Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Proc Natl Acad Sci U S A ; 115(35): E8246-E8255, 2018 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-30108144

RESUMEN

Oligodendrocyte precursor cells (OPCs) constitute the main proliferative cells in the adult brain, and deregulation of OPC proliferation-differentiation balance results in either glioma formation or defective adaptive (re)myelination. OPC differentiation requires significant genetic reprogramming, implicating chromatin remodeling. Mounting evidence indicates that chromatin remodelers play important roles during normal development and their mutations are associated with neurodevelopmental defects, with CHD7 haploinsuficiency being the cause of CHARGE syndrome and CHD8 being one of the strongest autism spectrum disorder (ASD) high-risk-associated genes. Herein, we report on uncharacterized functions of the chromatin remodelers Chd7 and Chd8 in OPCs. Their OPC-chromatin binding profile, combined with transcriptome and chromatin accessibility analyses of Chd7-deleted OPCs, demonstrates that Chd7 protects nonproliferative OPCs from apoptosis by chromatin closing and transcriptional repression of p53 Furthermore, Chd7 controls OPC differentiation through chromatin opening and transcriptional activation of key regulators, including Sox10, Nkx2.2, and Gpr17 However, Chd7 is dispensable for oligodendrocyte stage progression, consistent with Chd8 compensatory function, as suggested by their common chromatin-binding profiles and genetic interaction. Finally, CHD7 and CHD8 bind in OPCs to a majority of ASD risk-associated genes, suggesting an implication of oligodendrocyte lineage cells in ASD neurological defects. Our results thus offer new avenues to understand and modulate the CHD7 and CHD8 functions in normal development and disease.


Asunto(s)
Ensamble y Desensamble de Cromatina , Proteínas de Unión al ADN/metabolismo , Oligodendroglía/metabolismo , Células Madre/metabolismo , Animales , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/patología , Síndrome CHARGE/genética , Síndrome CHARGE/metabolismo , Síndrome CHARGE/patología , Supervivencia Celular , Proteínas de Unión al ADN/genética , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodominio , Ratones , Ratones Noqueados , Proteínas Nucleares , Oligodendroglía/patología , Células Madre/patología , Factores de Transcripción
2.
Glia ; 68(8): 1604-1618, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32460418

RESUMEN

Oligodendrocytes, the myelinating cells in the vertebrate central nervous system, produce myelin sheaths to enable saltatory propagation of action potentials. The process of oligodendrocyte myelination entails a stepwise progression from precursor specification to differentiation, which is coordinated by a series of transcriptional and chromatin remodeling events. ATP-dependent chromatin remodeling enzymes, which utilize ATP as an energy source to control chromatin dynamics and regulate the accessibility of chromatin to transcriptional regulators, are critical for oligodendrocyte lineage development and regeneration. In this review, we focus on the latest insights into the spatial and temporal specificity of chromatin remodelers during oligodendrocyte development, myelinogenesis, and regeneration. We will also bring together various plausible mechanisms by which lineage specific transcriptional regulators coordinate with chromatin remodeling factors for programming genomic landscapes to specifically modulate these different processes during developmental myelination and remyelination upon injury.


Asunto(s)
Ensamble y Desensamble de Cromatina/fisiología , Vaina de Mielina/fisiología , Oligodendroglía/citología , Remielinización/fisiología , Animales , Diferenciación Celular/fisiología , Sistema Nervioso Central/metabolismo , Humanos
3.
Genes Dev ; 25(9): 930-45, 2011 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-21536733

RESUMEN

Proneural genes such as Ascl1 are known to promote cell cycle exit and neuronal differentiation when expressed in neural progenitor cells. The mechanisms by which proneural genes activate neurogenesis--and, in particular, the genes that they regulate--however, are mostly unknown. We performed a genome-wide characterization of the transcriptional targets of Ascl1 in the embryonic brain and in neural stem cell cultures by location analysis and expression profiling of embryos overexpressing or mutant for Ascl1. The wide range of molecular and cellular functions represented among these targets suggests that Ascl1 directly controls the specification of neural progenitors as well as the later steps of neuronal differentiation and neurite outgrowth. Surprisingly, Ascl1 also regulates the expression of a large number of genes involved in cell cycle progression, including canonical cell cycle regulators and oncogenic transcription factors. Mutational analysis in the embryonic brain and manipulation of Ascl1 activity in neural stem cell cultures revealed that Ascl1 is indeed required for normal proliferation of neural progenitors. This study identified a novel and unexpected activity of the proneural gene Ascl1, and revealed a direct molecular link between the phase of expansion of neural progenitors and the subsequent phases of cell cycle exit and neuronal differentiation.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación del Desarrollo de la Expresión Génica , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neurogénesis , Telencéfalo/citología , Telencéfalo/embriología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular , Línea Celular , Proliferación Celular , Células Cultivadas , Femenino , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Estudio de Asociación del Genoma Completo , Ratones , Embarazo
4.
Development ; 141(19): 3721-31, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25249462

RESUMEN

Glia constitute the majority of cells in the mammalian central nervous system and are crucial for neurological function. However, there is an incomplete understanding of the molecular control of glial cell development. We find that the transcription factor Ascl1 (Mash1), which is best known for its role in neurogenesis, also functions in both astrocyte and oligodendrocyte lineages arising in the mouse spinal cord at late embryonic stages. Clonal fate mapping in vivo reveals heterogeneity in Ascl1-expressing glial progenitors and shows that Ascl1 defines cells that are restricted to either gray matter (GM) or white matter (WM) as astrocytes or oligodendrocytes. Conditional deletion of Ascl1 post-neurogenesis shows that Ascl1 is required during oligodendrogenesis for generating the correct numbers of WM but not GM oligodendrocyte precursor cells, whereas during astrocytogenesis Ascl1 functions in balancing the number of dorsal GM protoplasmic astrocytes with dorsal WM fibrous astrocytes. Thus, in addition to its function in neurogenesis, Ascl1 marks glial progenitors and controls the number and distribution of astrocytes and oligodendrocytes in the GM and WM of the spinal cord.


Asunto(s)
Astrocitos/citología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Linaje de la Célula/fisiología , Oligodendroglía/citología , Médula Espinal/citología , Médula Espinal/embriología , Animales , Astrocitos/metabolismo , Diferenciación Celular/fisiología , Técnica del Anticuerpo Fluorescente , Ratones , Oligodendroglía/metabolismo
5.
Development ; 141(10): 2075-84, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24803655

RESUMEN

Thalamocortical axons (TCAs) pass through the prethalamus in the first step of their neural circuit formation. Although it has been supposed that the prethalamus is an intermediate target for thalamocortical projection formation, much less is known about the molecular mechanisms of this targeting. Here, we demonstrated the functional implications of the prethalamus in the formation of this neural circuit. We show that Olig2 transcription factor, which is expressed in the ventricular zone (VZ) of prosomere 3, regulates prethalamus formation, and loss of Olig2 results in reduced prethalamus size in early development, which is accompanied by expansion of the thalamic eminence (TE). Extension of TCAs is disorganized in the Olig2-KO dorsal thalamus, and initial elongation of TCAs is retarded in the Olig2-KO forebrain. Microarray analysis demonstrated upregulation of several axon guidance molecules, including Epha3 and Epha5, in the Olig2-KO basal forebrain. In situ hybridization showed that the prethalamus in the wild type excluded the expression of Epha3 and Epha5, whereas loss of Olig2 resulted in reduction of this Ephas-negative area and the corresponding expansion of the Ephas-positive TE. Dissociated cultures of thalamic progenitor cells demonstrated that substrate-bound EphA3 suppresses neurite extension from dorsal thalamic neurons. These results indicate that Olig2 is involved in correct formation of the prethalamus, which leads to exclusion of the EphA3-expressing region and is crucial for proper TCA formation. Our observation is the first report showing the molecular mechanisms underlying how the prethalamus acts on initial thalamocortical projection formation.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Red Nerviosa/embriología , Proteínas del Tejido Nervioso/fisiología , Vías Nerviosas/embriología , Tálamo/embriología , Animales , Axones/fisiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Células Cultivadas , Embrión de Pollo , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Endogámicos ICR , Ratones Noqueados , Red Nerviosa/metabolismo , Proteínas del Tejido Nervioso/genética , Vías Nerviosas/metabolismo , Factor de Transcripción 2 de los Oligodendrocitos , Factores de Transcripción/fisiología
6.
J Neurosci ; 35(3): 906-19, 2015 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-25609610

RESUMEN

Multiple sclerosis is an autoimmune disease of the CNS resulting in degeneration of myelin sheaths and loss of oligodendrocytes, which means that protection and electrical insulation of axons and rapid signal propagation are impaired, leading to axonal damage and permanent disabilities. Partial replacement of lost oligodendrocytes and remyelination can occur as a result of activation and recruitment of resident oligodendroglial precursor cells. However, the overall remyelination capacity remains inefficient because precursor cells often fail to generate new oligodendrocytes. Increasing evidence points to the existence of several molecular inhibitors that act on these cells and interfere with their cellular maturation. The p57kip2 gene encodes one such potent inhibitor of oligodendroglial differentiation and this study sheds light on the underlying mode of action. We found that subcellular distribution of the p57kip2 protein changed during differentiation of rat, mouse, and human oligodendroglial cells both in vivo and in vitro. Nuclear export of p57kip2 was correlated with promoted myelin expression, higher morphological phenotypes, and enhanced myelination in vitro. In contrast, nuclear accumulation of p57kip2 resulted in blocked oligodendroglial differentiation. Experimental evidence suggests that the inhibitory role of p57kip2 depends on specific interactions with binding proteins such as LIMK-1, CDK2, Mash1, and Hes5 either by controlling their site of action or their activity. Because functional restoration in demyelinating diseases critically depends on the successful generation of oligodendroglial cells, a therapeutic need that is currently unmet, the regulatory mechanism described here might be of particular interest for identifying suitable drug targets and devising novel therapeutic approaches.


Asunto(s)
Diferenciación Celular/fisiología , Núcleo Celular/metabolismo , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/metabolismo , Oligodendroglía/metabolismo , Transporte Activo de Núcleo Celular , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Células Cultivadas , Corteza Cerebelosa/metabolismo , Quinasa 2 Dependiente de la Ciclina/metabolismo , Humanos , Quinasas Lim/metabolismo , Ratones , Esclerosis Múltiple/metabolismo , Vaina de Mielina/metabolismo , Oligodendroglía/citología , Transporte de Proteínas/fisiología , Ratas , Ratas Wistar , Proteínas Represoras/metabolismo
7.
J Neurosci ; 33(23): 9752-9768, 2013 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-23739972

RESUMEN

Oligodendrocytes are the myelin-forming cells of the CNS. They differentiate from oligodendrocyte precursor cells (OPCs) that are produced from progenitors throughout life but more actively during the neonatal period and in response to demyelinating insults. An accurate regulation of oligodendrogenesis is required to generate oligodendrocytes during these developmental or repair processes. We hypothesized that this regulation implicates transcription factors, which are expressed by OPCs and/or their progenitors. Ascl1/Mash1 is a proneural transcription factor previously implicated in embryonic oligodendrogenesis and operating in genetic interaction with Olig2, an essential transcriptional regulator in oligodendrocyte development. Herein, we have investigated the contribution of Ascl1 to oligodendrocyte development and remyelination in the postnatal cortex. During the neonatal period, Ascl1 expression was detected in progenitors of the cortical subventricular zone and in cortical OPCs. Different genetic approaches to delete Ascl1 in cortical progenitors or OPCs reduced neonatal oligodendrogenesis, showing that Ascl1 positively regulated both OPC specification from subventricular zone progenitors as well as the balance between OPC differentiation and proliferation. Examination of remyelination processes, both in the mouse model for focal demyelination of the corpus callosum and in multiple sclerosis lesions in humans, indicated that Ascl1 activity was upregulated along with increased oligodendrogenesis observed in remyelinating lesions. Additional genetic evidence indicated that remyelinating oligodendrocytes derived from Ascl1(+) progenitors/OPCs and that Ascl1 was required for proper remyelination. Together, our results show that Ascl1 function modulates multiple steps of OPC development in the postnatal brain and in response to demyelinating insults.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Encéfalo/fisiología , Vaina de Mielina/fisiología , Oligodendroglía/metabolismo , Animales , Encéfalo/citología , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Fibras Nerviosas Mielínicas/metabolismo , Células-Madre Neurales/metabolismo , Oligodendroglía/citología
8.
Cell Rep ; 43(2): 113734, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38349790

RESUMEN

Germinal activity persists throughout life within the ventricular-subventricular zone (V-SVZ) of the postnatal forebrain due to the presence of neural stem cells (NSCs). Accumulating evidence points to a recruitment for these cells following early brain injuries and suggests their amenability to manipulations. We used chronic hypoxia as a rodent model of early brain injury to investigate the reactivation of cortical progenitors at postnatal times. Our results reveal an increased proliferation and production of glutamatergic progenitors within the dorsal V-SVZ. Fate mapping of V-SVZ NSCs demonstrates their contribution to de novo cortical neurogenesis. Transcriptional analysis of glutamatergic progenitors shows parallel changes in methyltransferase 14 (Mettl14) and Wnt/ß-catenin signaling. In agreement, manipulations through genetic and pharmacological activation of Mettl14 and the Wnt/ß-catenin pathway, respectively, induce neurogenesis and promote newly-formed cell maturation. Finally, labeling of young adult NSCs demonstrates that pharmacological NSC activation has no adverse effects on the reservoir of V-SVZ NSCs and on their germinal activity.


Asunto(s)
Lesiones Encefálicas , beta Catenina , Humanos , Vía de Señalización Wnt , Diferenciación Celular , Ventrículos Cardíacos , Metiltransferasas , Neurogénesis , Ventrículos Laterales
9.
J Neurosci ; 32(48): 17172-85, 2012 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-23197710

RESUMEN

Oligodendrocytes are the myelin-forming cells of the vertebrate CNS. Little is known about the molecular control of region-specific oligodendrocyte development. Here, we show that oligodendrogenesis in the mouse rostral hindbrain, which is organized in a metameric series of rhombomere-derived (rd) territories, follows a rhombomere-specific pattern, with extensive production of oligodendrocytes in the pontine territory (r4d) and delayed and reduced oligodendrocyte production in the prepontine region (r2d, r3d). We demonstrate that segmental organization of oligodendrocytes is controlled by Hox genes, namely Hoxa2 and Hoxb2. Specifically, Hoxa2 loss of function induced a dorsoventral enlargement of the Olig2/Nkx2.2-expressing oligodendrocyte progenitor domain, whereas conditional Hoxa2 overexpression in the Olig2(+) domain inhibited oligodendrogenesis throughout the brain. In contrast, Hoxb2 deletion resulted in a reduction of the pontine oligodendrogenic domain. Compound Hoxa2(-/-)/Hoxb2(-/-) mutant mice displayed the phenotype of Hoxb2(-/-) mutants in territories coexpressing Hoxa2 and Hoxb2 (rd3, rd4), indicating that Hoxb2 antagonizes Hoxa2 during rostral hindbrain oligodendrogenesis. This study provides the first in vivo evidence that Hox genes determine oligodendrocyte regional identity in the mammalian brain.


Asunto(s)
Diferenciación Celular/genética , Proteínas de Homeodominio/genética , Oligodendroglía/metabolismo , Rombencéfalo/metabolismo , Factores de Transcripción/genética , Animales , Tipificación del Cuerpo/genética , Proliferación Celular , Regulación del Desarrollo de la Expresión Génica , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodominio/metabolismo , Ratones , Ratones Noqueados , Vaina de Mielina/genética , Vaina de Mielina/metabolismo , Rombencéfalo/embriología , Factores de Transcripción/metabolismo
10.
J Comp Neurol ; 531(12): 1229-1243, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37125418

RESUMEN

In vertebrates, the embryonic olfactory epithelium contains progenitors that will give rise to distinct classes of neurons, including olfactory sensory neurons (OSNs; involved in odor detection), vomeronasal sensory neurons (VSNs; responsible for pheromone sensing), and gonadotropin-releasing hormone (GnRH) neurons that control the hypothalamic-pituitary-gonadal axis. Currently, these three neuronal lineages are usually believed to emerge from uniform pools of progenitors. Here, we found that the homeodomain transcription factor Dbx1 is expressed by neurogenic progenitors in the developing and adult mouse olfactory epithelium. We demonstrate that Dbx1 itself is dispensable for neuronal fate specification and global organization of the olfactory sensory system. Using lineage tracing, we characterize the contribution of Dbx1 lineages to OSN, VSN, and GnRH neuron populations and reveal an unexpected degree of diversity. Furthermore, we demonstrate that Dbx1-expressing progenitors remain neurogenic in the absence of the proneural gene Ascl1. Our work therefore points to the existence of distinct neurogenic programs in Dbx1-derived and other olfactory lineages.


Asunto(s)
Mucosa Olfatoria , Neuronas Receptoras Olfatorias , Ratones , Animales , Neuronas Receptoras Olfatorias/metabolismo , Factores de Transcripción/genética , Regulación de la Expresión Génica , Hormona Liberadora de Gonadotropina/metabolismo , Proteínas de Homeodominio/genética
11.
Sci Adv ; 9(18): eabq7553, 2023 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-37146152

RESUMEN

The ventricular-subventricular zone (V-SVZ) is the largest neurogenic region of the postnatal forebrain, containing neural stem cells (NSCs) that emerge from both the embryonic pallium and subpallium. Despite of this dual origin, glutamatergic neurogenesis declines rapidly after birth, while GABAergic neurogenesis persists throughout life. We performed single-cell RNA sequencing of the postnatal dorsal V-SVZ for unraveling the mechanisms leading to pallial lineage germinal activity silencing. We show that pallial NSCs enter a state of deep quiescence, characterized by high bone morphogenetic protein (BMP) signaling, reduced transcriptional activity and Hopx expression, while in contrast, subpallial NSCs remain primed for activation. Induction of deep quiescence is paralleled by a rapid blockade of glutamatergic neuron production and differentiation. Last, manipulation of Bmpr1a demonstrates its key role in mediating these effects. Together, our results highlight a central role of BMP signaling in synchronizing quiescence induction and blockade of neuronal differentiation to rapidly silence pallial germinal activity after birth.


Asunto(s)
Ventrículos Laterales , Neuronas , Ventrículos Laterales/metabolismo , Diferenciación Celular/genética , Neurogénesis , Análisis de la Célula Individual
12.
Sci Adv ; 9(24): eadd5002, 2023 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-37327344

RESUMEN

Neurogenesis in the developing human cerebral cortex occurs at a particularly slow rate owing in part to cortical neural progenitors preserving their progenitor state for a relatively long time, while generating neurons. How this balance between the progenitor and neurogenic state is regulated, and whether it contributes to species-specific brain temporal patterning, is poorly understood. Here, we show that the characteristic potential of human neural progenitor cells (NPCs) to remain in a progenitor state as they generate neurons for a prolonged amount of time requires the amyloid precursor protein (APP). In contrast, APP is dispensable in mouse NPCs, which undergo neurogenesis at a much faster rate. Mechanistically, APP cell-autonomously contributes to protracted neurogenesis through suppression of the proneurogenic activator protein-1 transcription factor and facilitation of canonical WNT signaling. We propose that the fine balance between self-renewal and differentiation is homeostatically regulated by APP, which may contribute to human-specific temporal patterns of neurogenesis.


Asunto(s)
Precursor de Proteína beta-Amiloide , Células-Madre Neurales , Humanos , Ratones , Animales , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Diferenciación Celular , Neuronas/metabolismo , Neurogénesis
13.
Nat Commun ; 14(1): 1592, 2023 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-36949062

RESUMEN

Neuroprotective, anti-inflammatory, and remyelinating properties of androgens are well-characterized in demyelinated male mice and men suffering from multiple sclerosis. However, androgen effects mediated by the androgen receptor (AR), have been only poorly studied in females who make low androgen levels. Here, we show a predominant microglial AR expression in demyelinated lesions from female mice and women with multiple sclerosis, but virtually undetectable AR expression in lesions from male animals and men with multiple sclerosis. In female mice, androgens and estrogens act in a synergistic way while androgens drive microglia response towards regeneration. Transcriptomic comparisons of demyelinated mouse spinal cords indicate that, regardless of the sex, androgens up-regulate genes related to neuronal function integrity and myelin production. Depending on the sex, androgens down-regulate genes related to the immune system in females and lipid catabolism in males. Thus, androgens are required for proper myelin regeneration in females and therapeutic approaches of demyelinating diseases need to consider male-female differences.


Asunto(s)
Andrógenos , Esclerosis Múltiple , Animales , Ratones , Femenino , Masculino , Modelos Animales de Enfermedad , Vaina de Mielina/fisiología , Esclerosis Múltiple/genética , Esclerosis Múltiple/patología , Neuronas/patología
14.
J Neurosci ; 31(17): 6379-91, 2011 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-21525278

RESUMEN

Neural crest stem cells (NCSCs) give rise to the neurons and glia of the peripheral nervous system (PNS). NCSC-like cells can be isolated from multiple peripheral organs and maintained in neurosphere culture. Combining in vitro culture and transplantation, we show that expanded embryonic NCSC-like cells lose PNS traits and are reprogrammed to generate CNS cell types. When transplanted into the embryonic or adult mouse CNS, they differentiate predominantly into cells of the oligodendrocyte lineage without any signs of tumor formation. NCSC-derived oligodendrocytes generate CNS myelin and contribute to the repair of the myelin deficiency in shiverer mice. These results demonstrate a reprogramming of PNS progenitors to CNS fates without genetic modification and imply that PNS cells could be a potential source for cell-based CNS therapy.


Asunto(s)
Lesiones Encefálicas/cirugía , Regulación del Desarrollo de la Expresión Génica/fisiología , Vaina de Mielina/metabolismo , Células-Madre Neurales/fisiología , Oligodendroglía/fisiología , Trasplante de Células Madre/métodos , Animales , Animales Recién Nacidos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/fisiopatología , Diferenciación Celular/fisiología , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Células Cultivadas , Modelos Animales de Enfermedad , Embrión de Mamíferos , Femenino , Ganglios Espinales/citología , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteínas Fluorescentes Verdes/genética , Péptidos y Proteínas de Señalización Intercelular/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/metabolismo , Proteína Básica de Mielina/genética , Proteína Básica de Mielina/metabolismo , Proteína Proteolipídica de la Mielina/genética , Proteína Proteolipídica de la Mielina/metabolismo , Vaina de Mielina/ultraestructura , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Neurofilamentos/metabolismo , Antígenos O/metabolismo , Factor de Transcripción 2 de los Oligodendrocitos , Oligodendroglía/ultraestructura , Transfección/métodos , Tubulina (Proteína)/metabolismo
15.
PLoS Biol ; 7(10): e1000230, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19859539

RESUMEN

The corpus callosum (CC) is the main pathway responsible for interhemispheric communication. CC agenesis is associated with numerous human pathologies, suggesting that a range of developmental defects can result in abnormalities in this structure. Midline glial cells are known to play a role in CC development, but we here show that two transient populations of midline neurons also make major contributions to the formation of this commissure. We report that these two neuronal populations enter the CC midline prior to the arrival of callosal pioneer axons. Using a combination of mutant analysis and in vitro assays, we demonstrate that CC neurons are necessary for normal callosal axon navigation. They exert an attractive influence on callosal axons, in part via Semaphorin 3C and its receptor Neuropilin-1. By revealing a novel and essential role for these neuronal populations in the pathfinding of a major cerebral commissure, our study brings new perspectives to pathophysiological mechanisms altering CC formation.


Asunto(s)
Axones/metabolismo , Cuerpo Calloso/embriología , Neuronas/metabolismo , Semaforinas/metabolismo , Síndrome Acrocallosal/metabolismo , Síndrome Acrocallosal/patología , Animales , Axones/patología , Línea Celular , Movimiento Celular , Técnicas de Cocultivo , Cuerpo Calloso/citología , Cuerpo Calloso/metabolismo , Humanos , Ratones , Vías Nerviosas/citología , Vías Nerviosas/embriología , Neuronas/citología , Neuropilina-1/metabolismo
16.
Elife ; 112022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36214451

RESUMEN

The differentiation of oligodendroglia from oligodendrocyte precursor cells (OPCs) to complex and extensive myelinating oligodendrocytes (OLs) is a multistep process that involves large-scale morphological changes with significant strain on the cytoskeleton. While key chromatin and transcriptional regulators of differentiation have been identified, their target genes responsible for the morphological changes occurring during OL myelination are still largely unknown. Here, we show that the regulator of focal adhesion, Tensin3 (Tns3), is a direct target gene of Olig2, Chd7, and Chd8, transcriptional regulators of OL differentiation. Tns3 is transiently upregulated and localized to cell processes of immature OLs, together with integrin-ß1, a key mediator of survival at this transient stage. Constitutive <i>Tns3</i> loss of function leads to reduced viability in mouse and humans, with surviving knockout mice still expressing Tns3 in oligodendroglia. Acute deletion of <i>Tns3</i> in vivo, either in postnatal neural stem cells (NSCs) or in OPCs, leads to a twofold reduction in OL numbers. We find that the transient upregulation of Tns3 is required to protect differentiating OPCs and immature OLs from cell death by preventing the upregulation of p53, a key regulator of apoptosis. Altogether, our findings reveal a specific time window during which transcriptional upregulation of Tns3 in immature OLs is required for OL differentiation likely by mediating integrin-ß1 survival signaling to the actin cytoskeleton as OL undergo the large morphological changes required for their terminal differentiation.


Asunto(s)
Adhesiones Focales , Proteína p53 Supresora de Tumor , Humanos , Animales , Ratones , Adhesiones Focales/metabolismo , Proteína p53 Supresora de Tumor/genética , Oligodendroglía/metabolismo , Diferenciación Celular/genética , Ratones Noqueados , Factores de Transcripción/metabolismo , Cromatina/metabolismo , Integrinas/metabolismo
17.
Dev Cell ; 11(6): 831-44, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17141158

RESUMEN

Proneural proteins play a central role in vertebrate neurogenesis, but little is known of the genes that they regulate and of the factors that interact with proneural proteins to activate a neurogenic program. Here, we demonstrate that the proneural protein Mash1 and the POU proteins Brn1 and Brn2 interact on the promoter of the Notch ligand Delta1 and synergistically activate Delta1 transcription, a key step in neurogenesis. Overexpression experiments in vivo indicate that Brn2, like Mash1, regulates additional aspects of neurogenesis, including the division of progenitors and the differentiation and migration of neurons. We identify by in silico screening a number of additional candidate target genes, which are recognized by Mash1 and Brn proteins through a DNA-binding motif similar to that found in the Delta1 gene and present a broad range of activities. We thus propose that Mash1 synergizes with Brn factors to regulate multiple steps of neurogenesis.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , ADN/metabolismo , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Factores del Dominio POU/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/fisiología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular , Movimiento Celular , Embrión de Pollo , Inmunoprecipitación de Cromatina , Electroporación , Regulación del Desarrollo de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Factores del Dominio POU/genética , Regiones Promotoras Genéticas , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Células Madre/metabolismo , Transcripción Genética , Transfección
18.
Dev Biol ; 328(2): 422-33, 2009 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-19217896

RESUMEN

Cerebellar GABAergic interneurons and glia originate from progenitors that delaminate from the ventricular neuroepithelium and proliferate in the prospective white matter. Even though this population of progenitor cells is multipotent as a whole, clonal analysis indicates that different lineages are already separated during postnatal development and little is known about the mechanisms that regulate the specification and differentiation of these cerebellar types at earlier stages. Here, we investigate the role of Ascl1 in the development of inhibitory interneurons and glial cells in the cerebellum. This gene is expressed by maturing oligodendrocytes and GABAergic interneurons and is required for the production of appropriate quantities of these cells, which are severely reduced in Ascl1(-/-) mouse cerebella. Nevertheless, the two lineages are not related and the majority of oligodendrocytes populating the developing cerebellum actually derive from extracerebellar sources. Targeted electroporation of Ascl1-expression vectors to ventricular neuroepithelium progenitors enhances the production of interneurons and completely suppresses astrocytic differentiation, whereas loss of Ascl1 function has opposite effects on both cell types. Our results indicate that Ascl1 directs ventricular neuroepithelium progenitors towards inhibitory interneuron fate and restricts their ability to differentiate along the astroglial lineage.


Asunto(s)
Diferenciación Celular/fisiología , Cerebelo/citología , Interneuronas/citología , Neuroglía/citología , Células Madre/citología , Animales , Astrocitos/citología , Astrocitos/fisiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Linaje de la Célula/fisiología , Cerebelo/embriología , Interneuronas/fisiología , Ratones , Ratones Noqueados , Neuroglía/fisiología , Oligodendroglía/citología , Oligodendroglía/fisiología , Células Madre/fisiología
19.
Neuron ; 48(1): 45-62, 2005 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-16202708

RESUMEN

The molecular mechanisms specifying the dendritic morphology of different neuronal subtypes are poorly understood. Here we demonstrate that the bHLH transcription factor Neurogenin2 (Ngn2) is both necessary and sufficient for specifying the dendritic morphology of pyramidal neurons in vivo by specifying the polarity of its leading process during the initiation of radial migration. The ability of Ngn2 to promote a polarized leading process outgrowth requires the phosphorylation of a single tyrosine residue at position 241, an event that is neither involved in Ngn2 direct transactivation properties nor its proneural function. Interestingly, the migration defect observed in the Ngn2 knockout mouse and in progenitors expressing the Ngn2(Y241F) mutation can be rescued by inhibiting the activity of the small-GTPase RhoA in cortical progenitors. Our results demonstrate that Ngn2 coordinates the acquisition of the radial migration properties and the unipolar dendritic morphology characterizing pyramidal neurons through molecular mechanisms distinct from those mediating its proneural activity.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Movimiento Celular/fisiología , Dendritas/fisiología , Neocórtex/citología , Proteínas del Tejido Nervioso/metabolismo , Células Piramidales/citología , Células Piramidales/fisiología , Factores de Edad , Animales , Western Blotting/métodos , Recuento de Células/métodos , Células Cultivadas , Pollos , Clonación Molecular/métodos , Electroforesis en Gel de Campo Pulsado/métodos , Electroporación/métodos , Embrión de Mamíferos , Embrión no Mamífero , Femenino , Técnica del Anticuerpo Fluorescente/métodos , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Técnicas In Vitro , Masculino , Ratones , Microscopía Confocal/métodos , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Biológicos , Neocórtex/embriología , Neocórtex/metabolismo , Fosforilación , Embarazo , Alineación de Secuencia , Células Madre/fisiología , Factores de Tiempo , Tubulina (Proteína)/metabolismo , Tirosina/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
20.
J Neurosci ; 27(16): 4233-42, 2007 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-17442807

RESUMEN

The bHLH (basic helix-loop-helix) transcription factor Mash1 is best known for its role in the regulation of neurogenesis. However, Mash1 is also expressed in oligodendrocyte precursors and has recently been shown to promote the generation of oligodendrocytes in cell culture, suggesting that it may regulate oligodendrogenesis as well. Here, we show that in the developing ventral forebrain, Mash1 is expressed by a subset of oligodendrocyte precursors (OPCs) as soon as they are generated in the ventricular zone. Using reporter mice, we demonstrate that a subset of OPCs in both the embryonic and postnatal forebrain originate from Mash1-positive progenitors, including a large fraction of adult NG2-positive OPCs. Using Mash1 null mutant mice, we show that Mash1 is required for the generation of an early population of OPCs in the ventral forebrain between embryonic day 11.5 (E11.5) and E13.5, whereas OPCs generated later in embryonic development are not affected. Overexpression of Mash1 in the dorsal telencephalon induces expression of PDGFRalpha (platelet-derived growth factor receptor alpha) but not other OPC markers, suggesting that Mash1 specifies oligodendrogenesis in cooperation with other factors. Analysis of double-mutant mice suggests that Olig2 is one of the factors that cooperate with Mash1 for generation of OPCs. Together, our results show for the first time that Mash1 cooperates in vivo with Olig2 in oligodendrocyte specification, demonstrating an essential role for Mash1 in the generation of a subset of oligodendrocytes and revealing a genetic heterogeneity of oligodendrocyte lineages in the mouse forebrain.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Linaje de la Célula/genética , Proteínas del Tejido Nervioso/metabolismo , Oligodendroglía/clasificación , Telencéfalo/metabolismo , Animales , Inmunohistoquímica , Ratones , Ratones Transgénicos , Factor de Transcripción 2 de los Oligodendrocitos , Células Madre/metabolismo , Telencéfalo/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA