Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant J ; 111(4): 1069-1080, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35727866

RESUMEN

Genetic compensation has been proposed to explain phenotypic differences between gene knockouts and knockdowns in several metazoan and plant model systems. With the rapid development of reverse genetic tools such as CRISPR/Cas9 and RNAi in microalgae, it is increasingly important to assess whether genetic compensation affects the phenotype of engineered algal mutants. While exploring triacylglycerol (TAG) biosynthesis pathways in the model alga Chlamydomonas reinhardtii, it was discovered that knockout of certain genes catalyzing rate-limiting steps of TAG biosynthesis, type-2 diacylglycerol acyltransferase genes (DGTTs), triggered genetic compensation under abiotic stress conditions. Genetic compensation of a DGTT1 null mutation by a related PDAT gene was observed regardless of the strain background or mutagenesis approach, for example, CRISPR/Cas 9 or insertional mutagenesis. However, no compensation was found in the PDAT knockout mutant. The effect of PDAT knockout was evaluated in a Δvtc1 mutant, in which PDAT was upregulated under stress, resulting in a 90% increase in TAG content. Knockout of PDAT in the Δvtc1 background induced a 12.8-fold upregulation of DGTT1 and a 272.3% increase in TAG content in Δvtc1/pdat1 cells, while remaining viable. These data suggest that genetic compensation contributes to the genetic robustness of microalgal TAG biosynthetic pathways, maintaining lipid and redox homeostasis in the knockout mutants under abiotic stress. This work demonstrates examples of genetic compensation in microalgae, implies the physiological relevance of genetic compensation in TAG biosynthesis under stress, and provides guidance for future genetic engineering and mutant characterization efforts.


Asunto(s)
Chlamydomonas reinhardtii , Microalgas , Animales , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Diacilglicerol O-Acetiltransferasa/genética , Microalgas/genética , Microalgas/metabolismo , Plantas/metabolismo , Triglicéridos/metabolismo
2.
PLoS One ; 17(11): e0276729, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36342921

RESUMEN

Combining diagnostic specimens into pools has been considered as a strategy to augment throughput, decrease turnaround time, and leverage resources. This study utilized a multi-parametric approach to assess optimum pool size, impact of automation, and effect of nucleic acid amplification chemistries on the detection of SARS-CoV-2 RNA in pooled samples for surveillance testing on the Hologic Panther Fusion® System. Dorfman pooled testing was conducted with previously tested SARS-CoV-2 nasopharyngeal samples using Hologic's Aptima® and Panther Fusion® SARS-CoV-2 Emergency Use Authorization assays. A manual workflow was used to generate pool sizes of 5:1 (five samples: one positive, four negative) and 10:1. An automated workflow was used to generate pool sizes of 3:1, 4:1, 5:1, 8:1 and 10:1. The impact of pool size, pooling method, and assay chemistry on sensitivity, specificity, and lower limit of detection (LLOD) was evaluated. Both the Hologic Aptima® and Panther Fusion® SARS-CoV-2 assays demonstrated >85% positive percent agreement between neat testing and pool sizes ≤5:1, satisfying FDA recommendation. Discordant results between neat and pooled testing were more frequent for positive samples with CT>35. Fusion® CT (cycle threshold) values for pooled samples increased as expected for pool sizes of 5:1 (CT increase of 1.92-2.41) and 10:1 (CT increase of 3.03-3.29). The Fusion® assay demonstrated lower LLOD than the Aptima® assay for pooled testing (956 vs 1503 cp/mL, pool size of 5:1). Lowering the cut-off threshold of the Aptima® assay from 560 kRLU (manufacturer's setting) to 350 kRLU improved the assay sensitivity to that of the Fusion® assay for pooled testing. Both Hologic's SARS-CoV-2 assays met the FDA recommended guidelines for percent positive agreement (>85%) for pool sizes ≤5:1. Automated pooling increased test throughput and enabled automated sample tracking while requiring less labor. The Fusion® SARS-CoV-2 assay, which demonstrated a lower LLOD, may be more appropriate for surveillance testing.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , ARN Viral/genética , COVID-19/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Automatización , Sensibilidad y Especificidad
3.
MethodsX ; 7: 100855, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32280600

RESUMEN

A recently reported protocol demonstrates efficient CRISPR/Cas9 gene editing of Chlamydomonas reinhardtii[1]. The published protocol demonstrates transformation and editing of a wall-less strain of C. reinhardtii using plasmid encoded Cas9 and sgRNA. However, the published protocol utilizes a complex electroporation waveform that cannot be generated by most electroporation systems. It is unknown whether transformation via this complex electroporation waveform is essential for high efficiency of Cas9 edits, perhaps by optimizing Cas9 or guide RNA gene expression or incorporation into the genome. We demonstrate that a simple electroporation waveform can deliver plasmid encoded CRISPR/Cas9 into and edit the genome of a wall-less strain of C. reinhardtii as efficiently as the more complex waveform. Our modified electroporation protocol makes the plasmid based CRISPR/Cas9 genome editing method accessible to a greater number of Chlamydomonas researchers.•Our protocol uses a simple electroporation waveform to replace a complex waveform used to achieve efficient CRISPR/Cas9 gene editing in a wall-less strain of Chlamydomonas reinhardtii.•We also increased concentration of plasmids to maintain high gene editing efficiency.•We minimized modifications to other steps of the original protocol.

4.
Biotechnol Adv ; 34(5): 1046-1063, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27321475

RESUMEN

Triacylglycerols (TAGs) are highly reduced energy storage molecules ideal for biodiesel production. Microalgal TAG biosynthesis has been studied extensively in recent years, both at the molecular level and systems level through experimental studies and computational modeling. However, discussions of the strategies and products of the experimental and modeling approaches are rarely integrated and summarized together in a way that promotes collaboration among modelers and biologists in this field. In this review, we outline advances toward understanding the cellular and molecular factors regulating TAG biosynthesis in unicellular microalgae with an emphasis on recent studies on rate-limiting steps in fatty acid and TAG synthesis, while also highlighting new insights obtained from the integration of multi-omics datasets with mathematical models. Computational methodologies such as kinetic modeling, metabolic flux analysis, and new variants of flux balance analysis are explained in detail. We discuss how these methods have been used to simulate algae growth and lipid metabolism in response to changing culture conditions and how they have been used in conjunction with experimental validations. Since emerging evidence indicates that TAG synthesis in microalgae operates through coordinated crosstalk between multiple pathways in diverse subcellular destinations including the endoplasmic reticulum and plastids, we discuss new experimental studies and models that incorporate these findings for discovering key regulatory checkpoints. Finally, we describe tools for genetic manipulation of microalgae and their potential for future rational algal strain design. This comprehensive review explores the potential synergistic impact of pathway analysis, computational approaches, and molecular genetic manipulation strategies on improving TAG production in microalgae.


Asunto(s)
Simulación por Computador , Ingeniería Metabólica , Microalgas , Triglicéridos , Biocombustibles , Biología Computacional , Análisis de Flujos Metabólicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA