Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Mol Cell ; 82(5): 920-932.e7, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35245456

RESUMEN

IDO1 oxidizes tryptophan (TRP) to generate kynurenine (KYN), the substrate for 1-carbon and NAD metabolism, and is implicated in pro-cancer pathophysiology and infection biology. However, the mechanistic relationships between IDO1 in amino acid depletion versus product generation have remained a longstanding mystery. We found an unrecognized link between IDO1 and cell survival mediated by KYN that serves as the source for molecules that inhibit ferroptotic cell death. We show that this effect requires KYN export from IDO1-expressing cells, which is then available for non-IDO1-expressing cells via SLC7A11, the central transporter involved in ferroptosis suppression. Whether inside the "producer" IDO1+ cell or the "receiver" cell, KYN is converted into downstream metabolites, suppressing ferroptosis by ROS scavenging and activating an NRF2-dependent, AHR-independent cell-protective pathway, including SLC7A11, propagating anti-ferroptotic signaling. IDO1, therefore, controls a multi-pronged protection pathway from ferroptotic cell death, underscoring the need to re-evaluate the use of IDO1 inhibitors in cancer treatment.


Asunto(s)
Sistema de Transporte de Aminoácidos y+ , Ferroptosis , Quinurenina , Neoplasias , Sistema de Transporte de Aminoácidos y+/genética , Sistema de Transporte de Aminoácidos y+/metabolismo , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Quinurenina/metabolismo , Quinurenina/farmacología , Neoplasias/metabolismo , Transducción de Señal , Triptófano/metabolismo
2.
Nature ; 595(7865): 130-134, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34040256

RESUMEN

Folates (also known as vitamin B9) have a critical role in cellular metabolism as the starting point in the synthesis of nucleic acids, amino acids and the universal methylating agent S-adenylsmethionine1,2. Folate deficiency is associated with a number of developmental, immune and neurological disorders3-5. Mammals cannot synthesize folates de novo; several systems have therefore evolved to take up folates from the diet and distribute them within the body3,6. The proton-coupled folate transporter (PCFT) (also known as SLC46A1) mediates folate uptake across the intestinal brush border membrane and the choroid plexus4,7, and is an important route for the delivery of antifolate drugs in cancer chemotherapy8-10. How PCFT recognizes folates or antifolate agents is currently unclear. Here we present cryo-electron microscopy structures of PCFT in a substrate-free state and in complex with a new-generation antifolate drug (pemetrexed). Our results provide a structural basis for understanding antifolate recognition and provide insights into the pH-regulated mechanism of folate transport mediated by PCFT.


Asunto(s)
Microscopía por Crioelectrón , Antagonistas del Ácido Fólico/química , Antagonistas del Ácido Fólico/metabolismo , Pemetrexed/química , Pemetrexed/metabolismo , Transportador de Folato Acoplado a Protón/química , Transportador de Folato Acoplado a Protón/metabolismo , Apoproteínas/química , Apoproteínas/metabolismo , Apoproteínas/ultraestructura , Transporte Biológico , Humanos , Modelos Moleculares , Transportador de Folato Acoplado a Protón/ultraestructura , Protones
3.
Nature ; 551(7681): 521-524, 2017 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-29143814

RESUMEN

Glycosylation is a fundamental cellular process that, in eukaryotes, occurs in the lumen of both the Golgi apparatus and the endoplasmic reticulum. Nucleotide sugar transporters (NSTs) are an essential component of the glycosylation pathway, providing the diverse range of substrates required for the glycosyltransferases. NSTs are linked to several developmental and immune disorders in humans, and in pathogenic microbes they have an important role in virulence. How NSTs recognize and transport activated monosaccharides, however, is currently unclear. Here we present the crystal structure of an NST, the GDP-mannose transporter Vrg4, in both the substrate-free and the bound states. A hitherto unobserved requirement of short-chain lipids in activating the transporter supports a model for regulation within the highly dynamic membranes of the Golgi apparatus. Our results provide a structural basis for understanding nucleotide sugar recognition, and provide insights into the transport and regulatory mechanism of this family of intracellular transporters.


Asunto(s)
Aparato de Golgi/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Monosacáridos/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/citología , Transporte Biológico , Cristalografía por Rayos X , Glicosilación , Relación Estructura-Actividad , Especificidad por Sustrato
4.
Nature ; 507(7490): 68-72, 2014 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-24572366

RESUMEN

The NRT1/PTR family of proton-coupled transporters are responsible for nitrogen assimilation in eukaryotes and bacteria through the uptake of peptides. However, in most plant species members of this family have evolved to transport nitrate as well as additional secondary metabolites and hormones. In response to falling nitrate levels, NRT1.1 is phosphorylated on an intracellular threonine that switches the transporter from a low-affinity to high-affinity state. Here we present both the apo and nitrate-bound crystal structures of Arabidopsis thaliana NRT1.1, which together with in vitro binding and transport data identify a key role for His 356 in nitrate binding. Our data support a model whereby phosphorylation increases structural flexibility and in turn the rate of transport. Comparison with peptide transporters further reveals how the NRT1/PTR family has evolved to recognize diverse nitrogenous ligands, while maintaining elements of a conserved coupling mechanism within this superfamily of nutrient transporters.


Asunto(s)
Proteínas de Transporte de Anión/química , Proteínas de Transporte de Anión/metabolismo , Arabidopsis/química , Nitratos/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Arabidopsis/metabolismo , Cristalografía por Rayos X , Histidina/química , Histidina/metabolismo , Transporte Iónico , Modelos Moleculares , Transportadores de Nitrato , Nitratos/química , Fosforilación , Fosfotreonina/metabolismo , Conformación Proteica , Protones , Relación Estructura-Actividad , Especificidad por Sustrato
5.
Proc Natl Acad Sci U S A ; 114(50): 13182-13187, 2017 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-29180426

RESUMEN

POT transporters represent an evolutionarily well-conserved family of proton-coupled transport systems in biology. An unusual feature of the family is their ability to couple the transport of chemically diverse ligands to an inwardly directed proton electrochemical gradient. For example, in mammals, fungi, and bacteria they are predominantly peptide transporters, whereas in plants the family has diverged to recognize nitrate, plant defense compounds, and hormones. Although recent structural and biochemical studies have identified conserved sites of proton binding, the mechanism through which transport is coupled to proton movement remains enigmatic. Here we show that different POT transporters operate through distinct proton-coupled mechanisms through changes in the extracellular gate. A high-resolution crystal structure reveals the presence of ordered water molecules within the peptide binding site. Multiscale molecular dynamics simulations confirm proton transport occurs through these waters via Grotthuss shuttling and reveal that proton binding to the extracellular side of the transporter facilitates a reorientation from an inward- to outward-facing state. Together these results demonstrate that within the POT family multiple mechanisms of proton coupling have likely evolved in conjunction with variation of the extracellular gate.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Transporte de Membrana/química , Péptidos/metabolismo , Protones , Proteínas Bacterianas/metabolismo , Sitios de Unión , Proteínas de Transporte de Membrana/metabolismo , Simulación de Dinámica Molecular , Unión Proteica , Xanthomonas/química , Xanthomonas/metabolismo
6.
EMBO Rep ; 15(8): 886-93, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24916388

RESUMEN

An enigma in the field of peptide transport is the structural basis for ligand promiscuity, as exemplified by PepT1, the mammalian plasma membrane peptide transporter. Here, we present crystal structures of di- and tripeptide-bound complexes of a bacterial homologue of PepT1, which reveal at least two mechanisms for peptide recognition that operate within a single, centrally located binding site. The dipeptide was orientated laterally in the binding site, whereas the tripeptide revealed an alternative vertical binding mode. The co-crystal structures combined with functional studies reveal that biochemically distinct peptide-binding sites likely operate within the POT/PTR family of proton-coupled symporters and suggest that transport promiscuity has arisen in part through the ability of the binding site to accommodate peptides in multiple orientations for transport.


Asunto(s)
Proteínas Bacterianas/química , Streptococcus thermophilus , Simportadores/química , Sitios de Unión , Cristalografía por Rayos X , Dipéptidos/química , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Oligopéptidos/química , Estructura Secundaria de Proteína , Especificidad por Sustrato
7.
Adv Exp Med Biol ; 922: 61-72, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27553235

RESUMEN

Alpha helical membrane proteins are the targets for many pharmaceutical drugs and play important roles in physiology and disease processes. In recent years, substantial progress has been made in determining their atomic structure using X-ray crystallography. However, a major bottleneck still remains; the identification of conditions that give crystals that are suitable for structure determination. Over the past 10 years we have been analysing the crystallisation conditions reported for alpha helical membrane proteins with the aim to facilitate a rational approach to the design and implementation of successful crystallisation screens. The result has been the development of MemGold, MemGold2 and the additive screen MemAdvantage. The associated analysis, summarised and updated in this chapter, has revealed a number of surprisingly successfully strategies for crystallisation and detergent selection.


Asunto(s)
Proteínas de la Membrana/química , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Tampones (Química) , Precipitación Química , Cristalización , Cristalografía por Rayos X , Detergentes/farmacología , Humanos , Concentración de Iones de Hidrógeno , Proteínas de la Membrana/aislamiento & purificación , Estructura Secundaria de Proteína , Sales (Química)/química
8.
Biochem J ; 457(3): 435-40, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24224485

RESUMEN

SIMs (SUMO-interaction motifs), which mediate the non-covalent binding of SUMO (small ubiquitin-related modifier) to other proteins, are usually involved in the recognition of SUMOylated substrates by downstream effectors that transmit the biological signal of the modification. In ubiquitin ligase Rad18 (radiation-sensitive 18) from Saccharomyces cerevisiae, a SIM, contributes to the recognition of SUMOylated PCNA (proliferating-cell nuclear antigen) as its physiological ubiquitylation target. In the present study we show that Rad18 is also capable of enhancing PCNA SUMOylation in a SIM-dependent manner in vitro, most probably by means of directing SUMO-loaded Ubc9 (ubiquitin-conjugating enzyme 9) towards the substrate. The process shares important features with Rad18-dependent ubiquitylation, such as an exquisite specificity for the modification site on PCNA and the requirement of DNA, and the reaction proceeds under conditions that are widely used in other in vitro assays for SUMO ligase activity. However, there is no evidence that Rad18 contributes to PCNA SUMOylation in vivo. The findings of the present study therefore illustrate the problematic nature of in vitro SUMOylation assays and highlight the danger of extrapolating from this type of experiment to the biological function of a SUMO-interacting protein.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Modelos Biológicos , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteína SUMO-1/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sumoilación , Ubiquitina-Proteína Ligasas/metabolismo , Sustitución de Aminoácidos , Sitios de Unión , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Lisina/química , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Antígeno Nuclear de Célula en Proliferación/química , Antígeno Nuclear de Célula en Proliferación/genética , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteína SUMO-1/química , Proteína SUMO-1/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal , Especificidad por Sustrato , Ubiquitina/química , Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/química , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
9.
Nucleic Acids Res ; 40(22): 11380-8, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23034805

RESUMEN

SUMO-targeted ubiquitin ligases (STUbLs) recognize sumoylated proteins as substrates for ubiquitylation and have been implicated in several aspects of DNA repair and the damage response. However, few physiological STUbL substrates have been identified, and the relative importance of SUMO binding versus direct interactions with the substrate remains a matter of debate. We now present evidence that the ubiquitin ligase Rad18 from Saccharomyces cerevisiae, which monoubiquitylates the sliding clamp protein proliferating cell nuclear antigen (PCNA) in response to DNA damage, exhibits the hallmarks of a STUbL. Although not completely dependent on sumoylation, Rad18's activity towards PCNA is strongly enhanced by the presence of SUMO on the clamp. The stimulation is brought about by a SUMO-interacting motif in Rad18, which also mediates sumoylation of Rad18 itself. Our results imply that sumoylated PCNA is the physiological ubiquitylation target of budding yeast Rad18 and suggest a new mechanism by which the transition from S phase-associated sumoylation to damage-induced ubiquitylation of PCNA is accomplished.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sumoilación , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Unión al ADN/química , Dominios y Motivos de Interacción de Proteínas , Proteína SUMO-1/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Ubiquitina-Proteína Ligasas/química
10.
Nucleic Acids Res ; 40(1): 245-57, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21911365

RESUMEN

Mgs1, the budding yeast homolog of mammalian Werner helicase-interacting protein 1 (WRNIP1/WHIP), contributes to genome stability during undisturbed replication and in response to DNA damage. A ubiquitin-binding zinc finger (UBZ) domain directs human WRNIP1 to nuclear foci, but the functional significance of its presence and the relevant ubiquitylation targets that this domain recognizes have remained unknown. Here, we provide a mechanistic basis for the ubiquitin-binding properties of the protein. We show that in yeast an analogous domain exclusively mediates the damage-related activities of Mgs1. By means of preferential physical interactions with the ubiquitylated forms of the replicative sliding clamp, proliferating cell nuclear antigen (PCNA), the UBZ domain facilitates recruitment of Mgs1 to sites of replication stress. Mgs1 appears to interfere with the function of polymerase δ, consistent with our observation that Mgs1 inhibits the interaction between the polymerase and PCNA. Our identification of Mgs1 as a UBZ-dependent downstream effector of ubiquitylated PCNA suggests an explanation for the ambivalent role of the protein in damage processing.


Asunto(s)
Daño del ADN , ADN Helicasas/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitinación , Unión Competitiva , ADN Helicasas/química , ADN Polimerasa III/metabolismo , Replicación del ADN , Genoma Fúngico , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química
11.
Structure ; 32(7): 866-877.e4, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38626766

RESUMEN

Trafficking receptors control protein localization through the recognition of specific signal sequences that specify unique cellular locations. Differences in luminal pH are important for the vectorial trafficking of cargo receptors. The KDEL receptor is responsible for maintaining the integrity of the ER by retrieving luminally localized folding chaperones in a pH-dependent mechanism. Structural studies have revealed the end states of KDEL receptor activation and the mechanism of selective cargo binding. However, precisely how the KDEL receptor responds to changes in luminal pH remains unclear. To explain the mechanism of pH sensing, we combine analysis of X-ray crystal structures of the KDEL receptor at neutral and acidic pH with advanced computational methods and cell-based assays. We show a critical role for ordered water molecules that allows us to infer a direct connection between protonation in different cellular compartments and the consequent changes in the affinity of the receptor for cargo.


Asunto(s)
Receptores de Péptidos , Concentración de Iones de Hidrógeno , Humanos , Receptores de Péptidos/metabolismo , Receptores de Péptidos/química , Receptores de Péptidos/genética , Cristalografía por Rayos X , Transporte de Proteínas , Unión Proteica , Modelos Moleculares , Retículo Endoplásmico/metabolismo , Sitios de Unión
12.
EMBO J ; 28(23): 3657-66, 2009 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-19851286

RESUMEN

Poly-ubiquitylation is a common post-translational modification that can impart various functions to a target protein. Several distinct mechanisms have been reported for the assembly of poly-ubiquitin chains, involving either stepwise transfer of ubiquitin monomers or attachment of a preformed poly-ubiquitin chain and requiring either a single pair of ubiquitin-conjugating enzyme (E2) and ubiquitin ligase (E3), or alternatively combinations of different E2s and E3s. We have analysed the mechanism of poly-ubiquitylation of the replication clamp PCNA by two cooperating E2-E3 pairs, Rad6-Rad18 and Ubc13-Mms2-Rad5. We find that the two complexes act sequentially and independently in chain initiation and stepwise elongation, respectively. While loading of PCNA onto DNA is essential for recognition by Rad6-Rad18, chain extension by Ubc13-Mms2-Rad5 is only slightly enhanced by loading. Moreover, in contrast to initiation, chain extension is tolerant to variations in the attachment site of the proximal ubiquitin moiety. Our results provide information about a unique conjugation mechanism that appears to be specialised for a regulatable pattern of dual modification.


Asunto(s)
ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Poliubiquitina/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , ADN Helicasas/química , ADN Helicasas/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Poliubiquitina/química , Poliubiquitina/genética , Antígeno Nuclear de Célula en Proliferación/química , Antígeno Nuclear de Célula en Proliferación/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Especificidad por Sustrato/genética , Enzimas Ubiquitina-Conjugadoras/química , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
13.
Nat Struct Mol Biol ; 30(11): 1786-1793, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37482561

RESUMEN

In mammals, the kidney plays an essential role in maintaining blood homeostasis through the selective uptake, retention or elimination of toxins, drugs and metabolites. Organic anion transporters (OATs) are responsible for the recognition of metabolites and toxins in the nephron and their eventual urinary excretion. Inhibition of OATs is used therapeutically to improve drug efficacy and reduce nephrotoxicity. The founding member of the renal organic anion transporter family, OAT1 (also known as SLC22A6), uses the export of α-ketoglutarate (α-KG), a key intermediate in the Krebs cycle, to drive selective transport and is allosterically regulated by intracellular chloride. However, the mechanisms linking metabolite cycling, drug transport and intracellular chloride remain obscure. Here, we present cryogenic-electron microscopy structures of OAT1 bound to α-KG, the antiviral tenofovir and clinical inhibitor probenecid, used in the treatment of Gout. Complementary in vivo cellular assays explain the molecular basis for α-KG driven drug elimination and the allosteric regulation of organic anion transport in the kidney by chloride.


Asunto(s)
Cloruros , Proteína 1 de Transporte de Anión Orgánico , Animales , Proteína 1 de Transporte de Anión Orgánico/metabolismo , Cloruros/metabolismo , Riñón/metabolismo , Transporte Biológico , Aniones/metabolismo , Ácidos Cetoglutáricos/metabolismo , Mamíferos/metabolismo
14.
EMBO J ; 27(18): 2422-31, 2008 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-18701921

RESUMEN

Post-translational modification by the ubiquitin-like protein SUMO is often regulated by cellular signals that restrict the modification to appropriate situations. Nevertheless, many SUMO-specific ligases do not exhibit much target specificity, and--compared with the diversity of sumoylation substrates--their number is limited. This raises the question of how SUMO conjugation is controlled in vivo. We report here an unexpected mechanism by which sumoylation of the replication clamp protein, PCNA, from budding yeast is effectively coupled to S phase. We find that loading of PCNA onto DNA is a prerequisite for sumoylation in vivo and greatly stimulates modification in vitro. To our surprise, however, DNA binding by the ligase Siz1, responsible for PCNA sumoylation, is not strictly required. Instead, the stimulatory effect of DNA on conjugation is mainly attributable to DNA binding of PCNA itself. These findings imply a change in the properties of PCNA upon loading that enhances its capacity to be sumoylated.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteína SUMO-1/metabolismo , Alelos , Cromatina/metabolismo , Cisteína Endopeptidasas/química , ADN/química , Modelos Biológicos , Modelos Genéticos , Unión Proteica , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Ubiquitina/química , Ubiquitina-Proteína Ligasas/química
15.
Nat Commun ; 13(1): 4845, 2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35977944

RESUMEN

Amino acid transporters play a key role controlling the flow of nutrients across the lysosomal membrane and regulating metabolism in the cell. Mutations in the gene encoding the transporter cystinosin result in cystinosis, an autosomal recessive metabolic disorder characterised by the accumulation of cystine crystals in the lysosome. Cystinosin is a member of the PQ-loop family of solute carrier (SLC) transporters and uses the proton gradient to drive cystine export into the cytoplasm. However, the molecular basis for cystinosin function remains elusive, hampering efforts to develop novel treatments for cystinosis and understand the mechanisms of ion driven transport in the PQ-loop family. To address these questions, we present the crystal structures of cystinosin from Arabidopsis thaliana in both apo and cystine bound states. Using a combination of in vitro and in vivo based assays, we establish a mechanism for cystine recognition and proton coupled transport. Mutational mapping and functional characterisation of human cystinosin further provide a framework for understanding the molecular impact of disease-causing mutations.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros , Cistinosis , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Transporte Biológico , Cistina/metabolismo , Cistinosis/genética , Humanos , Lisosomas/metabolismo , Protones
16.
Elife ; 102021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-34137369

RESUMEN

ER proteins of widely differing abundance are retrieved from the Golgi by the KDEL-receptor. Abundant ER proteins tend to have KDEL rather than HDEL signals, whereas ADEL and DDEL are not used in most organisms. Here, we explore the mechanism of selective retrieval signal capture by the KDEL-receptor and how HDEL binds with 10-fold higher affinity than KDEL. Our results show the carboxyl-terminus of the retrieval signal moves along a ladder of arginine residues as it enters the binding pocket of the receptor. Gatekeeper residues D50 and E117 at the entrance of this pocket exclude ADEL and DDEL sequences. D50N/E117Q mutation of human KDEL-receptors changes the selectivity to ADEL and DDEL. However, further analysis of HDEL, KDEL, and RDEL-bound receptor structures shows that affinity differences are explained by interactions between the variable -4 H/K/R position of the signal and W120, rather than D50 or E117. Together, these findings explain KDEL-receptor selectivity, and how signal variants increase dynamic range to support efficient ER retrieval of low and high abundance proteins.


Asunto(s)
Retículo Endoplásmico/metabolismo , Receptores de Péptidos , Aparato de Golgi/metabolismo , Humanos , Mutación/genética , Señales de Clasificación de Proteína/genética , Transporte de Proteínas/genética , Receptores de Péptidos/química , Receptores de Péptidos/genética , Receptores de Péptidos/metabolismo
17.
Structure ; 29(10): 1182-1191.e4, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34242558

RESUMEN

Tuberculosis (TB) is the leading cause of death from a single infectious agent and in 2019 an estimated 10 million people worldwide contracted the disease. Although treatments for TB exist, continual emergence of drug-resistant variants necessitates urgent development of novel antituberculars. An important new target is the lipid transporter MmpL3, which is required for construction of the unique cell envelope that shields Mycobacterium tuberculosis (Mtb) from the immune system. However, a structural understanding of the mutations in Mtb MmpL3 that confer resistance to the many preclinical leads is lacking, hampering efforts to circumvent resistance mechanisms. Here, we present the cryoelectron microscopy structure of Mtb MmpL3 and use it to comprehensively analyze the mutational landscape of drug resistance. Our data provide a rational explanation for resistance variants local to the central drug binding site, and also highlight a potential alternative route to resistance operating within the periplasmic domain.


Asunto(s)
Proteínas Bacterianas/química , Farmacorresistencia Bacteriana , Proteínas de Transporte de Membrana/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Microscopía por Crioelectrón , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Mutación
18.
Nat Commun ; 12(1): 7147, 2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34880232

RESUMEN

Cysteine plays an essential role in cellular redox homoeostasis as a key constituent of the tripeptide glutathione (GSH). A rate limiting step in cellular GSH synthesis is the availability of cysteine. However, circulating cysteine exists in the blood as the oxidised di-peptide cystine, requiring specialised transport systems for its import into the cell. System xc- is a dedicated cystine transporter, importing cystine in exchange for intracellular glutamate. To counteract elevated levels of reactive oxygen species in cancerous cells system xc- is frequently upregulated, making it an attractive target for anticancer therapies. However, the molecular basis for ligand recognition remains elusive, hampering efforts to specifically target this transport system. Here we present the cryo-EM structure of system xc- in both the apo and glutamate bound states. Structural comparisons reveal an allosteric mechanism for ligand discrimination, supported by molecular dynamics and cell-based assays, establishing a mechanism for cystine transport in human cells.


Asunto(s)
Antiportadores/química , Antiportadores/metabolismo , Cistina/metabolismo , Ácido Glutámico/metabolismo , Glutatión/biosíntesis , Sistema de Transporte de Aminoácidos y+/química , Sistema de Transporte de Aminoácidos y+/metabolismo , Antiportadores/genética , Bioquímica , Microscopía por Crioelectrón , Cisteína/metabolismo , Cadena Pesada de la Proteína-1 Reguladora de Fusión/química , Cadena Pesada de la Proteína-1 Reguladora de Fusión/metabolismo , Células HEK293 , Humanos , Neoplasias , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Regulación hacia Arriba
19.
Sci Adv ; 7(35)2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34433568

RESUMEN

The SLC15 family of proton-coupled solute carriers PepT1 and PepT2 play a central role in human physiology as the principal route for acquiring and retaining dietary nitrogen. A remarkable feature of the SLC15 family is their extreme substrate promiscuity, which has enabled the targeting of these transporters for the improvement of oral bioavailability for several prodrug molecules. Although recent structural and biochemical studies on bacterial homologs have identified conserved sites of proton and peptide binding, the mechanism of peptide capture and ligand promiscuity remains unclear for mammalian family members. Here, we present the cryo-electron microscopy structure of the outward open conformation of the rat peptide transporter PepT2 in complex with an inhibitory nanobody. Our structure, combined with molecular dynamics simulations and biochemical and cell-based assays, establishes a framework for understanding peptide and prodrug recognition within this pharmaceutically important transporter family.


Asunto(s)
Profármacos , Simportadores , Animales , Microscopía por Crioelectrón , Mamíferos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Transportador de Péptidos 1/química , Péptidos/metabolismo , Protones , Ratas
20.
Mol Cell Biol ; 26(23): 8892-900, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16982685

RESUMEN

REV1 protein is a eukaryotic member of the Y family of DNA polymerases involved in the tolerance of DNA damage by replicative bypass. The precise role(s) of REV1 in this process is not known. Here we show, by using the yeast two-hybrid assay and the glutathione S-transferase pull-down assay, that mouse REV1 can physically interact with ubiquitin. The association of REV1 with ubiquitin requires the ubiquitin-binding motifs (UBMs) located at the C terminus of REV1. The UBMs also mediate the enhanced association between monoubiquitylated PCNA and REV1. In cells exposed to UV radiation, the association of REV1 with replication foci is dependent on functional UBMs. The UBMs of REV1 are shown to contribute to DNA damage tolerance and damage-induced mutagenesis in vivo.


Asunto(s)
Daño del ADN , Nucleotidiltransferasas/química , Nucleotidiltransferasas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Células COS , Línea Celular , Línea Celular Transformada , Transformación Celular Viral , Pollos , Chlorocebus aethiops , ADN Polimerasa Dirigida por ADN , Glutatión Transferasa/metabolismo , Datos de Secuencia Molecular , Nucleotidiltransferasas/genética , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/metabolismo , Homología de Secuencia de Aminoácido , Técnicas del Sistema de Dos Híbridos , Ubiquitina/metabolismo , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA