Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 23(6): 947-959, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35552540

RESUMEN

Inflammation is an important component of fibrosis but immune processes that orchestrate kidney fibrosis are not well understood. Here we apply single-cell sequencing to a mouse model of kidney fibrosis. We identify a subset of kidney tubule cells with a profibrotic-inflammatory phenotype characterized by the expression of cytokines and chemokines associated with immune cell recruitment. Receptor-ligand interaction analysis and experimental validation indicate that CXCL1 secreted by profibrotic tubules recruits CXCR2+ basophils. In mice, these basophils are an important source of interleukin-6 and recruitment of the TH17 subset of helper T cells. Genetic deletion or antibody-based depletion of basophils results in reduced renal fibrosis. Human kidney single-cell, bulk gene expression and immunostaining validate a function for basophils in patients with kidney fibrosis. Collectively, these studies identify basophils as contributors to the development of renal fibrosis and suggest that targeting these cells might be a useful clinical strategy to manage chronic kidney disease.


Asunto(s)
Basófilos , Insuficiencia Renal Crónica , Animales , Fibrosis , Humanos , Riñón/metabolismo , Túbulos Renales , Ratones , Insuficiencia Renal Crónica/metabolismo , Análisis de la Célula Individual
2.
J Am Soc Nephrol ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38857203

RESUMEN

BACKGROUND: Chemical modifications on RNA profoundly impact RNA function and regulation. m6A, the most abundant RNA modification in eukaryotes, plays a pivotal role in diverse cellular processes and disease mechanisms. However, its importance is understudied in human chronic kidney disease (CKD) samples regarding its influence on pathological mechanisms. METHODS: LC-MS/MS and Methylated RNA Immunoprecipitation (MeRIP) sequencing were utilized to examine alterations in m6A levels and patterns in CKD samples. Overexpression of the m6A writer METTL3 in cultured kidney tubular cells was performed to confirm the impact of m6A in tubular cells and explore the biological functions of m6A modification on target genes. Additionally, tubule-specific deletion of Mettl3 (Ksp-Cre Mettl3f/f) mice and the use of anti-sense oligonucleotides inhibiting Mettl3 expression were utilized to reduce m6A modification in an animal kidney disease model. RESULTS: By examining 127 human CKD samples, we observed a significant increase in m6A modification and METTL3 expression in diseased kidneys. Epitranscriptomic analysis unveiled an enrichment of m6A modifications in transcripts associated with the activation of inflammatory signaling pathways, particularly the cGAS-STING pathway. m6A hypermethylation increased mRNA stability in cGAS and STING1, as well as elevated the expression of key proteins within the cGAS-STING pathway. Both the tubule-specific deletion of Mettl3 and the use of anti-sense oligonucleotides to inhibit Mettl3 expression protected mice from inflammation, reduced cytokine expression, decreased immune cell recruitment, and attenuated kidney fibrosis. CONCLUSIONS: Our research revealed heightened METTL3-mediated m6A modification in fibrotic kidneys, particularly enriching the cGAS-STING pathway. This hypermethylation increased mRNA stability for cGAS and STING1, leading to sterile inflammation and fibrosis.

3.
BMC Genomics ; 25(1): 318, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38549092

RESUMEN

BACKGROUND: Detecting structural variations (SVs) at the population level using next-generation sequencing (NGS) requires substantial computational resources and processing time. Here, we compared the performances of 11 SV callers: Delly, Manta, GridSS, Wham, Sniffles, Lumpy, SvABA, Canvas, CNVnator, MELT, and INSurVeyor. These SV callers have been recently published and have been widely employed for processing massive whole-genome sequencing datasets. We evaluated the accuracy, sequence depth, running time, and memory usage of the SV callers. RESULTS: Notably, several callers exhibited better calling performance for deletions than for duplications, inversions, and insertions. Among the SV callers, Manta identified deletion SVs with better performance and efficient computing resources, and both Manta and MELT demonstrated relatively good precision regarding calling insertions. We confirmed that the copy number variation callers, Canvas and CNVnator, exhibited better performance in identifying long duplications as they employ the read-depth approach. Finally, we also verified the genotypes inferred from each SV caller using a phased long-read assembly dataset, and Manta showed the highest concordance in terms of the deletions and insertions. CONCLUSIONS: Our findings provide a comprehensive understanding of the accuracy and computational efficiency of SV callers, thereby facilitating integrative analysis of SV profiles in diverse large-scale genomic datasets.


Asunto(s)
Variaciones en el Número de Copia de ADN , Genómica , Humanos , Secuenciación Completa del Genoma , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ADN , Genoma Humano , Variación Estructural del Genoma
4.
Cancer Sci ; 115(2): 490-506, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38111334

RESUMEN

Tumor progression and metastasis are regulated by endothelial cells undergoing endothelial-mesenchymal transition (EndoMT), a cellular differentiation process in which endothelial cells lose their properties and differentiate into mesenchymal cells. The cells undergoing EndoMT differentiate through a spectrum of intermediate phases, suggesting that some cells remain in a partial EndoMT state and exhibit an endothelial/mesenchymal phenotype. However, detailed analysis of partial EndoMT has been hampered by the lack of specific markers. Transforming growth factor-ß (TGF-ß) plays a central role in the induction of EndoMT. Here, we showed that inhibition of TGF-ß signaling suppressed EndoMT in a human oral cancer cell xenograft mouse model. By using genetic labeling of endothelial cell lineage, we also established a novel EndoMT reporter cell system, the EndoMT reporter endothelial cells (EMRECs), which allow visualization of sequential changes during TGF-ß-induced EndoMT. Using EMRECs, we characterized the gene profiles of multiple EndoMT stages and identified CD40 as a novel partial EndoMT-specific marker. CD40 expression was upregulated in the cells undergoing partial EndoMT, but decreased in the full EndoMT cells. Furthermore, single-cell RNA sequencing analysis of human tumors revealed that CD40 expression was enriched in the population of cells expressing both endothelial and mesenchymal cell markers. Moreover, decreased expression of CD40 in EMRECs enhanced TGF-ß-induced EndoMT, suggesting that CD40 expressed during partial EndoMT inhibits transition to full EndoMT. The present findings provide a better understanding of the mechanisms underlying TGF-ß-induced EndoMT and will facilitate the development of novel therapeutic strategies targeting EndoMT-driven cancer progression and metastasis.


Asunto(s)
Células Endoteliales , Transición Endotelial-Mesenquimatosa , Animales , Humanos , Ratones , Células Cultivadas , Células Endoteliales/metabolismo , Transición Epitelial-Mesenquimal/genética , Factor de Crecimiento Transformador beta/metabolismo , Microambiente Tumoral/genética , Antígenos CD40/metabolismo
5.
Kidney Int ; 105(6): 1186-1199, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38554991

RESUMEN

The kidney is a complex organ consisting of various cell types. Previous studies have aimed to elucidate the cellular relationships among these cell types in developing and mature kidneys using Cre-loxP-based lineage tracing. However, this methodology falls short of fully capturing the heterogeneous nature of the kidney, making it less than ideal for comprehensively tracing cellular progression during kidney development and maintenance. Recent technological advancements in single-cell genomics have revolutionized lineage tracing methods. Single-cell lineage tracing enables the simultaneous tracing of multiple cell types within complex tissues and their transcriptomic profiles, thereby allowing the reconstruction of their lineage tree with cell state information. Although single-cell lineage tracing has been successfully applied to investigate cellular hierarchies in various organs and tissues, its application in kidney research is currently lacking. This review comprehensively consolidates the single-cell lineage tracing methods, divided into 4 categories (clustered regularly interspaced short palindromic repeat [CRISPR]/CRISPR-associated protein 9 [Cas9]-based, transposon-based, Polylox-based, and native barcoding methods), and outlines their technical advantages and disadvantages. Furthermore, we propose potential future research topics in kidney research that could benefit from single-cell lineage tracing and suggest suitable technical strategies to apply to these topics.


Asunto(s)
Linaje de la Célula , Riñón , Análisis de la Célula Individual , Análisis de la Célula Individual/métodos , Animales , Humanos , Riñón/citología , Diferenciación Celular , Sistemas CRISPR-Cas , Rastreo Celular/métodos , Elementos Transponibles de ADN/genética
6.
Kidney Int ; 105(1): 150-164, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37925023

RESUMEN

Diabetes is the leading cause of kidney disease that progresses to kidney failure. However, the key molecular and cellular pathways involved in diabetic kidney disease (DKD) pathogenesis are largely unknown. Here, we performed a comparative analysis of adult human kidneys by examining cell type-specific chromatin accessibility by single-nucleus ATAC-seq (snATAC-seq) and analyzing three-dimensional chromatin architecture via high-throughput chromosome conformation capture (Hi-C method) of paired samples. We mapped the cell type-specific and DKD-specific open chromatin landscape and found that genetic variants associated with kidney diseases were significantly enriched in the proximal tubule- (PT) and injured PT-specific open chromatin regions in samples from patients with DKD. BACH1 was identified as a core transcription factor of injured PT cells; its binding target genes were highly associated with fibrosis and inflammation, which were also key features of injured PT cells. Additionally, Hi-C analysis revealed global chromatin architectural changes in DKD, accompanied by changes in local open chromatin patterns. Combining the snATAC-seq and Hi-C data identified direct target genes of BACH1, and indicated that BACH1 binding regions showed increased chromatin contact frequency with promoters of their target genes in DKD. Thus, our multi-omics analysis revealed BACH1 target genes in injured PTs and highlighted the role of BACH1 as a novel regulator of tubular inflammation and fibrosis.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Adulto , Humanos , Cromatina/genética , Nefropatías Diabéticas/genética , Cromosomas , Riñón , Fibrosis , Inflamación , Diabetes Mellitus/genética
7.
Brief Bioinform ; 23(2)2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35226074

RESUMEN

The development of autoimmune diseases following SARS-CoV-2 infection, including multisystem inflammatory syndrome, has been reported, and several mechanisms have been suggested, including molecular mimicry. We developed a scalable, comparative immunoinformatics pipeline called cross-reactive-epitope-search-using-structural-properties-of-proteins (CRESSP) to identify cross-reactive epitopes between a collection of SARS-CoV-2 proteomes and the human proteome using the structural properties of the proteins. Overall, by searching 4 911 245 proteins from 196 352 SARS-CoV-2 genomes, we identified 133 and 648 human proteins harboring potential cross-reactive B-cell and CD8+ T-cell epitopes, respectively. To demonstrate the robustness of our pipeline, we predicted the cross-reactive epitopes of coronavirus spike proteins, which were recognized by known cross-neutralizing antibodies. Using single-cell expression data, we identified PARP14 as a potential target of intermolecular epitope spreading between the virus and human proteins. Finally, we developed a web application (https://ahs2202.github.io/3M/) to interactively visualize our results. We also made our pipeline available as an open-source CRESSP package (https://pypi.org/project/cressp/), which can analyze any two proteomes of interest to identify potentially cross-reactive epitopes between the proteomes. Overall, our immunoinformatic resources provide a foundation for the investigation of molecular mimicry in the pathogenesis of autoimmune and chronic inflammatory diseases following COVID-19.


Asunto(s)
Biología Computacional/métodos , Epítopos/química , Epítopos/inmunología , SARS-CoV-2/inmunología , Programas Informáticos , Proteínas Virales/química , Proteínas Virales/inmunología , Algoritmos , Reacciones Cruzadas/inmunología , Epítopos de Linfocito B , Epítopos de Linfocito T , Antígenos de Histocompatibilidad Clase I/química , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase II/química , Antígenos de Histocompatibilidad Clase II/inmunología , Modelos Moleculares , Imitación Molecular , Redes Neurales de la Computación , Proteoma , Proteómica/métodos , Relación Estructura-Actividad , Navegador Web
8.
Am J Otolaryngol ; 45(1): 104110, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37944346

RESUMEN

OBJECTIVE: Limited palatal muscle resection (LPMR) is a modified palatal surgical technique to correct retropalatal obstruction without complications. This study aims to determine the associated factors affecting the success and cure rate of LPMR in patients with obstructive sleep apnea (OSA), thus guiding patient selection and improving surgical outcome. METHODS: Thirty-five OSA patients underwent LPMR were enrolled. All patients received routine physical examination, preoperative drug-induced sleep endoscopy (DISE), and polysomnography (PSG). Clinical, polysomnographic, cephalometric variables, and DISE findings were evaluated. These measurements were compared between the surgical success and failure group based on the results of preoperative and postoperative PSG. Furthermore, we compared the cured and non-cured groups in the surgical success group. RESULTS: Among 35 patients, the overall success rate was 57 % with a cure rate of 31.4 %. Patients with Friedman stage II had a significantly higher success rate (p = 0.032). According to DISE results, tongue base obstruction affected the surgical outcome (p < 0.001). The success rate was 100 % in the no tongue base obstruction during DISE, 72.2 % in the partial obstruction, and 9.1 % in the total obstruction. Tonsil size is also helpful in predicting surgical success rate (p = 0.041). Furthermore, patients with mild AHI were more likely to be surgical cures. when compared with patients with severe AHI (p = 0.044). CONCLUSION: Patients with larger tonsil size and no tongue base obstruction during DISE may have a higher chance of surgical success with LPMR. The lower AHI may be predictors of surgical cure after LPMR.


Asunto(s)
Músculos Palatinos , Apnea Obstructiva del Sueño , Humanos , Músculos Palatinos/cirugía , Apnea Obstructiva del Sueño/diagnóstico , Apnea Obstructiva del Sueño/cirugía , Hueso Paladar/cirugía , Endoscopía/métodos , Resultado del Tratamiento , Sueño
9.
Clin Immunol ; 257: 109819, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37918467

RESUMEN

Innate immune response is critical for the control of Listeria monocytogenes infection. Here, we identified developmentally regulated GTP-binding protein 2 (DRG2) in macrophages as a major regulator of the innate immune response against L. monocytogenes infection. Both whole-body DRG2 knockout (KO) mice and macrophage-specific DRG2 KO mice had low levels of IL-6 during early infection and increased susceptibility to L. monocytogenes infection. Following an initial impaired inflammatory response of macrophages upon i.p. L. monocytogenes infection, DRG2-/- mice showed delayed recruitment of neutrophils and monocytes into the peritoneal cavity, which led to elevated bacterial burden, inflammatory cytokine production at a late infection time point, and liver micro-abscesses. DRG2 deficiency decreased the transcriptional activity of NF-κB and impaired the inflammatory response of both bone marrow-derived and peritoneal macrophages upon L. monocytogenes stimulation. Our findings reveal that DRG2 in macrophages is critical for the initial inflammatory response and protection against L. monocytogenes infection.


Asunto(s)
Proteínas de Unión al GTP , Listeria monocytogenes , Listeriosis , Macrófagos , Animales , Ratones , Inmunidad Innata , Listeriosis/inmunología , Macrófagos/inmunología , Ratones Noqueados , Monocitos , Proteínas de Unión al GTP/metabolismo
10.
J Med Virol ; 95(11): e29201, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37966390

RESUMEN

The global COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus 2 virus has resulted in a significant number of patients experiencing persistent symptoms, including post-COVID pulmonary fibrosis (PCPF). This study aimed to identify novel therapeutic targets for PCPF using single-cell RNA-sequencing data from lung tissues of COVID-19 patients, idiopathic pulmonary fibrosis (IPF) patients, and a rat transforming growth factor beta-1-induced fibrosis model treated with antifibrotic drugs. Patients with COVID-19 had lower alveolar macrophage counts than healthy controls, whereas patients with COVID-19 and IPF presented with elevated monocyte-derived macrophage counts. A comparative transcriptome analysis showed that macrophages play a crucial role in IPF and COVID-19 development and progression, and fibrosis- and inflammation-associated genes were upregulated in both conditions. Functional enrichment analysis revealed the upregulation of inflammation and proteolysis and the downregulation of ribosome biogenesis. Cholesterol efflux and glycolysis were augmented in both macrophage types. The study suggests that antifibrotic drugs may reverse critical lung fibrosis mediators in COVID-19. The results help clarify the molecular mechanisms underlying pulmonary fibrosis in patients with severe COVID-19 and IPF and highlight the potential efficacy of antifibrotic drugs in COVID-19 therapy. Collectively, all these findings may have significant implications for the development of new treatment strategies for PCPF.


Asunto(s)
COVID-19 , Fibrosis Pulmonar , Humanos , Animales , Ratas , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/genética , COVID-19/complicaciones , COVID-19/genética , Pandemias , Análisis de Expresión Génica de una Sola Célula , Inflamación
11.
Proc Natl Acad Sci U S A ; 117(11): 6237-6245, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32123075

RESUMEN

Stomata in the plant epidermis play a critical role in growth and survival by controlling gas exchange, transpiration, and immunity to pathogens. Plants modulate stomatal cell fate and patterning through key transcriptional factors and signaling pathways. MicroRNAs (miRNAs) are known to contribute to developmental plasticity in multicellular organisms; however, no miRNAs appear to target the known regulators of stomatal development. It remains unclear as to whether miRNAs are involved in stomatal development. Here, we report highly dynamic, developmentally stage-specific miRNA expression profiles from stomatal lineage cells. We demonstrate that stomatal lineage miRNAs positively and negatively regulate stomatal formation and patterning to avoid clustered stomata. Target prediction of stomatal lineage miRNAs implicates potential cellular processes in stomatal development. We show that miR399-mediated PHO2 regulation, involved in phosphate homeostasis, contributes to the control of stomatal development. Our study demonstrates that miRNAs constitute a critical component in the regulatory mechanisms controlling stomatal development.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , MicroARNs/metabolismo , Estomas de Plantas/crecimiento & desarrollo , Enzimas Ubiquitina-Conjugadoras/genética , MicroARNs/genética , Plantas Modificadas Genéticamente , RNA-Seq
12.
J Exp Bot ; 73(8): 2511-2524, 2022 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-35139177

RESUMEN

An optimal size of post-embryonic root apical meristem (RAM) is achieved by a balance between cell division and differentiation. Despite extensive research, molecular mechanisms underlying the coordination of cell division and differentiation are still fragmentary. Here, we report that ORESARA 15 (ORE15), an Arabidopsis PLANT A/T-RICH SEQUENCE-AND ZINC-BINDING PROTEIN (PLATZ) transcription factor preferentially expressed in the RAM, determines RAM size. Primary root length, RAM size, cell division rate, and stem cell niche activity were reduced in an ore15 loss-of-function mutant but enhanced in an activation-tagged line overexpressing ORE15, compared with wild type. ORE15 forms mutually positive and negative feedback loops with auxin and cytokinin signalling, respectively. Collectively, our findings imply that ORE15 controls RAM size by mediating the antagonistic interaction between auxin and cytokinin signalling-related pathways.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Citocininas/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Meristema/metabolismo , Raíces de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
13.
J Immunol ; 205(2): 377-386, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32522836

RESUMEN

Clinical and experimental studies have established that immune cells such as alternatively activated (M2) macrophages and Th17 cells play a role in the progression of chronic kidney disease, but the endogenous pathways that limit these processes are not well understood. The cytokine IL-27 has been shown to limit immune-mediated pathology in other systems by effects on these cell types, but this has not been thoroughly investigated in the kidney. Unilateral ureteral obstruction was performed on wild-type and IL-27Rα-/- mice. After 2 wk, kidneys were extracted, and the degree of injury was measured by hydroxyproline assay and quantification of neutrophil gelatinase-associated lipocalin mRNA. Immune cell infiltrate was evaluated by immunohistochemistry and flow cytometry. An anti-IL-17A mAb was subsequently administered to IL-27Rα-/- mice every 2 d from day of surgery with evaluation as described after 2 wk. After unilateral ureteral obstruction, IL-27 deficiency resulted in increased tissue injury and collagen deposition associated with higher levels of chemokine mRNA and increased numbers of M2 macrophages. Loss of the IL-27Rα led to increased infiltration of activated CD4+ T cells that coproduced IL-17A and TNF-α, and blockade of IL-17A partially ameliorated kidney injury. Patients with chronic kidney disease had elevated serum levels of IL-27 and IL-17A, whereas expression of transcripts for the IL-27RA and the IL-17RA in the tubular epithelial cells of patients with renal fibrosis correlated with disease severity. These data suggest that endogenous IL-27 acts at several points in the inflammatory cascade to limit the magnitude of immune-mediated damage to the kidney.


Asunto(s)
Riñón/patología , Macrófagos/inmunología , Nefritis Intersticial/inmunología , Receptores de Interleucina/metabolismo , Células Th17/inmunología , Animales , Movimiento Celular , Células Cultivadas , Progresión de la Enfermedad , Fibrosis , Humanos , Interleucina-17/sangre , Interleucina-27/sangre , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Interleucina/genética , Receptores de Interleucina-17/genética , Receptores de Interleucina-17/metabolismo
14.
PLoS Genet ; 15(1): e1007874, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30625149

RESUMEN

Extensive cell-to-cell variation exists even among putatively identical cells, and there is great interest in understanding how the properties of transcription relate to this heterogeneity. Differential expression from the two gene copies in diploid cells could potentially contribute, yet our ability to measure from which gene copy individual RNAs originated remains limited, particularly in the context of tissues. Here, we demonstrate quantitative, single molecule allele-specific RNA FISH adapted for use on tissue sections, allowing us to determine the chromosome of origin of individual RNA molecules in formaldehyde-fixed tissues. We used this method to visualize the allele-specific expression of Xist and multiple autosomal genes in mouse kidney. By combining these data with mathematical modeling, we evaluated models for allele-specific heterogeneity, in particular demonstrating that apparent expression from only one of the alleles in single cells can arise as a consequence of low-level mRNA abundance and transcriptional bursting.


Asunto(s)
Desequilibrio Alélico/genética , Hibridación Fluorescente in Situ/métodos , Riñón/metabolismo , ARN Largo no Codificante/genética , Alelos , Animales , Regulación del Desarrollo de la Expresión Génica/genética , Ratones , Especificidad de Órganos , ARN Largo no Codificante/aislamiento & purificación
15.
J Am Soc Nephrol ; 32(3): 614-627, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33531352

RESUMEN

BACKGROUND: Microscopic analysis of urine sediment is probably the most commonly used diagnostic procedure in nephrology. The urinary cells, however, have not yet undergone careful unbiased characterization. METHODS: Single-cell transcriptomic analysis was performed on 17 urine samples obtained from five subjects at two different occasions, using both spot and 24-hour urine collection. A pooled urine sample from multiple healthy individuals served as a reference control. In total 23,082 cells were analyzed. Urinary cells were compared with human kidney and human bladder datasets to understand similarities and differences among the observed cell types. RESULTS: Almost all kidney cell types can be identified in urine, such as podocyte, proximal tubule, loop of Henle, and collecting duct, in addition to macrophages, lymphocytes, and bladder cells. The urinary cell-type composition was subject specific and reasonably stable using different collection methods and over time. Urinary cells clustered with kidney and bladder cells, such as urinary podocytes with kidney podocytes, and principal cells of the kidney and urine, indicating their similarities in gene expression. CONCLUSIONS: A reference dataset for cells in human urine was generated. Single-cell transcriptomics enables detection and quantification of almost all types of cells in the kidney and urinary tract.


Asunto(s)
Riñón/citología , Anciano , Código de Barras del ADN Taxonómico , Femenino , Biblioteca de Genes , Humanos , Riñón/metabolismo , Enfermedades Renales/genética , Enfermedades Renales/patología , Enfermedades Renales/orina , Masculino , Persona de Mediana Edad , Podocitos/citología , Podocitos/metabolismo , RNA-Seq , Análisis de la Célula Individual/métodos , Análisis de la Célula Individual/estadística & datos numéricos , Transcriptoma , Vejiga Urinaria/citología , Vejiga Urinaria/metabolismo , Orina/citología
16.
Sensors (Basel) ; 22(16)2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-36015721

RESUMEN

Cattle are less active than humans. Hence, it was hypothesized in this study that transmitting acceleration signals at a 1 min sampling interval to reduce storage load has the potential to improve the performance of motion sensors without affecting the precision of behavior classification. The behavior classification performance in terms of precision, sensitivity, and the F1-score of the 1 min serial datasets segmented in 3, 4, and 5 min window sizes based on nine algorithms were determined. The collar-fitted triaxial accelerometer sensor was attached on the right side of the neck of the two fattening Korean steers (age: 20 months) and the steers were observed for 6 h on day one, 10 h on day two, and 7 h on day three. The acceleration signals and visual observations were time synchronized and analyzed based on the objectives. The resting behavior was most correctly classified using the combination of a 4 min window size and the long short-term memory (LSTM) algorithm which resulted in 89% high precision, 81% high sensitivity, and 85% high F1-score. High classification performance (79% precision, 88% sensitivity, and 83% F1-score) was also obtained in classifying the eating behavior using the same classification method (4 min window size and an LSTM algorithm). The most poorly classified behavior was the active behavior. This study showed that the collar-fitted triaxial sensor measuring 1 min serial signals could be used as a tool for detecting the resting and eating behaviors of cattle in high precision by segmenting the acceleration signals in a 4 min window size and by using the LSTM classification algorithm.


Asunto(s)
Aceleración , Conducta Alimentaria , Acelerometría/métodos , Algoritmos , Animales , Bovinos , Recolección de Datos , Humanos , Lactante
17.
PLoS Biol ; 16(9): e2005233, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30226866

RESUMEN

While Notch signaling has been proposed to play a key role in fibrosis, the direct molecular pathways targeted by Notch signaling and the precise ligand and receptor pair that are responsible for kidney disease remain poorly defined. In this study, we found that JAG1 and NOTCH2 showed the strongest correlation with the degree of interstitial fibrosis in a genome-wide expression analysis of a large cohort of human kidney samples. Transcript analysis of mouse kidney disease models, including folic-acid (FA)-induced nephropathy, unilateral ureteral obstruction (UUO), or apolipoprotein L1 (APOL1)-associated kidney disease, indicated that Jag1 and Notch2 levels were higher in all analyzed kidney fibrosis models. Mice with tubule-specific deletion of Jag1 or Notch2 (Kspcre/Jag1flox/flox and Kspcre/Notch2flox/flox) had no kidney-specific alterations at baseline but showed protection from FA-induced kidney fibrosis. Tubule-specific genetic deletion of Notch1 and global knockout of Notch3 had no effect on fibrosis. In vitro chromatin immunoprecipitation experiments and genome-wide expression studies identified the mitochondrial transcription factor A (Tfam) as a direct Notch target. Re-expression of Tfam in tubule cells prevented Notch-induced metabolic and profibrotic reprogramming. Tubule-specific deletion of Tfam resulted in fibrosis. In summary, Jag1 and Notch2 play a key role in kidney fibrosis development by regulating Tfam expression and metabolic reprogramming.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas del Grupo de Alta Movilidad/metabolismo , Proteína Jagged-1/metabolismo , Riñón/metabolismo , Riñón/patología , Proteínas Mitocondriales/metabolismo , Receptor Notch2/metabolismo , Factores de Transcripción/metabolismo , Animales , Desdiferenciación Celular , Proliferación Celular , Células Epiteliales/metabolismo , Fibrosis , Ontología de Genes , Genotipo , Humanos , Túbulos Renales/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Biológicos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Transducción de Señal
18.
Proc Natl Acad Sci U S A ; 115(21): E4930-E4939, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29735710

RESUMEN

Senescence is controlled by time-evolving networks that describe the temporal transition of interactions among senescence regulators. Here, we present time-evolving networks for NAM/ATAF/CUC (NAC) transcription factors in Arabidopsis during leaf aging. The most evident characteristic of these time-dependent networks was a shift from positive to negative regulation among NACs at a presenescent stage. ANAC017, ANAC082, and ANAC090, referred to as a "NAC troika," govern the positive-to-negative regulatory shift. Knockout of the NAC troika accelerated senescence and the induction of other NACs, whereas overexpression of the NAC troika had the opposite effects. Transcriptome and molecular analyses revealed shared suppression of senescence-promoting processes by the NAC troika, including salicylic acid (SA) and reactive oxygen species (ROS) responses, but with predominant regulation of SA and ROS responses by ANAC090 and ANAC017, respectively. Our time-evolving networks provide a unique regulatory module of presenescent repressors that direct the timely induction of senescence-promoting processes at the presenescent stage of leaf aging.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Senescencia Celular , Redes Reguladoras de Genes , Hojas de la Planta/crecimiento & desarrollo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación , Fenotipo , Desarrollo de la Planta , Hojas de la Planta/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Tiempo , Transcriptoma
19.
J Am Soc Nephrol ; 31(4): 765-782, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32127410

RESUMEN

BACKGROUND: Cytosine methylation is an epigenetic mark that dictates cell fate and response to stimuli. The timing and establishment of methylation logic during kidney development remains unknown. DNA methyltransferase 3a and 3b are the enzymes capable of establishing de novo methylation. METHODS: We generated mice with genetic deletion of Dnmt3a and Dnmt3b in nephron progenitor cells (Six2CreDnmt3a/3b) and kidney tubule cells (KspCreDnmt3a/3b). We characterized KspCreDnmt3a/3b mice at baseline and after injury. Unbiased omics profiling, such as whole genome bisulfite sequencing, reduced representation bisulfite sequencing and RNA sequencing were performed on whole-kidney samples and isolated renal tubule cells. RESULTS: KspCreDnmt3a/3b mice showed no obvious morphologic and functional alterations at baseline. Knockout animals exhibited increased resistance to cisplatin-induced kidney injury, but not to folic acid-induced fibrosis. Whole-genome bisulfite sequencing indicated that Dnmt3a and Dnmt3b play an important role in methylation of gene regulatory regions that act as fetal-specific enhancers in the developing kidney but are decommissioned in the mature kidney. Loss of Dnmt3a and Dnmt3b resulted in failure to silence developmental genes. We also found that fetal-enhancer regions methylated by Dnmt3a and Dnmt3b were enriched for kidney disease genetic risk loci. Methylation patterns of kidneys from patients with CKD showed defects similar to those in mice with Dnmt3a and Dnmt3b deletion. CONCLUSIONS: Our results indicate a potential locus-specific convergence of genetic, epigenetic, and developmental elements in kidney disease development.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/fisiología , Enfermedades Renales/etiología , Riñón/embriología , Animales , Metilación de ADN , ADN Metiltransferasa 3A , Masculino , Ratones , Ratones Noqueados , Células Madre , ADN Metiltransferasa 3B
20.
J Am Soc Nephrol ; 31(3): 501-516, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31996410

RESUMEN

BACKGROUND: Prolyl-4-hydroxylase domain-containing proteins 1-3 (PHD1 to PHD3) regulate the activity of the hypoxia-inducible factors (HIFs) HIF-1 and HIF-2, transcription factors that are key regulators of hypoxic vascular responses. We previously reported that deficiency of endothelial HIF-2 exacerbated renal ischemia-reperfusion injury, whereas inactivation of endothelial PHD2, the main oxygen sensor, provided renoprotection. Nevertheless, the molecular mechanisms by which endothelial PHD2 dictates AKI outcomes remain undefined. METHODS: To investigate the function of the endothelial PHD2/HIF axis in ischemic AKI, we examined the effects of endothelial-specific ablation of PHD2 in a mouse model of renal ischemia-reperfusion injury. We also interrogated the contribution of each HIF isoform by concurrent endothelial deletion of both PHD2 and HIF-1 or both PHD2 and HIF-2. RESULTS: Endothelial deletion of Phd2 preserved kidney function and limited transition to CKD. Mechanistically, we found that endothelial Phd2 ablation protected against renal ischemia-reperfusion injury by suppressing the expression of proinflammatory genes and recruitment of inflammatory cells in a manner that was dependent on HIF-1 but not HIF-2. Persistence of renoprotective responses after acute inducible endothelial-specific loss of Phd2 in adult mice ruled out a requirement for PHD2 signaling in hematopoietic cells. Although Phd2 inhibition was not sufficient to induce detectable HIF activity in the kidney endothelium, in vitro experiments implicated a humoral factor in the anti-inflammatory effects generated by endothelial PHD2/HIF-1 signaling. CONCLUSIONS: Our findings suggest that activation of endothelial HIF-1 signaling through PHD2 inhibition may offer a novel therapeutic approach against ischemic AKI.


Asunto(s)
Lesión Renal Aguda/fisiopatología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Prolina Dioxigenasas del Factor Inducible por Hipoxia/genética , Procolágeno-Prolina Dioxigenasa/metabolismo , Daño por Reperfusión/prevención & control , Lesión Renal Aguda/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Hipoxia de la Célula , Modelos Animales de Enfermedad , Humanos , Ratones , Procolágeno-Prolina Dioxigenasa/genética , Sensibilidad y Especificidad , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA