues to rise. In addition, obese individuals, with a high prevalence of CVDs, have a lower participation rate for exercise because of the strain on the musculoskeletal system. Hypoxic therapy, including exposure or exercise intervention under hypoxia, has been utilized as a new therapeutic modality for cardiovascular benefit and amelioration of CVDs. Hypoxic therapy shows various physiological and pathophysiological properties, including increased appetite suppression and dietary intake reduction, increased energy consumption, improved glycogen storage, enhanced fatty acid oxidation, improved myocardial angiogenesis or ventricular remodeling, augmentation of blood flow within the skeletal muscle vascular beds, and reduction of the burden on the musculoskeletal system making it applicable to patients with CVDs and obesity with attenuated cardiovascular function. In particular, hypoxic therapy is very effective in improving cardiovascular benefits and preventing CVDs by enhancing arterial function, vascular endothelial function, and hemorheological properties. These observations indicate that hypoxic therapy may be an important and essential strategy for improving cardiovascular health and reducing cardiovascular morbidity and mortality.

6.
Rev Cardiovasc Med ; 23(4): 134, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-39076242

RESUMEN

Background: Sarcopenic obesity is caused by a decrease in muscle mass and an increase in body fat due to aging, and has been the cause of cardiovascular diseases such as hypertension, diabetes, hyperlipidemia, and arteriosclerosis and high inflammatory conditions. However, there is a lack of research on the effects of long-term exercise training as regards to the body composition and blood-related physiological indicators. Therefore, the purpose of this study was to investigate the influences the effect of circuit exercise training for 12 weeks on cardiovascular risk factors, vascular inflammatory markers, and insulin-like growth factor-1 (IGF-1) in elderly obesity women with sarcopenia. Methods: A total of 28 elderly obese Korean women with sarcopenia (75.0 ± 5.1 years) were randomly assigned either to a control group (CG, n = 14) or an exercise group (EG, n = 14). The EG performed circuit exercise training for 25-75 minutes (gradually incremental) three times per week over a period of 12 weeks, while the CG maintained their usual daily lifestyle during the intervention period. Pre- and post-intervention evaluations were performed on selected cardiovascular risk factors, inflammatory markers, and IGF-1. Results: The EG group exhibited improved body composition (i.e., body mass index, fat-free mass, % fat mass, waist-to-hip ratio; all p < 0.030, η 2 > 0.169), Cardiovascular risks factor (i.e., heart rate, systolic blood pressure, rate pressure product, high-density lipoprotein cholesterol, total cholesterol/HDL-C ratio, triglyceride/HDL-C ratio, low-density lipoprotein cholesterol/HDL-C ratio, brachial-ankle pulse wave velocity, fasting plasma insulin, homeostasis model assessment-insulin resistance; all p < 0.042, η 2 > 0.150), Inflammatory markers (i.e., high sensitivity C-reactive protein, interleukin-6; all p < 0.045, η 2 > 0.146), and IGF-1 (p = 0.037, η 2 = 0.157). Conversely, there were no significant changes observed in CG. Conclusions: Twelve weeks of circuit training had a positive effect on the improvement in cardiovascular risk factors, vascular inflammatory markers, and IGF-1 in elderly obese women with sarcopenia.

7.
Int J Mol Sci ; 22(2)2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33466647

RESUMEN

While exercise training (ET) is an efficient strategy to manage obesity, it is recommended with a dietary plan to maximize the antiobesity functions owing to a compensational increase in energy intake. Capsiate is a notable bioactive compound for managing obesity owing to its capacity to increase energy expenditure. We aimed to examine whether the antiobesity effects of ET can be further enhanced by capsiate intake (CI) and determine its effects on resting energy expenditure and metabolic molecules. Mice were randomly divided into four groups (n = 8 per group) and fed high-fat diet. Mild-intensity treadmill ET was conducted five times/week; capsiate (10 mg/kg) was orally administered daily. After 8 weeks, resting metabolic rate and metabolic molecules were analyzed. ET with CI additively reduced the abdominal fat rate by 18% and solely upregulated beta-3-adrenoceptors in adipose tissue (p = 0.013) but did not affect the metabolic molecules in skeletal muscles. Surprisingly, CI without ET significantly increased the abdominal fat rate (p = 0.001) and reduced energy expenditure by 9%. Therefore, capsiate could be a candidate compound for maximizing the antiobesity effects of ET by upregulating beta-3-adrenoceptors in adipose tissue, but CI without ET may not be beneficial in managing obesity.


Asunto(s)
Grasa Abdominal/metabolismo , Fármacos Antiobesidad/uso terapéutico , Capsaicina/análogos & derivados , Terapia por Ejercicio , Obesidad/terapia , Grasa Abdominal/efectos de los fármacos , Animales , Metabolismo Basal/efectos de los fármacos , Capsaicina/uso terapéutico , Dieta Alta en Grasa/efectos adversos , Masculino , Ratones , Ratones Endogámicos ICR , Obesidad/etiología , Obesidad/metabolismo , Condicionamiento Físico Animal
8.
J Sports Sci Med ; 18(3): 427-437, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31427864

RESUMEN

Living high-training low (LHTL) is performed by competitive athletes expecting to improve their performance in competitions at sea level. However, the beneficial effects of LHTL remain controversial. We sought to investigate whether 21 days of LHTL performed at a 3,000 m simulated altitude (fraction of inspired oxygen [FIO2]=14.5%) and at sea level can improve hematological parameters, exercise economy and metabolism, hemodynamic function, and exercise performance compared with living low-training low (LLTL) among competitive athletes. All participants (age = 23.5 ± 2.1 years, maximal oxygen consumption [VO2max] = 55.6 ± 2.5 mL·kg-1·min-1, 3,000 m time trial performance=583.7 ± 22.9 seconds) were randomly assigned to undergo LHTL (n = 12) or LLTL (n = 12) and evaluated before and after the 21 days of intervention. During the 21-day intervention period, the weekly routine for all athletes included 6-day training and 1-day rest. The daily training programs consisted of >4 hours of various exercise programs (i.e., jogging, high-speed running, interval running, and 3,000 m or 5,000-m time trial). The LHTL group resided in a simulated environmental chamber (FIO2 = 14.5%) for >12 hours per day and the LLTL group at sea level under comfortable conditions. The hematological parameters showed no significant interaction. However, LHTL yielded more improved exercise economy, metabolic parameters (oxygen consumption=-152.7 vs 32.4 mL·kg-1·30min-1, η2 = 0.457, p = 0.000; tissue oxygenation index=6.18 vs .66%, η2 = 0.250, p = 0.013), and hemodynamic function (heart rate = -234.5 vs -49.7 beats·30min-1, η2 = 0.172, p = 0.044; stroke volume = 136.4 vs -120.5 mL/30 min, η2 = 0.191, p = 0.033) during 30 minutes of submaximal cycle ergometer exercise corresponding to 80% maximal heart rate before training than did LLTL. Regarding exercise performance, LHTL also yielded more improved VO2max (5.40 vs 2.35 mL·kg-1·min-1, η2 = 0.527, p = 0.000) and 3,000 m time trial performance (-34.0 vs -19.5 seconds, η2 = 0.527, p = 0.000) than did LLTL. These results indicate that compared with LLTL, LHTL can have favorable effects on exercise performance by improving exercise economy and hemodynamic function in competitive runners.


Asunto(s)
Altitud , Rendimiento Atlético/fisiología , Conducta Competitiva/fisiología , Hemodinámica/fisiología , Acondicionamiento Físico Humano/métodos , Acondicionamiento Físico Humano/fisiología , Carrera/fisiología , Metabolismo Energético/fisiología , Eritropoyesis/fisiología , Frecuencia Cardíaca/fisiología , Humanos , Masculino , Consumo de Oxígeno/fisiología , Factores de Tiempo , Adulto Joven
9.
Biol Sport ; 35(1): 49-56, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30237661

RESUMEN

Athletic endurance performance at sea level can be improved via intermittent hypoxic training (IHT). However, the efficacy of IHT for enhancement of aerobic exercise performance at sea level is controversial because of methodological differences. Therefore, the aim of the study was to determine whether the IHT regimen ameliorates exercise economy and aerobic exercise performance in moderately trained swimmers. A total of 20 moderately trained swimmers were equally assigned to the control group (n=10) training in normoxic conditions and the IHT group (n=10) training at a simulated altitude of 3000 m. They were evaluated for metabolic parameters and skeletal muscle oxygenation during 30 min submaximal exercise on a bicycle, and aerobic exercise performance before and after 6 weeks of training composed of aerobic continuous exercise set at 80% maximal heart rate (HRmax) during 30 min and anaerobic interval exercise set at the exercise load with 90% HRmax measured in pre-test during 30 min (10 times 2 min exercise and 1 min rest). According to the results, the IHT group demonstrated greater improvement in exercise economy due to decreases in VO2 (p=.016) and HHb (p=.002) and increases in O2Hb (p<.001) and TOI (p=.006). VCO2 was decreased in the IHT group (p=.010) and blood lactate level was decreased in the control (p=.005) and IHT groups (p=.001). All aerobic exercise performance including VO2max (p=.001) and the 400 m time trial (p<.001) were increased in the IHT group. The present findings indicate that the 6 week IHT regime composed of high-intensity aerobic continuous exercise and anaerobic interval exercise can be considered an effective altitude/hypoxic training method for improvement of exercise economy and aerobic exercise performance in moderately trained swimmers.

10.
J Sports Sci Med ; 16(4): 480-488, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29238247

RESUMEN

In swimming competition, optimal swimming performance is characterized by a variety of interchangeable components, such as aerobic exercise capacity, anaerobic power and muscular function. Various hypoxic training methods would potentiate greater performance improvements compared to similar training at sea-level. Therefore, this study aimed to evaluate the effects of six-weeks of hypoxic training on exercise performance in moderately trained competitive swimmers. Twenty swimmers were equally divided into a normoxic training group (n = 10) for residing and training at sea-level (PIO2 = 149.7 mmHg), and a hypoxic training group (n = 10) for residing at sea-level but training at 526 mmHg hypobaric hypoxic condition (PIO2 = 100.6 mmHg). Aerobic exercise capacity, anaerobic power, muscular function, hormonal response and 50 and 400 m swimming performance were measured before and after training, which was composed of warm-up, continuous training, interval training, elastic resistance training, and cool-down. The training frequency was 120 min, 3 days per week for 6 weeks. Muscular function and hormonal response parameters showed significant interaction effects (all p < 0.032, η2 > 0.288) in muscular strength and endurance, growth hormone; GH, insulin like growth factor-1; IGF-1, and vascular endothelial growth factor; VEGF. The other variables demonstrated no significant interaction effects. However, a hypoxic training group also showed significantly increased maximal oxygen consumption; VO2max (p = 0.001), peak anaerobic power (p = 0.001), and swimming performances for 50 m (p = 0.000) and 400 m (p = 0.000). These results indicated that the hypoxic training method proposed in our study is effective for improvement of muscular strength and endurance in moderately trained competitive swimmers compared to control group. However, our hypoxic training method resulted in unclear changes in aerobic exercise capacity (VO2max), anaerobic power, and swimming performance of 50 m and 400 m compared to normoxic training.

11.
Pediatr Exerc Sci ; 28(3): 417-22, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27045322

RESUMEN

PURPOSE: The aim of this study was to investigate hemodynamic, hematological, and immunological responses to prolonged submaximal cycle ergometer exercise at a simulated altitude of 3000 m in pubescent girls. METHODS: Ten girls, 12.8 ± 1.0 years old, exercised on a cycle ergometer for 60 min at a work rate corresponding to 50% maximal oxygen consumption measured at sea level, under two environmental conditions; sea level (normoxia) and a simulated 3000 m altitude (normobaric hypoxia). RESULTS: There were no significant differences in tidal volume, ventilation, oxygen consumption, cardiac output, stroke volume, and heart rate between the two exercise conditions. However, reticulocyte, adrenocorticotropic hormone, and cortisol concentrations increased significantly from pre- to postexercise in the hypoxic environment. Leukocyte and T-cell count increased and B-cell count decreased after exercise under both conditions. There were no significant changes in natural killer cell count. CONCLUSION: Our simulated hypoxic environment provided a mild environmental stressor that did not impose a heavy burden on the cardiovascular, hematological, or immunological functions during submaximal exercise in pubescent girls.


Asunto(s)
Hormona Adrenocorticotrópica/sangre , Altitud , Ejercicio Físico/fisiología , Hidrocortisona/sangre , Hipoxia/sangre , Adolescente , Niño , Recuento de Eritrocitos , Prueba de Esfuerzo , Femenino , Frecuencia Cardíaca , Hemodinámica , Humanos , Leucocitos/citología , Consumo de Oxígeno , Recuento de Reticulocitos , Volumen Sistólico
12.
Phys Act Nutr ; 28(1): 7-19, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38719461

RESUMEN

PURPOSE: This study evaluated the effects of blood flow restriction with low-intensity resistance training (BFR + LIRT) on pain, adverse events, muscle strength, and function in patients with osteoarthritis (OA) and rheumatoid arthritis (RA) through a systematic review and meta-analysis. METHODS: This study adhered to the guidelines of the Preferred Reporting Items for Systematic Review and Meta-Analyses 2020 (PRISMA 2020) and applied the A Measurement Tool to Assess Systematic Reviews 2 (AMSTAR2) standards to ensure the high quality of the systematic review. A comprehensive literature search was conducted until August 2023 using four selected keywords (osteoarthritis, rheumatoid arthritis, blood flow restriction training, and resistance training) across five search engines (PubMed, Embase, Web of Science, CENTRAL, and PEDro). RESULTS: Ten studies were analyzed. The results showed that BFR + LIRT had similar effects on pain, risk of adverse events, muscle strength, self-reported function, and physical function compared with resistance training (RT). CONCLUSION: This systematic review and meta-analysis further support the potential of BFR + LIRT in the disease management of patients with OA or RA. According to this analysis, BFR + LIRT had a lower risk of adverse events than high-intensity resistance training (HIRT) and may be a safer training modality. BFR + LIRT offers greater advantages in improving physical function than LIRT and was able to provide similar benefits to HIRT without increasing the training load. These findings suggest that BFR + LIRT is a safe and effective strategy for treating patients with OA or RA. However, owing to the limited number of studies covered in this analysis, additional higher-quality studies are needed to strengthen this conclusion.

13.
Healthcare (Basel) ; 12(18)2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39337228

RESUMEN

BACKGROUND/OBJECTIVES: The present study examined the effect of 12-week combined exercise training in normobaric hypoxia on arterial stiffness, inflammatory biomarkers, and red blood cell (RBC) hemorheological function in 24 obese older women (mean age: 67.96 ± 0.96 years). METHODS: Subjects were randomly divided into two groups (normoxia (NMX; n = 12) and hypoxia (HPX; n = 12)). Both groups performed aerobic and resistance exercise training programs three times per week for 12 weeks, and the HPX group performed exercise programs in hypoxic environment chambers during the intervention period. Body composition was estimated using bioelectrical impedance analysis equipment. Arterial stiffness was measured using an automatic waveform analyzer. Biomarkers of inflammation and oxygen transport (tumor necrosis factor alpha, interleukin 6 (IL-6), erythropoietin (EPO), and vascular endothelial growth factor (VEGF)), and RBC hemorheological parameters (RBC deformability and aggregation) were analyzed. RESULTS: All variables showed significantly more beneficial changes in the HPX group than in the NMX group during the intervention. The combined exercise training in normobaric hypoxia significantly reduced blood pressure (systolic blood pressure: p < 0.001, diastolic blood pressure: p < 0.001, mean arterial pressure: p < 0.001, pulse pressure: p < 0.05) and brachial-ankle pulse wave velocity (p < 0.001). IL-6 was significantly lower in the HPX group than in the NMX group post-test (p < 0.001). Also, EPO (p < 0.01) and VEGF (p < 0.01) were significantly higher in the HPX group than in the NMX group post-test. Both groups showed significantly improved RBC deformability (RBC EI_3Pa) (p < 0.001) and aggregation (RBC AI_3Pa) (p < 0.001). CONCLUSIONS: The present study suggests that combined exercise training in normobaric hypoxia can improve inflammatory biomarkers and RBC hemorheological parameters in obese older women and may help prevent cardiovascular diseases.

14.
Physiol Rep ; 12(4): e15952, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38383135

RESUMEN

The perception regarding lactate has changed over the past decades, and some of its physiological roles have gradually been revealed. However, the effects of exogenous lactate on skeletal muscle synthesis remain unclear. This study aimed to confirm the effects of a 5-week lactate administration and post-exercise lactate administration on skeletal muscle synthesis. Thirty-two Institute of Cancer Research mice were randomly assigned to non-trained + placebo, non-trained + lactate, trained + placebo, and trained + lactate groups. Furthermore, 3 g/kg of lactate or an equivalent volume of saline was immediately administered after exercise training (maximum oxygen uptake: 70%). Lactate administration and/or exercise training was performed 5 days/week for 5 weeks. After the experimental period, it was observed that lactate administration tended to elevate skeletal muscle weight, increased protein kinase B (p < 0.05) and mammalian target of rapamycin (p < 0.05) mRNA levels, and decreased muscle ring-finger protein-1 expression (p < 0.05). Lactate administration after exercise training significantly enhanced plantaris muscle weight; however, it had no additional effects on most signaling factors. This study demonstrated that a 5-week lactate administration could stimulate skeletal muscle synthesis, and lactate administration after exercise training may provide additional effects, such as increasing skeletal muscle.


Asunto(s)
Ácido Láctico , Proteínas Proto-Oncogénicas c-akt , Ratones , Animales , Ácido Láctico/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Consumo de Oxígeno , Oxígeno/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Músculo Esquelético/metabolismo , Ratones Endogámicos , Mamíferos/metabolismo
15.
Healthcare (Basel) ; 12(13)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38998775

RESUMEN

Nitrate-rich beetroot juice (NRBRJ) can potentially enhance exercise performance and improve cardiovascular function, leading to an increased use of NRBRJ over the years. However, the combined effects of NRBRJ supplementation and exercise on cardiovascular function remain unclear. Therefore, this study compared cardiovascular function responses to submaximal exercise with either placebo (PLA) or NRBRJ supplementation in healthy men. Twelve healthy men (aged 25.2 ± 2.3 years) completed the 30-min submaximal cycle ergometer exercise trials corresponding to 70% maximal heart rate (HRmax) with either PLA or NRBRJ supplementation in a random order. The mean exercise load, heart rate (HR), stroke volume (SV), cardiac output (CO), systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP), and total peripheral resistance (TPR) were measured during exercise. The brachial-ankle pulse wave velocity (baPWV) and flow-mediated dilation (FMD) were measured before and after exercise. NRBRJ supplementation was more effective than PLA in increasing the mean exercise load and decreasing DBP and MAP during submaximal exercise. Furthermore, baPWV decreased in the NRBRJ trial and was considerably lower after exercise in the NRBRJ-supplemented group than in the PLA-supplemented group. FMD significantly increased in the PLA and NRBRJ trials; however, NRBRJ supplementation demonstrated a significantly higher FMD before and after exercise than PLA supplementation. In conclusion, acute NRBRJ supplementation and exercise were more effective than PLA supplementation and exercise in improving aerobic exercise capacity and cardiovascular function in healthy men.

16.
Metabolites ; 14(4)2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38668348

RESUMEN

We compared the effects of chronic exogenous lactate and exercise training, which influence energy substrate utilization and body composition improvements at rest and during exercise, and investigated the availability of lactate as a metabolic regulator. The mice were divided into four groups: CON (sedentary + saline), LAC (sedentary + lactate), EXE (exercise + saline), and EXLA (exercise + lactate). The total experimental period was set at 4 weeks, the training intensity was set at 60-70% VO2max, and each exercise group was administered a solution immediately after exercise. Changes in the energy substrate utilization at rest and during exercise, the protein levels related to energy substrate utilization in skeletal muscles, and the body composition were measured. Lactate intake and exercise increased carbohydrate oxidation as a substrate during exercise, leading to an increased energy expenditure and increased protein levels of citrate synthase and malate dehydrogenase 2, key factors in the TCA(tricarboxylic acid) cycle of skeletal muscle. Exercise, but not lactate intake, induced the upregulation of the skeletal muscle glucose transport factor 4 and a reduction in body fat. Hence, chronic lactate administration, as a metabolic regulator, influenced energy substrate utilization by the skeletal muscle and increased energy expenditure during exercise through the activation of carbohydrate metabolism-related factors. Therefore, exogenous lactate holds potential as a metabolic regulator.

17.
Phys Act Nutr ; 28(1): 1-6, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38719460

RESUMEN

PURPOSE: This study investigated the effects of exogenous lactate intake on energy metabolism during 1 h of rest after acute exercise. METHODS: Eight-week-old ICR mice were randomly divided into four groups: SED (no treatment), EXE (exercise only), LAC (post-exercise oral lactate administration), and SAL (post-exercise saline administration) (n=8 per group). The exercise intensity was at VO2max 80% at 25 m/min and 15° slope for 50 min. After acute exercise, the LAC and SAL groups ingested lactate and saline orally, respectively, and were allowed to rest in a chamber. Energy metabolism was measured for 1 h during the resting period. RESULTS: LAC and SAL group mice ingested lactate and saline, respectively, after exercise and the blood lactate concentration was measured 1 h later through tail blood sampling. Blood lactate concentration was not significantly different between the two groups. Energy metabolism measurements under stable conditions revealed that the respiratory exchange ratio in the LAC group was significantly lower than that in the SAL group. Additionally, carbohydrate oxidation in the LAC group was significantly lower than that in the SAL group at 10-25 min. No significant difference was observed in the fat oxidation level between the two groups. CONCLUSION: We found that post-exercise lactate intake modified the respiratory exchange ratio after 1 h of rest. In addition, acute lactate ingestion inhibits carbohydrate oxidation during the post-exercise recovery period.

18.
Nutrients ; 16(17)2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39275149

RESUMEN

Recent studies suggest that lactate intake has a positive effect on glycogen recovery after exercise. However, it is important to verify the effect of lactate supplementation alone and the timing of glycogen recovery. Therefore, in this study, we aimed to examine the effect of lactate supplementation immediately after exercise on glycogen recovery in mice liver and skeletal muscle at 1, 3, and 5 h after exercise. Mice were randomly divided into the sedentary, exercise-only, lactate, and saline-treated groups. mRNA expression and activation of glycogen synthesis and lactate transport-related factors in the liver and skeletal muscle were assessed using real-time polymerase chain reaction. Skeletal muscle glycogen concentration showed an increasing trend in the lactate group compared with that in the control group at 3 and 5 h after post-supplementation. Additionally, exogenous lactate supplementation significantly increased the expression of core glycogen synthesis enzymes, lactate transporters, and pyruvate dehydrogenase E1 alpha 1 in the skeletal muscles. Conversely, glycogen synthesis, lactate transport, and glycogen oxidation to acetyl-CoA were not significantly affected in the liver by exogenous lactate supplementation. Overall, these results suggest that post-exercise lactate supplement enables glycogen synthesis and recovery in skeletal muscles.


Asunto(s)
Glucógeno , Ácido Láctico , Hígado , Condicionamiento Físico Animal , Animales , Glucógeno/metabolismo , Ácido Láctico/metabolismo , Condicionamiento Físico Animal/fisiología , Masculino , Hígado/metabolismo , Hígado/efectos de los fármacos , Ratones , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Ratones Endogámicos C57BL , Transportadores de Ácidos Monocarboxílicos/metabolismo
19.
Phys Act Nutr ; 27(1): 16-29, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37132207

RESUMEN

PURPOSE: This systematic review and meta-analysis study evaluated the effects of Pilates on pain and disability in patients with chronic low back pain. METHODS: Six electronic databases were searched between January 2012 and December 2022. From these databases, only randomized controlled trials were selected. The criteria for assessing methodological quality using the PEDro scale were selected. The risk of bias was assessed using the Cochrane Risk of Bias Tool RoB 2.0. Additionally, the primary outcomes were pain and disability in this analysis. RESULTS: The corresponding results confirmed that Pilates training led to a significant improvement in pain (Visual Analog Scale: weighted mean difference = -29.38, 95% confidence interval, -33.24 to -25.52, I² value = 56.70%; Pain Numerical Rating Scale: weighted mean difference = -2.12, 95% confidence interval, -2.54 to -1.69, I² value = 0.00%) and disability (Roland- Morris Disability Index: weighted mean difference = -4.73, 95% confidence interval, -5.45 to -4.01, I² value = 41.79%). Six months after completion of Pilates training, the improvement in pain (Pain Numerical Rating Scale: weighted mean difference = -1.67, 95% confidence interval, -2.03 to -1.32, I² value = 0.00%) and disability (Roland-Morris Disability Index: weighted mean difference = -4.24, 95% confidence interval, -5.39 to -3.09, I² value = 52.79%) was maintained. CONCLUSION: Pilates training may be an effective strategy to improve pain and disability in patients with chronic low back pain.

20.
Phys Act Nutr ; 27(3): 36-43, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37946445

RESUMEN

PURPOSE: This review aimed to investigate the effects of vitamin C and glutathione supplementation on exercise performance. METHODS: We conducted a literature search across the PubMed, Google Scholar, and Web of Science databases using the keywords vitamin C, glutathione, antioxidants, exercise, and oxidative stress. RESULTS: The effects of vitamin C supplementation on exercise performance and oxidative stress levels are inconsistent. Glutathione, with its diverse forms of supplementation and methods, presents mixed outcomes. Vitamin C and glutathione have deeply interconnected antioxidant functions and are mutually essential to each other. Research investigating the combined intake of these two substances, which are intricately linked biochemically, and their effects on exercise performance remain largely unexplored. CONCLUSION: Studies on the effects of vitamin C and glutathione intake on exercise have been conducted using diverse approaches; however, the results have not been consistent. Although an additive effect is anticipated with the combined intake of vitamin C and glutathione, research on this topic is currently insufficient, and further studies are required.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA