Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Glob Chang Biol ; 26(4): 2336-2352, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31994267

RESUMEN

Climate and land-use change jointly affect the future of biodiversity. Yet, biodiversity scenarios have so far concentrated on climatic effects because forecasts of land use are rarely available at appropriate spatial and thematic scales. Agent-based models (ABMs) represent a potentially powerful but little explored tool for establishing thematically and spatially fine-grained land-use scenarios. Here, we use an ABM parameterized for 1,329 agents, mostly farmers, in a Central European model region, and simulate the changes to land-use patterns resulting from their response to three scenarios of changing socio-economic conditions and three scenarios of climate change until the mid of the century. Subsequently, we use species distribution models to, first, analyse relationships between the realized niches of 832 plant species and climatic gradients or land-use types, respectively, and, second, to project consequent changes in potential regional ranges of these species as triggered by changes in both the altered land-use patterns and the changing climate. We find that both drivers determine the realized niches of the studied plants, with land use having a stronger effect than any single climatic variable in the model. Nevertheless, the plants' future distributions appear much more responsive to climate than to land-use changes because alternative future socio-economic backgrounds have only modest impact on land-use decisions in the model region. However, relative effects of climate and land-use changes on biodiversity may differ drastically in other regions, especially where landscapes are still dominated by natural or semi-natural habitat. We conclude that agent-based modelling of land use is able to provide scenarios at scales relevant to individual species distribution and suggest that coupling ABMs with models of species' range change should be intensified to provide more realistic biodiversity forecasts.

2.
Biomass Bioenergy ; 50: 35-44, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26109750

RESUMEN

Like other EU Member States, Austria will meet the substitution target of the EU European Renewable Energy Directive for transportation almost exclusively by first generation biofuels, primarily biodiesel from oilseed rape (OSR). Genetically modified (GM) plants have been promoted as a new option for biofuel production as they promise higher yield or higher quality feedstock. We tested implications of GM OSR application for biodiesel production in Austria by means of high resolution spatially explicit simulation of 140 different coexistence scenarios within six main OSR cropping regions in Austria (2400 km2). We identified structural land use characteristics such as field size, land use diversity, land holding patterns and the proportion of the target crop as the predominant factors which influence overall production of OSR in a coexistence scenario. Assuming isolation distances of 800 m and non-GM-OSR proportions of at least 10% resulted in a loss of area for cultivation of OSR in all study areas ranging from -4.5% to more than -25%, depending on the percentage of GM farmers and on the region. We could show that particularly the current primary OSR cropping regions are largely unsuitable for coexistence and would suffer from a net loss of OSR area even at isolation distances of 400 or 800 m. Coexistence constraints associated with application of GM OSR are likely to offset possible GM gains by substantially reducing farmland for OSR cultivation, thus contradicting the political aim to increase domestic OSR area to meet the combined demands of food, feed and biofuel production.

3.
Front Genome Ed ; 5: 1176290, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37153078

RESUMEN

Novel techniques such as CRISPR/Cas are increasingly being applied for the development of modern crops. However, the regulatory framework for production, labelling and handling of genome-edited organisms varies worldwide. Currently, the European Commission is raising the question whether genome-edited organisms should still be regulated as genetically modified organisms in the future or whether a deregulation should be implemented. In our paper, based on the outcome of a 2-year case study on oilseed rape in Austria, we show that seed spillage during import and subsequent transport and handling activities is a key factor for the unintended dispersal of seeds into the environment, the subsequent emergence of feral oilseed rape populations and their establishment and long-term persistence in natural habitats. These facts must likewise be considered in case of genome-edited oilseed rape contaminants that might be accidentally introduced with conventional kernels. We provide evidence that in Austria a high diversity of oilseed rape genotypes, including some with alleles not known from cultivated oilseed rape in Austria, exists at sites with high seed spillage and low weed management, rendering these sites of primary concern with respect to possible escape of genome-edited oilseed rape varieties into the environment. Since appropriate detection methods for single genome-edited oilseed rape events have only recently started to be successfully developed and the adverse effects of these artificial punctate DNA exchanges remain largely unknown, tracing the transmission and spread of these genetic modifications places high requirements on their monitoring, identification, and traceability.

4.
BMC Evol Biol ; 10: 63, 2010 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-20193061

RESUMEN

BACKGROUND: For assessing the risk of escape of transgenes from cultivation, the persistence of feral populations of crop plants is an important aspect. Feral populations of oilseed rape, Brassica napus, are well known, but only scarce information is available on their population dynamics, particularly in Central Europe. To investigate genetic diversity, origin and persistence of feral oilseed rape in Austria, we compared variation at nine polymorphic microsatellite loci in eight feral populations with 19 commercial varieties. RESULTS: Overall, commercial varieties and feral populations showed a similar pattern of genetic variation and a similar level of observed heterozygosity. The two groups, however, shared less than 50% of the alleles and no multilocus genotype. A significant among-group (commercial varieties versus feral populations) component of genetic variation was observed (AMOVA: FCT = 0.132). Pairwise comparisons between varieties and feral populations showed moderate to very high genetic differentiation (FST = 0.209 - 0.900). The software STRUCTURE also demonstrated a clear separation between commercial varieties and feral samples: out of 17 identified genetic clusters, only one comprised plants from both a commercial variety and feral sites. CONCLUSIONS: The results suggest that feral oilseed rape is able to maintain persistent populations. The feral populations may have derived from older cultivars that were not included in our analyses or perhaps have already hybridised with related crops or wild relatives. Feral populations therefore have to be considered in ecological risk assessment and future coexistence measures as a potential hybridisation partner of transgenic oilseed rape.


Asunto(s)
Brassica napus/genética , Variación Genética , Plantas Modificadas Genéticamente/genética , Austria , Repeticiones de Microsatélite , Filogenia , Transgenes
5.
Environ Sci Eur ; 28(1): 30, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28090425

RESUMEN

The occurrence of volunteer maize plants in subsequent crops as well as of feral maize plants in non-agricultural areas is an essential issue in risk assessments of genetically modified (GM) maize, with regard to possible contamination of natural habitats with GM material and as contribution to the total adventitious GM content of the non-GM final product. The appearance of feral maize plants has been confirmed for non-agricultural habitats in European areas with Mediterranean climate such as Spain. However, the existence of maize volunteers and feral maize outside cultivation under Central European continental climatic conditions is considered to be extremely unlikely in those winter-cold areas. Here, field observations during 5 years (2007, 2008, 2010, 2011 and 2015) in Austria are presented that confirm the occurrence of volunteer and feral maize under Central European climatic conditions. Most of these plants produced fertile inflorescences with viable pollen and fully developed cobs. Maize kernels may reach the soil by disintegration of cobs due to disease, using crushed maize cobs for game-feeding, left overs in manure dispersed during fertilisation or from transporting and handling of crushed cobs. The evidence of volunteer and feral maize in four Federal States in Austria (Burgenland, Lower Austria, Upper Austria, Styria) emphasises the necessity to consider these hitherto under-emphasised factors in an ecological risk assessment (ERA) of GM maize as a possible source for transgenes in non-agricultural habitats, because these plants could act as bridge for the spread of GM material into semi-natural habitats. In accordance with the European Food Safety Authority (EFSA), which states that in principle maize has the potential to survive as a volunteer or feral plant also in regions with cold winters, the investigation of the frequency of their occurrence under Central European conditions should be part of future monitoring programmes in order to assess their potential for permitting transgene spread.

6.
Environ Pollut ; 206: 342-51, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26232739

RESUMEN

Antibiotic resistance genes may be considered as environmental pollutants if anthropogenic emission and manipulations increase their prevalence above usually occurring background levels. The prevalence of aph(3')-IIa/nptII and aph(3')-IIIa/nptIII - frequent marker genes in plant biotechnology conferring resistance to certain aminoglycosides - was determined in Austrian soils from 100 maize and potato fields not yet exposed to but eligible for GMO crop cultivation. Total soil DNA extracts were analysed by nptII/nptIII-specific TaqMan real time PCR. Of all fields 6% were positive for nptII (median: 150 copies/g soil; range: 31-856) and 85% for nptIII (1190 copies/g soil; 13-61600). The copy-number deduced prevalence of nptIII carriers was 14-fold higher compared to nptII. Of the cultivable kanamycin-resistant soil bacteria 1.8% (95% confidence interval: 0-3.3%) were positive for nptIII, none for nptII (0-0.8%). The nptII-load of the studied soils was low rendering nptII a typical candidate as environmental pollutant upon anthropogenic release into these ecosystems.


Asunto(s)
Antibacterianos/análisis , Productos Agrícolas/crecimiento & desarrollo , Farmacorresistencia Bacteriana/genética , Genes Bacterianos , Microbiología del Suelo , Contaminantes del Suelo/análisis , Suelo/química , Austria , Productos Agrícolas/genética , ADN Bacteriano/genética , Resistencia a la Kanamicina/genética , Suelo/normas , Solanum tuberosum/genética , Solanum tuberosum/crecimiento & desarrollo , Zea mays/genética , Zea mays/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA