Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Nitric Oxide ; 83: 40-50, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30528913

RESUMEN

In Huntington's disease (HD), corticostriatal and striatopallidal projection neurons preferentially degenerate as a result of mutant huntingtin expression. Pathological deficits in nitric oxide (NO) signaling have also been reported in corticostriatal circuits in HD, however, the impact of age and sex on nitrergic transmission is not well characterized. Thus, we utilized NADPH-diaphorase (NADPH-d) histochemistry and qPCR assays to assess neuronal NO synthase (nNOS) activity/expression in aged male and female Q175 heterozygous mice. Compared to age-matched controls, male Q175 mice exhibited reductions in NADPH-d staining in the motor cortex at 21, but not, 16 months of age. Comparisons across genotypes showed that striatal NADPH-d staining was significantly decreased at both 16 and 21 months of age. Comparisons within sexes in 21 month old mice revealed a decrease in striatal NADPH-d staining in males, but no changes were detected in females. Significant correlations between cortical and striatal NADPH-d staining deficits were also observed in males and females at both ages. To directly assess the role of constitutively active NOS isoforms in these changes, nNOS and endothelial NOS (eNOS) mRNA expression levels were examined in R6/2 (3 month old) and Q175 (11.5 month old) mice using qPCR assays. nNOS transcript expression was decreased in the cortex (40%) and striatum (54%) in R6/2 mice. nNOS mRNA down-regulation in striatum of Q175 animals was more modest (19%), and no changes were detected in cortex. eNOS expression was not changed in the cortex or striatum of Q175 mice. The current findings point to age-dependent deficits in nNOS activity in the HD cortex and striatum which appear first in the striatum and are more pronounced in males. Together, these observations and previous studies indicate that decreases in nitrergic transmission progress with age and are likely to contribute to corticostriatal circuit pathophysiology particularly in male patients with HD.


Asunto(s)
Envejecimiento/metabolismo , Enfermedad de Huntington/metabolismo , Óxido Nítrico Sintasa/metabolismo , Caracteres Sexuales , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos , Óxido Nítrico Sintasa/genética
2.
Arch Biochem Biophys ; 631: 31-41, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28801166

RESUMEN

Mechanisms that activate innate antioxidant responses, as a way to mitigate oxidative stress at the site of action, hold much therapeutic potential in diseases, such as Parkinson's disease, Alzheimer's disease and Huntington's disease, where the use of antioxidants as monotherapy has not yielded positive results. The nuclear factor NRF2 is a transcription factor whose activity upregulates the expression of cell detoxifying enzymes in response to oxidative stress. NRF2 levels are modulated by KEAP1, a sensor of oxidative stress. KEAP1 binds NRF2 and facilitates its ubiquitination and subsequent degradation. Recently, compounds that reversibly disrupt the NRF2-KEAP1 interaction have been described, opening the field to a new era of safer NRF2 activators. This paper describes a set of new, robust and informative biochemical assays that enable the selection and optimization of non-covalent KEAP1 binders. These include a time-resolved fluorescence resonance energy transfer (TR-FRET) primary assay with high modularity and robustness, a surface plasmon resonance (SPR) based KEAP1 direct binding assay that enables the quantification and analysis of full kinetic binding parameters and finally a 1H-15N heteronuclear single quantum coherence (HSQC) NMR assay suited to study the interaction surface of KEAP1 with residue-specific information to validate the interaction of ligands in the KEAP1 binding site.


Asunto(s)
Antioxidantes/farmacología , Descubrimiento de Drogas/métodos , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/agonistas , Factor 2 Relacionado con NF-E2/metabolismo , Mapas de Interacción de Proteínas/efectos de los fármacos , Secuencia de Aminoácidos , Antioxidantes/química , Sitios de Unión , Transferencia Resonante de Energía de Fluorescencia/métodos , Humanos , Secuencia Kelch/efectos de los fármacos , Proteína 1 Asociada A ECH Tipo Kelch/química , Ligandos , Espectroscopía de Resonancia Magnética/métodos , Modelos Moleculares , Estrés Oxidativo/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Resonancia por Plasmón de Superficie/métodos
3.
J Huntingtons Dis ; 10(3): 405-412, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34397420

RESUMEN

HDinHD (Huntington's Disease in High Definition; HDinHD.org) is an open online portal for the HD research community that presents a synthesized view of HD-related scientific data. Here, we present a broad overview of HDinHD and highlight the newly launched HDinHD Explorer tool that enables researchers to discover and explore a wide range of diverse yet interconnected HD-related data. We demonstrate the utility of HDinHD Explorer through data mining of a single collection of newly released in vivo therapeutic intervention study reports alongside previously published reports.


Asunto(s)
Enfermedad de Huntington , Humanos , Enfermedad de Huntington/genética
4.
J Huntingtons Dis ; 9(1): 13-31, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32007959

RESUMEN

BACKGROUND: Huntington's disease (HD) is a progressive neurodegenerative disorder that prominently affects the basal ganglia, leading to affective, cognitive, behavioral, and motor decline. The primary site of neuron loss in HD is the striatal part of the basal ganglia, with GABAergic medium size spiny neurons (MSNs) being nearly completely lost in advanced HD. OBJECTIVE: Based on the hypothesis that mutant huntingtin (mHTT) protein injures neurons via transcriptional dysregulation, we set out to establish a transcriptional profile of HD disease progression in the well characterized transgenic mouse model, R6/2, and two Knock-in models (KI); zQ175KI (expressing mutant mouse/human chimeric Htt protein) and HdhQ200 HET KI (carrying one allele of expanded mouse CAG repeats). METHODS: In this study, we used quantitative PCR (qPCR) to evaluate striatal mRNA levels of markers of neurotransmission, neuroinflammation, and energy metabolism. RESULTS: After analyzing and comparing transcripts from pre-symptomatic and symptomatic stages, markers expressed in the basal ganglia MSNs, which are typically involved in maintaining normal neurotransmission, showed a genotype-specific decrease in mRNA expression in a pattern consistent with human studies. In contrast, transcripts associated with neuroinflammation and energy metabolism were mostly unaffected in these animal models of HD. CONCLUSION: Our results show that transcripts linked to neurotransmission are significantly reduced and are consistent with disease progression in both zQ175KI and R6/2 transgenic mouse models.


Asunto(s)
Cuerpo Estriado/metabolismo , Progresión de la Enfermedad , Neuronas GABAérgicas/patología , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/metabolismo , Inflamación/metabolismo , Proteínas Mutantes/metabolismo , ARN Mensajero/metabolismo , Transcripción Genética/fisiología , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Transgénicos , Proteínas Mutantes Quiméricas , Reacción en Cadena en Tiempo Real de la Polimerasa
5.
PLoS One ; 15(12): e0243052, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33370315

RESUMEN

Huntington's disease (HD) is an inherited neurodegenerative disorder characterized by severe disruption of cognitive and motor functions, including changes in posture and gait. A number of HD mouse models have been engineered that display behavioral and neuropathological features of the disease, but gait alterations in these models are poorly characterized. Sensitive high-throughput tests of fine motor function and gait in mice might be informative in evaluating disease-modifying interventions. Here, we describe a hypothesis-free workflow that determines progressively changing locomotor patterns across 79 parameters in the R6/2 and Q175 mouse models of HD. R6/2 mice (120 CAG repeats) showed motor disturbances as early as at 4 weeks of age. Similar disturbances were observed in homozygous and heterozygous Q175 KI mice at 3 and 6 months of age, respectively. Interestingly, only the R6/2 mice developed forelimb ataxia. The principal components of the behavioral phenotypes produced two phenotypic scores of progressive postural instability based on kinematic parameters and trajectory waveform data, which were shared by both HD models. This approach adds to the available HD mouse model research toolbox and has a potential to facilitate the development of therapeutics for HD and other debilitating movement disorders with high unmet medical need.


Asunto(s)
Análisis de la Marcha/métodos , Proteína Huntingtina/genética , Enfermedad de Huntington/fisiopatología , Animales , Fenómenos Biomecánicos , Modelos Animales de Enfermedad , Femenino , Enfermedad de Huntington/genética , Masculino , Ratones , Ratones Transgénicos , Actividad Motora , Mutación , Postura
6.
EJNMMI Radiopharm Chem ; 4(1): 20, 2019 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-31659519

RESUMEN

PURPOSE: Dopamine receptors are involved in pathophysiology of neuropsychiatric diseases, including Huntington's disease (HD). PET imaging of dopamine D2 receptors (D2R) in HD patients has demonstrated 40% decrease in D2R binding in striatum, and D2R could be a reliable quantitative target to monitor disease progression. A D2/3R antagonist, [18F] fallypride, is a high-affinity radioligand that has been clinically used to study receptor density and occupancy in neuropsychiatric disorders. Here we report an improved synthesis method for [18F]fallypride. In addition, high molar activity of the ligand has allowed us to apply PET imaging to characterize D2/D3 receptor density in striatum of the recently developed zQ175DN knock-in (KI) mouse model of HD. METHODS: We longitudinally characterized in vivo [18F] fallypride -PET imaging of D2/D3 receptor densities in striatum of 9 and 12 month old wild type (WT) and heterozygous (HET) zQ175DN KI mouse. Furthermore, we verified the D2/D3 receptor density in striatum with [3H] fallypride autoradiography at 12 months of age. RESULTS: We implemented an improved synthesis method for [18F] fallypride to yield high molar activity (MA, 298-360 GBq/µmol) and good reproducibility. In the HET zQ175DN KI mice, we observed a significant longitudinal decrease in binding potential (BPND) (30.2%, p < 0.001, 9 months of age and 51.6%, p < 0.001, 12 months of age) compared to WT littermates. No mass effect was observed when the MA of [18F] fallypride was > 100 GBq/µmol at the time of injection. Furthermore, the decrease of D2/D3 receptor density in striatum in HET zQ175DN KI was consistent using [3H] fallypride autoradiography. CONCLUSIONS: We observed a significant decrease in D2/D3R receptor densities in the striatum of HET zQ175DN KI mice compared to WT mice at 9 and 12 months of age. These results are in line with clinical findings in HD patients, suggesting [18F] fallypride PET imaging has potential as a quantitative translational approach to monitor disease progression in preclinical studies.

7.
Front Behav Neurosci ; 12: 226, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30333735

RESUMEN

Cognitive disturbances often predate characteristic motor dysfunction in individuals with Huntington's disease (HD) and place an increasing burden on the HD patients and caregivers with the progression of the disorder. Therefore, application of maximally translational cognitive tests to animal models of HD is imperative for the development of treatments that could alleviate cognitive decline in human patients. Here, we examined the performance of the Q175 mouse knock-in model of HD in the touch screen version of the paired associates learning (PAL) task. We found that 10-11-month-old heterozygous Q175 mice had severely attenuated learning curve in the PAL task, which was conceptually similar to previously documented impaired performance of individuals with HD in the PAL task of the Cambridge Neuropsychological Test Automated Battery (CANTAB). Besides high rate of errors in PAL task, Q175 mice exhibited considerably lower responding rate than age-matched wild-type (WT) animals. Our examination of effortful operant responding during fixed ratio (FR) and progressive ratio (PR) reinforcement schedules in a separate cohort of similar age confirmed slower and unselective performance of mutant animals, as observed during PAL task, but suggested that motivation to work for nutritional reward in the touch screen setting was similar in Q175 and WT mice. We also demonstrated that pronounced sensorimotor disturbances in Q175 mice can be detected at early touch screen testing stages, (e.g., during "Punish Incorrect" phase of operant pretraining), so we propose that shorter test routines may be utilised for more expedient studies of treatments aimed at the rescue of HD-related phenotype.

8.
PLoS One ; 11(9): e0160384, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27611087

RESUMEN

Metabolic dysfunction is well-documented in Huntington's disease (HD). However, the link between the mutant huntingtin (mHTT) gene and the pathology is unknown. The tricarboxylic acid (TCA) cycle is the main metabolic pathway for the production of NADH for conversion to ATP via the electron transport chain (ETC). The objective of this study was to test for differences in enzyme activities, mRNAs and protein levels related to the TCA cycle between lymphoblasts from healthy subjects and from patients with HD. The experiments utilize the advantages of lymphoblasts to reveal new insights about HD. The large quantity of homogeneous cell populations permits multiple dynamic measures to be made on exactly comparable tissues. The activities of nine enzymes related to the TCA cycle and the expression of twenty-nine mRNAs encoding for these enzymes and enzyme complexes were measured. Cells were studied under baseline conditions and during metabolic stress. The results support our recent findings that the activities of the pyruvate dehydrogenase complex (PDHC) and succinate dehydrogenase (SDH) are elevated in HD. The data also show a large unexpected depression in MDH activities. Furthermore, message levels for isocitrate dehydrogenase 1 (IDH1) were markedly increased in in HD lymphoblasts and were responsive to treatments. The use of lymphoblasts allowed us to clarify that the reported decrease in aconitase activity in HD autopsy brains is likely due to secondary hypoxic effects. These results demonstrate the mRNA and enzymes of the TCA cycle are critical therapeutic targets that have been understudied in HD.


Asunto(s)
Ciclo del Ácido Cítrico , Metabolismo Energético , Enfermedad de Huntington/metabolismo , Adulto , Estudios de Casos y Controles , Muerte Celular/efectos de los fármacos , Muerte Celular/genética , Línea Celular , Femenino , Expresión Génica , Regulación Enzimológica de la Expresión Génica , Humanos , Enfermedad de Huntington/genética , Masculino , Persona de Mediana Edad , Mitocondrias/metabolismo , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Complejo Piruvato Deshidrogenasa/genética , Complejo Piruvato Deshidrogenasa/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Cianuro de Sodio/farmacología , Estrés Fisiológico , Repeticiones de Trinucleótidos
9.
Exp Neurol ; 282: 99-118, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27163548

RESUMEN

Dysregulation of the kynurenine (Kyn) pathway has been associated with the progression of Huntington's disease (HD). In particular, elevated levels of the kynurenine metabolites 3-hydroxy kynurenine (3-OH-Kyn) and quinolinic acid (Quin), have been reported in the brains of HD patients as well as in rodent models of HD. The production of these metabolites is controlled by the activity of kynurenine mono-oxygenase (KMO), an enzyme which catalyzes the synthesis of 3-OH-Kyn from Kyn. In order to determine the role of KMO in the phenotype of mouse models of HD, we have developed a potent and selective KMO inhibitor termed CHDI-340246. We show that this compound, when administered orally to transgenic mouse models of HD, potently and dose-dependently modulates the Kyn pathway in peripheral tissues and in the central nervous system. The administration of CHDI-340246 leads to an inhibition of the formation of 3-OH-Kyn and Quin, and to an elevation of Kyn and Kynurenic acid (KynA) levels in brain tissues. We show that administration of CHDI-340246 or of Kyn and of KynA can restore several electrophysiological alterations in mouse models of HD, both acutely and after chronic administration. However, using a comprehensive panel of behavioral tests, we demonstrate that the chronic dosing of a selective KMO inhibitor does not significantly modify behavioral phenotypes or natural progression in mouse models of HD.


Asunto(s)
Fenómenos Electrofisiológicos/efectos de los fármacos , Inhibidores Enzimáticos/uso terapéutico , Enfermedad de Huntington/tratamiento farmacológico , Enfermedad de Huntington/fisiopatología , Quinurenina 3-Monooxigenasa/antagonistas & inhibidores , Pirimidinas/uso terapéutico , Análisis de Varianza , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Estimulación Eléctrica , Fenómenos Electrofisiológicos/genética , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Hipocampo/efectos de los fármacos , Humanos , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Técnicas In Vitro , Ácido Quinurénico/metabolismo , Quinurenina 3-Monooxigenasa/metabolismo , Masculino , Ratones , Ratones Transgénicos , Microdiálisis , Pirimidinas/química , Pirimidinas/metabolismo , Pirimidinas/farmacología , Ácido Quinolínico/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transfección , Repeticiones de Trinucleótidos/genética , Receptor Nicotínico de Acetilcolina alfa 7/genética , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo
10.
Biochim Biophys Acta ; 1586(2): 177-89, 2002 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-11959459

RESUMEN

Fibroblasts from patients with genetic and non-genetic forms of Alzheimer's disease (AD) show many abnormalities including increased bombesin-releasable calcium stores (BRCS), diminished activities of the mitochondrial alpha-ketoglutarate dehydrogenase complex (KGDHC), and an altered ability to handle oxidative stress. The link between genetic mutations (and the unknown primary event in non-genetic forms) and these other cellular abnormalities is unknown. To determine whether oxidative stress could be a convergence point that produces the other AD-related changes, these experiments tested in fibroblasts the effects of H(2)O(2), in the presence or absence of select antioxidants, on BRCS and KGDHC. H(2)O(2) concentrations that elevated carboxy-dichlorofluorescein (c-H(2)DCF)-detectable ROS increased BRCS and decreased KGDHC activity. These changes are in the same direction as those in fibroblasts from AD patients. Acute treatments with the antioxidants Trolox, or DMSO decreased c-H(2)DCF-detectable ROS by about 90%, but exaggerated the H(2)O(2)-induced increases in BRCS by about 4-fold and did not alter the reduction in KGDHC. Chronic pretreatments with Trolox more than doubled the BRCS, tripled KGDHC activities, and reduced the effects of H(2)O(2). Pretreatment with DMSO or N-acetyl cysteine diminished the BRCS and either had no effect, or exaggerated the H(2)O(2)-induced changes in these variables. The results demonstrate that BRCS and KGDHC are more sensitive to H(2)O(2) derived species than c-H(2)DCF, and that oxidized derivatives of the antioxidants exaggerate the actions of H(2)O(2). The findings support the hypothesis that select abnormalities in oxidative processes are a critical part of a cascade that leads to the cellular abnormalities in cells from AD patients.


Asunto(s)
Calcio/metabolismo , Fibroblastos/metabolismo , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Proteínas Mitocondriales/metabolismo , Estrés Oxidativo/fisiología , Acetilcisteína/farmacología , Antioxidantes/farmacología , Bombesina , Calcio/análisis , Línea Celular , Cromanos/farmacología , Dimetilsulfóxido/farmacología , Relación Dosis-Respuesta a Droga , Activación Enzimática , Fibroblastos/efectos de los fármacos , Humanos , Peróxido de Hidrógeno , Complejo Cetoglutarato Deshidrogenasa/análisis , Proteínas Mitocondriales/análisis , Especies Reactivas de Oxígeno/análisis , Especies Reactivas de Oxígeno/metabolismo , Factores de Tiempo
11.
J Neuropathol Exp Neurol ; 74(6): 527-37, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25978848

RESUMEN

Glucose metabolism is reduced in the brains of patients with Huntington disease (HD). The mechanisms underlying this deficit, its link to the pathology of the disease, and the vulnerability of the striatum in HD remain unknown. Abnormalities in some of the key mitochondrial enzymes involved in glucose metabolism, including the pyruvate dehydrogenase complex (PDHC) and the tricarboxylic acid (TCA) cycle, may contribute to these deficits. Here, activities for these enzymes and select protein levels were measured in human postmortem cortex and in striatum and cortex of an HD mouse model (Q175); mRNA levels encoding for these enzymes were also measured in the Q175 mouse cortex. The activities of PDHC and nearly all of the TCA cycle enzymes were dramatically lower (-50% to 90%) in humans than in mice. The activity of succinate dehydrogenase increased with HD in human (35%) and mouse (23%) cortex. No other changes were detected in the human HD cortex or mouse striatum. In Q175 cortex, there were increased activities of PDHC (+12%) and aconitase (+32%). Increased mRNA levels for succinyl thiokinase (+88%) and isocitrate dehydrogenase (+64%) suggested an upregulation of the TCA cycle. These patterns of change differ from those reported in other diseases, which may offer unique metabolic therapeutic opportunities for HD patients.


Asunto(s)
Corteza Cerebral/enzimología , Ciclo del Ácido Cítrico/fisiología , Cuerpo Estriado/enzimología , Enfermedad de Huntington , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Aciltransferasas/genética , Aciltransferasas/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Dihidrolipoamida Deshidrogenasa/genética , Dihidrolipoamida Deshidrogenasa/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Enfermedad de Huntington/enzimología , Enfermedad de Huntington/patología , Enfermedad de Huntington/fisiopatología , Complejo Cetoglutarato Deshidrogenasa/genética , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Mutación/genética , Cambios Post Mortem , Complejo Piruvato Deshidrogenasa/genética , Complejo Piruvato Deshidrogenasa/metabolismo , Estudios Retrospectivos
12.
Front Behav Neurosci ; 9: 361, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26793080

RESUMEN

Huntington's Disease (HD) is a progressive neurodegenerative disorder that causes motor, cognitive, and psychiatric symptoms. In these experiments, we tested if operant training at an early age affected adult cognitive deficits in the zQ175 KI Het (zQ175) mouse model of HD. In Experiment 1 we trained zQ175 mice in a fixed-ratio/progressive ratio (FR/PR) task to assay learning and motivational deficits. We found pronounced deficits in response rates and task engagement in naïve adult zQ175 mice (32-33 weeks age), while deficits in zQ175 mice trained from 6-7 weeks age were either absent or less severe. When those mice were re-tested as adults, FR/PR performance deficits were absent or otherwise less severe than deficits observed in naïve adult zQ175 relative to wild type (WT) mice. In Experiment 2, we used a Go/No-go operant task to assess the effects of early cognitive testing on response inhibition deficits in zQ175 mice. We found that zQ175 mice that began testing at 7-8 weeks did not exhibit deficits in Go/No-go testing, but when re-tested at 28-29 weeks age exhibited an initial impairment that diminished with training. These transient deficits were nonetheless mild relative to deficits observed among adult zQ175 mice without prior testing experience. In Experiment 3 we trained mice in a two-choice visual discrimination test to evaluate cognitive flexibility. As in prior experiments, we found performance deficits were mild or absent in mice that started training at 6-9 weeks of age, while deficits in naive mice exposed to training at 28-29 weeks were severe. Re-testing mice at 28-29 weeks age, were previously trained starting at 6-9 weeks, revealed that deficits in learning and cognitive flexibility were absent or reduced relative to effects observed in naive adults. In Experiment 4, we tested working memory deficits with a delayed non-match to position (DNMTP) test. Mice with prior experience exhibited mild working memory deficits, with males zQ175 exhibiting no deficits, and females performing significantly worse than WT mice at a single delay interval, whereas naive zQ175 exhibited severe delay-dependent deficits at all intervals exceeding 1 s. In sum, these experiments indicate that CAG-dependent impairments in motivation, motor control, cognitive flexibility, and working memory are sensitive to the environmental enrichment and experience. These findings are of clinical relevance, as HD carrier status can potentially be detected at an early age.

13.
J Huntingtons Dis ; 3(2): 145-58, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25062858

RESUMEN

BACKGROUND: Huntington's disease (HD) is characterized not only by severe motor deficits but also by early cognitive dysfunction that significantly increases the burden of the disease for patients and caregivers. Considerable efforts have concentrated, therefore, on the assessment of cognitive deficits in some HD mouse models. However, many of these models that exhibit cognitive deficits also have contemporaneous serious motor deficits, confounding interpretation of cognitive decline. OBJECTIVE: The BACHD and zQ175 mouse models present a more slowly progressing disease phenotype in both motor and cognitive domains, and might therefore offer a better opportunity to measure cognitive decline over a longer timeframe; such models could be useful in screening therapeutic compounds. In order to better define the cognitive impairments evident in BACHD and zQ175 HD mice, both were tested in an instrumental touchscreen visual discrimination assay designed to assess discrimination learning and cognitive flexibility. METHODS: BACHD and zQ175 mice, as well as their WT controls were tested for their ability to discriminate two complex visual stimuli. Following this discrimination phase, the reinforcement contingencies were reversed and the previously incorrect stimulus became the correct stimulus. In a final, third phase of testing, two novel stimuli were introduced and mice were required to undergo a second round of discrimination testing with these stimuli. RESULTS: Our results show that learning during the discrimination phase was similar between the WT and BACHD mice. In contrast, the zQ175 at 26 weeks of age showed decreased accuracy over the last 10 days of discrimination, compared to WT controls. During subsequent reversal and novel stimuli phases, both BACHD and zQ175 mice exhibited significant deficits compared to WT controls. CONCLUSIONS: Our results suggest that the BACHD, and for the first time, zQ175 HD models exhibit cognitive inflexibility and psychomotor slowing, a phenotype that is consistent with cognitive symptoms described in HD patients.


Asunto(s)
Trastornos del Conocimiento/genética , Modelos Animales de Enfermedad , Enfermedad de Huntington/genética , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Animales , Conducta Animal/fisiología , Trastornos del Conocimiento/fisiopatología , Computadores , Femenino , Técnicas de Sustitución del Gen , Proteína Huntingtina , Enfermedad de Huntington/fisiopatología , Ratones , Ratones Endogámicos C57BL , Fenotipo , Desempeño Psicomotor/fisiología , Tiempo de Reacción/genética , Aprendizaje Inverso/fisiología , Percepción Visual/fisiología
14.
PLoS One ; 7(12): e50717, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23284644

RESUMEN

Huntington's disease (HD) is an autosomal neurodegenerative disorder, characterized by severe behavioral, cognitive, and motor deficits. Since the discovery of the huntingtin gene (HTT) mutation that causes the disease, several mouse lines have been developed using different gene constructs of Htt. Recently, a new model, the zQ175 knock-in (KI) mouse, was developed (see description by Menalled et al, [1]) in an attempt to have the Htt gene in a context and causing a phenotype that more closely mimics HD in humans. Here we confirm the behavioral phenotypes reported by Menalled et al [1], and extend the characterization to include brain volumetry, striatal metabolite concentration, and early neurophysiological changes. The overall reproducibility of the behavioral phenotype across the two independent laboratories demonstrates the utility of this new model. Further, important features reminiscent of human HD pathology are observed in zQ175 mice: compared to wild-type neurons, electrophysiological recordings from acute brain slices reveal that medium spiny neurons from zQ175 mice display a progressive hyperexcitability; glutamatergic transmission in the striatum is severely attenuated; decreased striatal and cortical volumes from 3 and 4 months of age in homo- and heterozygous mice, respectively, with whole brain volumes only decreased in homozygotes. MR spectroscopy reveals decreased concentrations of N-acetylaspartate and increased concentrations of glutamine, taurine and creatine + phosphocreatine in the striatum of 12-month old homozygotes, the latter also measured in 12-month-old heterozygotes. Motor, behavioral, and cognitive deficits in homozygotes occur concurrently with the structural and metabolic changes observed. In sum, the zQ175 KI model has robust behavioral, electrophysiological, and histopathological features that may be valuable in both furthering our understanding of HD-like pathophyisology and the evaluation of potential therapeutic strategies to slow the progression of disease.


Asunto(s)
Conducta Animal , Encéfalo/patología , Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Enfermedad de Huntington/patología , Enfermedad de Huntington/fisiopatología , Neurofisiología , Animales , Peso Corporal , Encéfalo/metabolismo , Encéfalo/fisiopatología , Recuento de Células , Progresión de la Enfermedad , Determinación de Punto Final , Femenino , Ácido Glutámico/metabolismo , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Masculino , Ratones , Neostriado/patología , Proteínas del Tejido Nervioso/genética , Neuronas/patología , Tamaño de los Órganos , Secuencias Repetitivas de Ácidos Nucleicos , Natación , Transmisión Sináptica
15.
PLoS One ; 7(12): e49838, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23284626

RESUMEN

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterized by motor, cognitive and psychiatric manifestations. Since the mutation responsible for the disease was identified as an unstable expansion of CAG repeats in the gene encoding the huntingtin protein in 1993, numerous mouse models of HD have been generated to study disease pathogenesis and evaluate potential therapeutic approaches. Of these, knock-in models best mimic the human condition from a genetic perspective since they express the mutation in the appropriate genetic and protein context. Behaviorally, however, while some abnormal phenotypes have been detected in knock-in mouse models, a model with an earlier and more robust phenotype than the existing models is required. We describe here for the first time a new mouse line, the zQ175 knock-in mouse, derived from a spontaneous expansion of the CAG copy number in our CAG 140 knock-in colony [1]. Given the inverse relationship typically observed between age of HD onset and length of CAG repeat, since this new mouse line carries a significantly higher CAG repeat length it was expected to be more significantly impaired than the parent line. Using a battery of behavioral tests we evaluated both heterozygous and homozygous zQ175 mice. Homozygous mice showed motor and grip strength abnormalities with an early onset (8 and 4 weeks of age, respectively), which were followed by deficits in rotarod and climbing activity at 30 weeks of age and by cognitive deficits at around 1 year of age. Of particular interest for translational work, we also found clear behavioral deficits in heterozygous mice from around 4.5 months of age, especially in the dark phase of the diurnal cycle. Decreased body weight was observed in both heterozygotes and homozygotes, along with significantly reduced survival in the homozygotes. In addition, we detected an early and significant decrease of striatal gene markers from 12 weeks of age. These data suggest that the zQ175 knock-in line could be a suitable model for the evaluation of therapeutic approaches and early events in the pathogenesis of HD.


Asunto(s)
Conducta Animal , Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Enfermedad de Huntington/genética , Animales , Conducta Animal/efectos de la radiación , Peso Corporal/genética , Cognición/fisiología , Oscuridad , Femenino , Marcadores Genéticos/genética , Fuerza de la Mano/fisiología , Heterocigoto , Homocigoto , Enfermedad de Huntington/fisiopatología , Masculino , Ratones , Neostriado/metabolismo , Proteínas del Tejido Nervioso/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Secuencias Repetitivas de Ácidos Nucleicos , Prueba de Desempeño de Rotación con Aceleración Constante , Análisis de Supervivencia , Transcripción Genética/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA