Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Nano Lett ; 16(4): 2260-7, 2016 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-26963685

RESUMEN

Orthorhombic black phosphorus (BP) and other layered materials, such as gallium telluride (GaTe) and tin selenide (SnSe), stand out among two-dimensional (2D) materials owing to their anisotropic in-plane structure. This anisotropy adds a new dimension to the properties of 2D materials and stimulates the development of angle-resolved photonics and electronics. However, understanding the effect of anisotropy has remained unsatisfactory to date, as shown by a number of inconsistencies in the recent literature. We use angle-resolved absorption and Raman spectroscopies to investigate the role of anisotropy on the electron-photon and electron-phonon interactions in BP. We highlight, both experimentally and theoretically, a nontrivial dependence between anisotropy and flake thickness and photon and phonon energies. We show that once understood, the anisotropic optical absorption appears to be a reliable and simple way to identify the crystalline orientation of BP, which cannot be determined from Raman spectroscopy without the explicit consideration of excitation wavelength and flake thickness, as commonly used previously.

2.
Nano Lett ; 16(7): 4297-304, 2016 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-27223343

RESUMEN

Growth of transition metal dichalcogenide (TMD) monolayers is of interest due to their unique electrical and optical properties. Films in the 2H and 1T phases have been widely studied but monolayers of some 1T'-TMDs are predicted to be large-gap quantum spin Hall insulators, suitable for innovative transistor structures that can be switched via a topological phase transition rather than conventional carrier depletion [ Qian et al. Science 2014 , 346 , 1344 - 1347 ]. Here we detail a reproducible method for chemical vapor deposition of monolayer, single-crystal flakes of 1T'-MoTe2. Atomic force microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy confirm the composition and structure of MoTe2 flakes. Variable temperature magnetotransport shows weak antilocalization at low temperatures, an effect seen in topological insulators and evidence of strong spin-orbit coupling. Our approach provides a pathway to systematic investigation of monolayer, single-crystal 1T'-MoTe2 and implementation in next-generation nanoelectronic devices.


Asunto(s)
Gases/química , Espectrometría Raman , Frío , Espectroscopía de Fotoelectrones , Temperatura
3.
Small ; 11(47): 6309-16, 2015 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-26500023

RESUMEN

Nanopores are now being used not only as an ionic current sensor but also as a means to localize molecules near alternative sensors with higher sensitivity and/or selectivity. One example is a solid-state nanopore embedded in a graphene nanoribbon (GNR) transistor. Such a device possesses the high conductivity needed for higher bandwidth measurements and, because of its single-atomic-layer thickness, can improve the spatial resolution of the measurement. Here measurements of ionic current through the nanopore are shown during double-stranded DNA (dsDNA) translocation, along with the simultaneous response of the neighboring GNR due to changes in the surrounding electric potential. Cross-talk originating from capacitive coupling between the two measurement channels is observed, resulting in a transient response in the GNR during DNA translocation; however, a modulation in device conductivity is not observed via an electric-field-effect response during DNA translocation. A field-effect response would scale with GNR source-drain voltage (Vds), whereas the capacitive coupling does not scale with Vds . In order to take advantage of the high bandwidth potential of such sensors, the field-effect response must be enhanced. Potential field calculations are presented to outline a phase diagram for detection within the device parameter space, charting a roadmap for future optimization of such devices.


Asunto(s)
Electricidad , Grafito/química , Nanoporos , Nanotecnología/métodos , Nanotubos de Carbono/química , ADN/química , Iones
5.
J Neurosurg Anesthesiol ; 34(4): 352-363, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33782372

RESUMEN

Control of cerebral blood flow (CBF) is crucial to the management of neurocritically ill patients. Small studies which have examined the role of cardiac output (CO) as a determinant of CBF have inconsistently demonstrated evidence of cardio-cerebral coupling. Putative physiological mechanisms underpinning such coupling include changes in arterial blood pressure pulsatility, which would produce vasodilation through increased oscillatory wall-shear-stress and baroreceptor mediated reflex sympatholysis, and changes in venous backpressure which may improve cerebral perfusion pressure. We sought to summarize and contextualize the literature on the relationship between CO and CBF and discuss the implications of cardio-cerebral coupling for neurocritical care. A systematic review of the literature yielded 41 studies; all were of low-quality and at high-risk of bias. Results were heterogenous, with evidence for both corroboration and confutation of a relationship between CO and CBF in both normal and abnormal cerebrovascular states. Common limitations of studies were lack of instantaneous CBF measures with reliance on transcranial Doppler-derived blood flow velocity as a surrogate, inability to control for fluctuations in established determinants of CBF (eg, PaCO 2 ), and direct effects on CBF by the interventions used to alter CO. Currently, the literature is insufficiently robust to confirm an independent relationship between CO and CBF. Hypothetically, the presence of cardio-cerebral coupling would have important implications for clinical practice. Manipulation of CBF could occur without the risks associated with extremes of arterial pressure, potentially improving therapy for those with cerebral ischemia of various etiologies. However, current literature is insufficiently robust to confirm an independent relationship between CO and CBF, and further studies with improved methodology are required before therapeutic interventions can be based on cardio-cerebral coupling.


Asunto(s)
Circulación Cerebrovascular , Ultrasonografía Doppler Transcraneal , Velocidad del Flujo Sanguíneo/fisiología , Gasto Cardíaco/fisiología , Circulación Cerebrovascular/fisiología , Hemodinámica , Humanos
6.
Nat Commun ; 11(1): 546, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31992694

RESUMEN

The properties of van der Waals (vdW) materials often vary dramatically with the atomic stacking order between layers, but this order can be difficult to control. Trilayer graphene (TLG) stacks in either a semimetallic ABA or a semiconducting ABC configuration with a gate-tunable band gap, but the latter has only been produced by exfoliation. Here we present a chemical vapor deposition approach to TLG growth that yields greatly enhanced fraction and size of ABC domains. The key insight is that substrate curvature can stabilize ABC domains. Controllable ABC yields ~59% were achieved by tailoring substrate curvature levels. ABC fractions remained high after transfer to device substrates, as confirmed by transport measurements revealing the expected tunable ABC band gap. Substrate topography engineering provides a path to large-scale synthesis of epitaxial ABC-TLG and other vdW materials.

7.
J Clin Monit Comput ; 22(6): 391-400, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19002596

RESUMEN

By regarding the circulation from the perspective of the venous return, continuous therapeutic control of the mean arterial blood pressure, cardiac output and tissue oxygen flow can be seen to be the consequence of a series of equations based on conventionally measured variables. This approach permits a graphical solution to circulation guidance, open or closed loop control and goal directed therapy of broad general applicability.


Asunto(s)
Circulación Sanguínea/fisiología , Gasto Cardíaco/fisiología , Cardiotónicos/administración & dosificación , Simulación por Computador , Quimioterapia Asistida por Computador/métodos , Corazón/fisiología , Modelos Cardiovasculares , Resistencia Vascular/fisiología , Circulación Sanguínea/efectos de los fármacos , Gasto Cardíaco/efectos de los fármacos , Retroalimentación/efectos de los fármacos , Retroalimentación/fisiología , Corazón/efectos de los fármacos , Humanos
8.
ACS Sens ; 3(2): 313-319, 2018 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-29322780

RESUMEN

The combination of a nanopore with a local field-effect transistor (FET-nanopore), like a nanoribbon, nanotube, or nanowire, in order to sense single molecules translocating through the pore is promising for DNA sequencing at megahertz bandwidths. Previously, it was experimentally determined that the detection mechanism was due to local potential fluctuations that arise when an analyte enters a nanopore and constricts ion flow through it, rather than the theoretically proposed mechanism of direct charge coupling between the DNA and nanowire. However, there has been little discussion on the experimentally observed detection mechanism and its relation to the operation of real devices. We model the intrinsic signal and noise in such an FET-nanopore device and compare the results to the ionic current signal. The physical dimensions of DNA molecules limit the change in gate voltage on the FET to below 40 mV. We discuss the low-frequency flicker noise (<10 kHz), medium-frequency thermal noise (<100 kHz), and high-frequency capacitive noise (>100 kHz) in FET-nanopore devices. At bandwidths dominated by thermal noise, the signal-to-noise ratio in FET-nanopore devices is lower than in the ionic current signal. At high frequencies, where noise due to parasitic capacitances in the amplifier and chip is the dominant source of noise in ionic current measurements, high-transconductance FET-nanopore devices can outperform ionic current measurements.


Asunto(s)
Modelos Teóricos , Nanoporos/ultraestructura , Nanotubos/ultraestructura , Nanocables/ultraestructura , Análisis de Secuencia de ADN/instrumentación , Análisis de Secuencia de ADN/métodos , Nanotubos de Carbono/ultraestructura , Relación Señal-Ruido
9.
PLoS One ; 13(1): e0190571, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29320548

RESUMEN

We examine whether retaliatory violence exists between law enforcement and citizens while controlling for any social media contagion effect related to prior fatal encounters. Analyzed using a trivariate dynamic structural vector-autoregressive model, daily time-series data over a 21-month period captured the frequencies of police killed in the line of duty, police deadly use of force incidents, and social media coverage. The results support a significant retaliatory violence effect against minorities by police, yet there is no evidence of retaliatory violence against law enforcement officers by minorities. Also, social media coverage of the Black Lives Matter movement increases the risk of fatal victimization to both law enforcement officers and minorities. Possible explanations for these results are based in rational choice and terror management theories.


Asunto(s)
Homicidio , Medios de Comunicación Sociales , Violencia , Víctimas de Crimen , Humanos , Policia
10.
ACS Nano ; 12(7): 6949-6955, 2018 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-29890079

RESUMEN

We present a process for sculpting Bi2Se3 nanoflakes into application-relevant geometries using a high-resolution transmission electron microscope. This process takes several minutes to sculpt small areas and can be used to cut the Bi2Se3 into wires and rings, to thin areas of the Bi2Se3, and to drill circular holes and lines. We determined that this method allows for sub 10 nm features and results in clean edges along the drilled regions. Using in situ high-resolution imaging, selected area diffraction, and atomic force microscopy, we found that this lithography process preserves the crystal structure of Bi2Se3. TEM sculpting is more precise and potentially results in cleaner edges than does ion-beam modification; therefore, the promise of this method for thermoelectric and topological devices calls for further study into the transport properties of such structures.

11.
J Interpers Violence ; 32(18): 2693-2723, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-26193894

RESUMEN

To date, no discussion has taken place in the social sciences as to the appropriateness of using open-source data to augment, or replace, official data sources in homicide research. The purpose of this article is to examine whether open-source data have the potential to be used as a valid and reliable data source in testing theory and studying homicide. Official and open-source homicide data were collected as a case study in a single jurisdiction over a 1-year period. The data sets were compared to determine whether open-sources could recreate the population of homicides and variable responses collected in official data. Open-source data were able to replicate the population of homicides identified in the official data. Also, for every variable measured, the open-sources captured as much, or more, of the information presented in the official data. Also, variables not available in official data, but potentially useful for testing theory, were identified in open-sources. The results of the case study show that open-source data are potentially as effective as official data in identifying individual- and situational-level characteristics, provide access to variables not found in official homicide data, and offer geographic data that can be used to link macro-level characteristics to homicide events.


Asunto(s)
Bases de Datos Factuales , Homicidio , Adulto , Criminología , Femenino , Humanos , Masculino , Noroeste de Estados Unidos , Investigación
12.
13.
Sci Rep ; 7(1): 4075, 2017 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-28642472

RESUMEN

Monolayer materials are sensitive to their environment because all of the atoms are at their surface. We investigate how exposure to the environment affects the electrical properties of CVD-grown monolayer MoS2 by monitoring electrical parameters of MoS2 field-effect transistors as their environment is changed from atmosphere to high vacuum. The mobility increases and contact resistance decreases simultaneously as either the pressure is reduced or the sample is annealed in vacuum. We see a previously unobserved, non-monotonic change in threshold voltage with decreasing pressure. This result could be explained by charge transfer on the MoS2 channel and Schottky contact formation due to adsorbates at the interface between the gold contacts and MoS2. Additionally, from our electrical measurements it is plausible to infer that at room temperature and pressure water and oxygen molecules adsorbed on the surface act as interface traps and scattering centers with a density of several 1012 cm-2 eV-1, degrading the electrical properties of monolayer MoS2.


Asunto(s)
Disulfuros , Electricidad , Molibdeno , Transistores Electrónicos
14.
ACS Nano ; 11(2): 1937-1945, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-28125779

RESUMEN

Two-dimensional materials are promising for a range of applications, as well as testbeds for probing the physics of low-dimensional systems. Tungsten disulfide (WS2) monolayers exhibit a direct band gap and strong photoluminescence (PL) in the visible range, opening possibilities for advanced optoelectronic applications. Here, we report the realization of two-dimensional nanometer-size pores in suspended monolayer WS2 membranes, allowing for electrical and optical response in ionic current measurements. A focused electron beam was used to fabricate nanopores in WS2 membranes suspended on silicon-based chips and characterized using PL spectroscopy and aberration-corrected high-resolution scanning transmission electron microscopy. It was observed that the PL intensity of suspended WS2 monolayers is ∼10-15 times stronger when compared to that of substrate-supported monolayers, and low-dose scanning transmission electron microscope viewing and drilling preserves the PL signal of WS2 around the pore. We establish that such nanopores allow ionic conductance and DNA translocations. We also demonstrate that under low-power laser illumination in solution, WS2 nanopores grow slowly in size at an effective rate of ∼0.2-0.4 nm/s, thus allowing for atomically controlled nanopore size using short light pulses.


Asunto(s)
ADN/química , Disulfuros/química , Luz , Nanoporos , Tungsteno/química , Luminiscencia , Microscopía Electrónica de Transmisión , Tamaño de la Partícula , Procesos Fotoquímicos
15.
2d Mater ; 4(2)2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29707213

RESUMEN

Large-area growth of monolayer films of the transition metal dichalcogenides is of the utmost importance in this rapidly advancing research area. The mechanical exfoliation method offers high quality monolayer material but it is a problematic approach when applied to materials that are not air stable. One important example is 1T'-WTe2, which in multilayer form is reported to possess a large non saturating magnetoresistance, pressure induced superconductivity, and a weak antilocalization effect, but electrical data for the monolayer is yet to be reported due to its rapid degradation in air. Here we report a reliable and reproducible large-area growth process for obtaining many monolayer 1T'-WTe2 flakes. We confirmed the composition and structure of monolayer 1T'-WTe2 flakes using x-ray photoelectron spectroscopy, energy-dispersive x-ray spectroscopy, atomic force microscopy, Raman spectroscopy and aberration corrected transmission electron microscopy. We studied the time dependent degradation of monolayer 1T'-WTe2 under ambient conditions, and we used first-principles calculations to identify reaction with oxygen as the degradation mechanism. Finally we investigated the electrical properties of monolayer 1T'-WTe2 and found metallic conduction at low temperature along with a weak antilocalization effect that is evidence for strong spin-orbit coupling.

16.
ACS Nano ; 11(9): 8619-8627, 2017 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-28767217

RESUMEN

Heterostructures of transition metal dichalcogenides (TMDs) offer the attractive prospect of combining distinct physical properties derived from different TMD structures. Here, we report direct chemical vapor deposition of in-plane monolayer heterostructures based on 1H-MoS2 and 1T'-MoTe2. The large lattice mismatch between these materials led to intriguing phenomena at their interface. Atomic force microscopy indicated buckling in the 1H region. Tip-enhanced Raman spectroscopy showed mode structure consistent with Te substitution in the 1H region during 1T'-MoTe2 growth. This was confirmed by atomic resolution transmission electron microscopy, which also revealed an atomically stitched, dislocation-free 1H/1T' interface. Theoretical modeling revealed that both the buckling and absence of interfacial misfit dislocations were explained by lateral gradients in Te substitution levels within the 1H region and elastic coupling between 1H and 1T' domains. Phase field simulations predicted 1T' morphologies with spike-shaped islands at specific orientations consistent with experiments. Electrical measurements across the heterostructure confirmed its electrical continuity. This work demonstrates the feasibility of dislocation-free stitching of two different atomic configurations and a pathway toward direct synthesis of monolayer TMD heterostructures of different phases.

17.
ACS Nano ; 10(4): 4134-42, 2016 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-26998814

RESUMEN

We report how the presence of electron-beam-induced sulfur vacancies affects first-order Raman modes and correlate the effects with the evolution of the in situ transmission-electron microscopy two-terminal conductivity of monolayer MoS2 under electron irradiation. We observe a red-shift in the E' Raman peak and a less pronounced blue-shift in the A'1 peak with increasing electron dose. Using energy-dispersive X-ray spectroscopy and selected-area electron diffraction, we show that irradiation causes partial removal of sulfur and correlate the dependence of the Raman peak shifts with S vacancy density (a few %). This allows us to quantitatively correlate the frequency shifts with vacancy concentration, as rationalized by first-principles density functional theory calculations. In situ device current measurements show an exponential decrease in channel current upon irradiation. Our analysis demonstrates that the observed frequency shifts are intrinsic properties of the defective systems and that Raman spectroscopy can be used as a quantitative diagnostic tool to characterize MoS2-based transport channels.


Asunto(s)
Disulfuros/química , Molibdeno/química , Cristalización , Disulfuros/efectos de la radiación , Conductividad Eléctrica , Electrones , Microscopía Electrónica de Transmisión , Modelos Teóricos , Molibdeno/efectos de la radiación , Nanoestructuras , Fenómenos Físicos , Teoría Cuántica , Compuestos de Silicona/química , Espectrometría por Rayos X , Espectrometría Raman
18.
ACS Nano ; 10(6): 5687-95, 2016 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-27192448

RESUMEN

Black phosphorus (BP) is a highly anisotropic allotrope of phosphorus with great promise for fast functional electronics and optoelectronics. We demonstrate the controlled structural modification of few-layer BP along arbitrary crystal directions with sub-nanometer precision for the formation of few-nanometer-wide armchair and zigzag BP nanoribbons. Nanoribbons are fabricated, along with nanopores and nanogaps, using a combination of mechanical-liquid exfoliation and in situ transmission electron microscopy (TEM) and scanning TEM nanosculpting. We predict that the few-nanometer-wide BP nanoribbons realized experimentally possess clear one-dimensional quantum confinement, even when the systems are made up of a few layers. The demonstration of this procedure is key for the development of BP-based electronics, optoelectronics, thermoelectrics, and other applications in reduced dimensions.

19.
Rev Sci Instrum ; 85(4): 043510, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24784610

RESUMEN

A wide-frequency range (50-300 kHz) power system has been implemented for use with a new RF antenna - the "Shoelace" antenna - built to drive coherent plasma fluctuations in the edge of the Alcator C-Mod tokamak. A custom, dynamically tunable matching network allows two commercial 1 kW, 50-Ω RF amplifiers to drive the low-impedance, inductive load presented by the antenna. This is accomplished by a discretely variable L-match network, with 81 independently selected steps available for each of the series and parallel legs of the matching configuration. A compact programmable logic device provides a control system that measures the frequency with better than 1 kHz accuracy and transitions to the correct tuning state in less than 1 ms. At least 85% of source power is dissipated in the antenna across the operational frequency range, with a minimum frequency slew rate of 1 MHz/s; the best performance is achieved in the narrower band from 80 to 150 kHz which is of interest in typical experiments. The RF frequency can be run with open-loop control, following a pre-programmed analog waveform, or phase-locked to track a plasma fluctuation diagnostic signal in real time with programmable phase delay; the amplitude control is always open-loop. The control waveforms and phase delay are programmed remotely. These tools have enabled first-of-a-kind measurements of the tokamak edge plasma system response in the frequency range and at the wave number at which coherent fluctuations regulate heat and particle transport through the plasma boundary.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA