Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proteins ; 92(4): 509-528, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37982321

RESUMEN

Interactions between proteins are vital in almost all biological processes. The characterization of protein-protein interactions helps us understand the mechanistic basis of biological processes, thereby enabling the manipulation of proteins for biotechnological and clinical purposes. The interface residues of a protein-protein complex are assumed to have the following two properties: (a) they always interact with a residue of a partner protein, which forms the basis for distance-based interface residue identification methods, and (b) they are solvent-exposed in the isolated form of the protein and become buried in the complex form, which forms the basis for Accessible Surface Area (ASA)-based methods. The study interrogates this popular assumption by recognizing interface residues in protein-protein complexes through these two methods. The results show that a few residues are identified uniquely by each method, and the extent of conservation, propensities, and their contribution to the stability of protein-protein interaction varies substantially between these residues. The case study analyses showed that interface residues, unique to distance, participate in crucial interactions that hold the proteins together, whereas the interface residues unique to the ASA method have a potential role in the recognition, dynamics, and specificity of the complex and can also be a hotspot. Overall, the study recommends applying both distance and ASA methods so that some interface residues missed by either method but crucial to the stability, recognition, dynamics, and function of protein-protein complexes are identified in a complementary manner.


Asunto(s)
Proteínas , Proteínas/química , Solventes/química , Unión Proteica
2.
Cell Rep ; 35(9): 109190, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34077730

RESUMEN

Pathological lipid accumulation is often associated with enhanced uptake of free fatty acids via specific transporters in cardiomyocytes. Here, we identify SIRT6 as a critical transcriptional regulator of fatty acid transporters in cardiomyocytes. We find that SIRT6 deficiency enhances the expression of fatty acid transporters, leading to enhanced fatty acid uptake and lipid accumulation. Interestingly, the haploinsufficiency of SIRT6 is sufficient to induce the expression of fatty acid transporters and cause lipid accumulation in murine hearts. Mechanistically, SIRT6 depletion enhances the occupancy of the transcription factor PPARγ on the promoters of critical fatty acid transporters without modulating the acetylation of histone 3 at Lys 9 and Lys 56. Notably, the binding of SIRT6 to the DNA-binding domain of PPARγ is critical for regulating the expression of fatty acid transporters in cardiomyocytes. Our data suggest exploiting SIRT6 as a potential therapeutic target for protecting the heart from metabolic diseases.


Asunto(s)
Ácidos Grasos/metabolismo , PPAR gamma/metabolismo , Sirtuinas/metabolismo , Transcripción Genética , Adulto , Animales , Transporte Biológico/genética , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/patología , Modelos Animales de Enfermedad , Femenino , Células HEK293 , Insuficiencia Cardíaca/genética , Humanos , Masculino , Proteínas de Transporte de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , PPAR gamma/química , Regiones Promotoras Genéticas/genética , Dominios Proteicos , Sirtuinas/deficiencia , Sirtuinas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA