Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Nat Immunol ; 24(11): 1825-1838, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37735593

RESUMEN

Noncoding genetic variation drives phenotypic diversity, but underlying mechanisms and affected cell types are incompletely understood. Here, investigation of effects of natural genetic variation on the epigenomes and transcriptomes of Kupffer cells derived from inbred mouse strains identified strain-specific environmental factors influencing Kupffer cell phenotypes, including leptin signaling in Kupffer cells from a steatohepatitis-resistant strain. Cell-autonomous and non-cell-autonomous effects of genetic variation were resolved by analysis of F1 hybrid mice and cells engrafted into an immunodeficient host. During homeostasis, non-cell-autonomous trans effects of genetic variation dominated control of Kupffer cells, while strain-specific responses to acute lipopolysaccharide injection were dominated by actions of cis-acting effects modifying response elements for lineage-determining and signal-dependent transcription factors. These findings demonstrate that epigenetic landscapes report on trans effects of genetic variation and serve as a resource for deeper analyses into genetic control of transcription in Kupffer cells and macrophages in vitro.


Asunto(s)
Macrófagos del Hígado , Transcriptoma , Ratones , Animales , Epigenoma , Ratones Endogámicos C57BL , Variación Genética
2.
Nat Immunol ; 24(7): 1188-1199, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37322178

RESUMEN

Spalt-like transcription factor 1 (SALL1) is a critical regulator of organogenesis and microglia identity. Here we demonstrate that disruption of a conserved microglia-specific super-enhancer interacting with the Sall1 promoter results in complete and specific loss of Sall1 expression in microglia. By determining the genomic binding sites of SALL1 and leveraging Sall1 enhancer knockout mice, we provide evidence for functional interactions between SALL1 and SMAD4 required for microglia-specific gene expression. SMAD4 binds directly to the Sall1 super-enhancer and is required for Sall1 expression, consistent with an evolutionarily conserved requirement of the TGFß and SMAD homologs Dpp and Mad for cell-specific expression of Spalt in the Drosophila wing. Unexpectedly, SALL1 in turn promotes binding and function of SMAD4 at microglia-specific enhancers while simultaneously suppressing binding of SMAD4 to enhancers of genes that become inappropriately activated in enhancer knockout microglia, thereby enforcing microglia-specific functions of the TGFß-SMAD signaling axis.


Asunto(s)
Microglía , Factores de Transcripción , Animales , Ratones , Sitios de Unión , ADN , Ratones Noqueados , Microglía/metabolismo , Regiones Promotoras Genéticas/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
3.
Immunity ; 56(9): 2152-2171.e13, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37582369

RESUMEN

Microglia phenotypes are highly regulated by the brain environment, but the transcriptional networks that specify the maturation of human microglia are poorly understood. Here, we characterized stage-specific transcriptomes and epigenetic landscapes of fetal and postnatal human microglia and acquired corresponding data in induced pluripotent stem cell (iPSC)-derived microglia, in cerebral organoids, and following engraftment into humanized mice. Parallel development of computational approaches that considered transcription factor (TF) co-occurrence and enhancer activity allowed prediction of shared and state-specific gene regulatory networks associated with fetal and postnatal microglia. Additionally, many features of the human fetal-to-postnatal transition were recapitulated in a time-dependent manner following the engraftment of iPSC cells into humanized mice. These data and accompanying computational approaches will facilitate further efforts to elucidate mechanisms by which human microglia acquire stage- and disease-specific phenotypes.


Asunto(s)
Células Madre Pluripotentes Inducidas , Microglía , Humanos , Ratones , Animales , Redes Reguladoras de Genes , Encéfalo , Regulación de la Expresión Génica
4.
Immunity ; 52(6): 1057-1074.e7, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32362324

RESUMEN

Tissue-resident and recruited macrophages contribute to both host defense and pathology. Multiple macrophage phenotypes are represented in diseased tissues, but we lack deep understanding of mechanisms controlling diversification. Here, we investigate origins and epigenetic trajectories of hepatic macrophages during diet-induced non-alcoholic steatohepatitis (NASH). The NASH diet induced significant changes in Kupffer cell enhancers and gene expression, resulting in partial loss of Kupffer cell identity, induction of Trem2 and Cd9 expression, and cell death. Kupffer cell loss was compensated by gain of adjacent monocyte-derived macrophages that exhibited convergent epigenomes, transcriptomes, and functions. NASH-induced changes in Kupffer cell enhancers were driven by AP-1 and EGR that reprogrammed LXR functions required for Kupffer cell identity and survival to instead drive a scar-associated macrophage phenotype. These findings reveal mechanisms by which disease-associated environmental signals instruct resident and recruited macrophages to acquire distinct gene expression programs and corresponding functions.


Asunto(s)
Microambiente Celular/genética , Reprogramación Celular/genética , Epigénesis Genética , Regulación de la Expresión Génica , Células Mieloides/metabolismo , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Animales , Biomarcadores , Secuenciación de Inmunoprecipitación de Cromatina , Dieta , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Ontología de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Macrófagos del Hígado/inmunología , Macrófagos del Hígado/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Enfermedad del Hígado Graso no Alcohólico/patología , Especificidad de Órganos/genética , Especificidad de Órganos/inmunología , Unión Proteica , Transducción de Señal , Análisis de la Célula Individual
5.
Immunity ; 51(4): 655-670.e8, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31587991

RESUMEN

Tissue environment plays a powerful role in establishing and maintaining the distinct phenotypes of resident macrophages, but the underlying molecular mechanisms remain poorly understood. Here, we characterized transcriptomic and epigenetic changes in repopulating liver macrophages following acute Kupffer cell depletion as a means to infer signaling pathways and transcription factors that promote Kupffer cell differentiation. We obtained evidence that combinatorial interactions of the Notch ligand DLL4 and transforming growth factor-b (TGF-ß) family ligands produced by sinusoidal endothelial cells and endogenous LXR ligands were required for the induction and maintenance of Kupffer cell identity. DLL4 regulation of the Notch transcriptional effector RBPJ activated poised enhancers to rapidly induce LXRα and other Kupffer cell lineage-determining factors. These factors in turn reprogrammed the repopulating liver macrophage enhancer landscape to converge on that of the original resident Kupffer cells. Collectively, these findings provide a framework for understanding how macrophage progenitor cells acquire tissue-specific phenotypes.


Asunto(s)
Macrófagos del Hígado/fisiología , Hígado/metabolismo , Macrófagos/fisiología , Células Mieloides/fisiología , Animales , Diferenciación Celular , Células Cultivadas , Microambiente Celular , Reprogramación Celular , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Hígado/citología , Receptores X del Hígado/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fenotipo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo
6.
Nature ; 604(7907): 689-696, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35444276

RESUMEN

The structure of the human neocortex underlies species-specific traits and reflects intricate developmental programs. Here we sought to reconstruct processes that occur during early development by sampling adult human tissues. We analysed neocortical clones in a post-mortem human brain through a comprehensive assessment of brain somatic mosaicism, acting as neutral lineage recorders1,2. We combined the sampling of 25 distinct anatomic locations with deep whole-genome sequencing in a neurotypical deceased individual and confirmed results with 5 samples collected from each of three additional donors. We identified 259 bona fide mosaic variants from the index case, then deconvolved distinct geographical, cell-type and clade organizations across the brain and other organs. We found that clones derived after the accumulation of 90-200 progenitors in the cerebral cortex tended to respect the midline axis, well before the anterior-posterior or ventral-dorsal axes, representing a secondary hierarchy following the overall patterning of forebrain and hindbrain domains. Clones across neocortically derived cells were consistent with a dual origin from both dorsal and ventral cellular populations, similar to rodents, whereas the microglia lineage appeared distinct from other resident brain cells. Our data provide a comprehensive analysis of brain somatic mosaicism across the neocortex and demonstrate cellular origins and progenitor distribution patterns within the human brain.


Asunto(s)
Células Clonales , Mosaicismo , Neocórtex , Linaje de la Célula , Células Cultivadas , Humanos , Microglía , Neocórtex/citología , Neocórtex/crecimiento & desarrollo
7.
Hepatology ; 74(2): 667-685, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33550587

RESUMEN

BACKGROUND AND AIMS: In clinical and experimental NASH, the origin of the scar-forming myofibroblast is the HSC. We used foz/foz mice on a Western diet to characterize in detail the phenotypic changes of HSCs in a NASH model. APPROACH AND RESULTS: We examined the single-cell expression profiles (scRNA sequencing) of HSCs purified from the normal livers of foz/foz mice on a chow diet, in NASH with fibrosis of foz/foz mice on a Western diet, and in livers during regression of NASH after switching back to a chow diet. Selected genes were analyzed using immunohistochemistry, quantitative real-time PCR, and short hairpin RNA knockdown in primary mouse HSCs. Our analysis of the normal liver identified two distinct clusters of quiescent HSCs that correspond to their acinar position of either pericentral vein or periportal vein. The NASH livers had four distinct HSC clusters, including one representing the classic fibrogenic myofibroblast. The three other HSC clusters consisted of a proliferating cluster, an intermediate activated cluster, and an immune and inflammatory cluster. The livers with NASH regression had one cluster of inactivated HSCs, which was similar to, but distinct from, the quiescent HSCs. CONCLUSIONS: Analysis of single-cell RNA sequencing in combination with an interrogation of previous studies revealed an unanticipated heterogeneity of HSC phenotypes under normal and injured states.


Asunto(s)
Redes Reguladoras de Genes , Células Estrelladas Hepáticas/metabolismo , Hígado/patología , Miofibroblastos/patología , Enfermedad del Hígado Graso no Alcohólico/patología , Animales , Proteínas de Ciclo Celular/genética , Células Cultivadas , Dieta Occidental/efectos adversos , Modelos Animales de Enfermedad , Heterogeneidad Genética , Células Estrelladas Hepáticas/patología , Humanos , Hígado/citología , Masculino , Ratones , Ratones Transgénicos , Mutación , Enfermedad del Hígado Graso no Alcohólico/etiología , Cultivo Primario de Células , RNA-Seq , Análisis de la Célula Individual
8.
Mol Cell Proteomics ; 14(1): 1-14, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24997994

RESUMEN

Senescence is a prominent solid tumor response to therapy in which cells avoid apoptosis and instead enter into prolonged cell cycle arrest. We applied a quantitative proteomics screen to identify signals that lead to therapy-induced senescence and discovered that Bcl2-associated athanogene 3 (Bag3) is up-regulated after adriamycin treatment in MCF7 cells. Bag3 is a member of the BAG family of co-chaperones that interacts with Hsp70. Bag3 also regulates major cell-signaling pathways. Mass spectrometry analysis of the Bag3 Complex revealed a novel interaction between Bag3 and Major Vault Protein (MVP). Silencing of Bag3 or MVP shifts the cellular response to adriamycin to favor apoptosis. We demonstrate that Bag3 and MVP contribute to apoptosis resistance in therapy-induced senescence by increasing the level of activation of extracellular signal-regulated kinase1/2 (ERK1/2). Silencing of either Bag3 or MVP decreased ERK1/2 activation and promoted apoptosis in adriamycin-treated cells. An increase in nuclear accumulation of MVP is observed during therapy-induced senescence and the shift in MVP subcellular localization is Bag3-dependent. We propose a model in which Bag3 binds to MVP and facilitates MVP accumulation in the nucleus, which sustains ERK1/2 activation. We confirmed that silencing of Bag3 or MVP shifts the response toward apoptosis and regulates ERK1/2 activation in a panel of diverse breast cancer cell lines. This study highlights Bag3-MVP as an important complex that regulates a potent prosurvival signaling pathway and contributes to chemotherapy resistance in breast cancer.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Senescencia Celular/fisiología , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Partículas Ribonucleoproteicas en Bóveda/metabolismo , Antibióticos Antineoplásicos/farmacología , Apoptosis/fisiología , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Doxorrubicina/farmacología , Humanos , Proteómica , Transducción de Señal
9.
Nat Cell Biol ; 9(7): 804-12, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17589499

RESUMEN

Nuclear receptor-binding SET domain protein 1 (NSD1) prototype is a family of mammalian histone methyltransferases (NSD1, NSD2/MMSET/WHSC1, NSD3/WHSC1L1) that are essential in development and are mutated in human acute myeloid leukemia (AML), overgrowth syndromes, multiple myeloma and lung cancers. In AML, the recurring t(5;11)(q35;p15.5) translocation fuses NSD1 to nucleoporin-98 (NUP98). Here, we present the first characterization of the transforming properties and molecular mechanisms of NUP98-NSD1. We demonstrate that NUP98-NSD1 induces AML in vivo, sustains self-renewal of myeloid stem cells in vitro, and enforces expression of the HoxA7, HoxA9, HoxA10 and Meis1 proto-oncogenes. Mechanistically, NUP98-NSD1 binds genomic elements adjacent to HoxA7 and HoxA9, maintains histone H3 Lys 36 (H3K36) methylation and histone acetylation, and prevents EZH2-mediated transcriptional repression of the Hox-A locus during differentiation. Deletion of the NUP98 FG-repeat domain, or mutations in NSD1 that inactivate the H3K36 methyltransferase activity or that prevent binding of NUP98-NSD1 to the Hox-A locus precluded both Hox-A gene activation and myeloid progenitor immortalization. We propose that NUP98-NSD1 prevents EZH2-mediated repression of Hox-A locus genes by colocalizing H3K36 methylation and histone acetylation at regulatory DNA elements. This report is the first to link deregulated H3K36 methylation to tumorigenesis and to link NSD1 to transcriptional regulation of the Hox-A locus.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Péptidos y Proteínas de Señalización Intracelular/fisiología , Leucemia Mieloide/patología , Proteínas de Complejo Poro Nuclear/fisiología , Proteínas Nucleares/fisiología , Proteínas de Fusión Oncogénica/fisiología , Acetilación , Enfermedad Aguda , Secuencia de Aminoácidos , Animales , Transformación Celular Neoplásica , Células Cultivadas , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina , Histonas/metabolismo , Proteínas de Homeodominio/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Leucemia Mieloide/genética , Leucemia Mieloide/metabolismo , Metilación , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Mutación , Células Progenitoras Mieloides/fisiología , Proteínas de Complejo Poro Nuclear/genética , Proteínas Nucleares/genética , Proteínas de Fusión Oncogénica/genética , Espectrofotometría Atómica , Activación Transcripcional , Translocación Genética
10.
Neuron ; 111(2): 202-219.e7, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36368315

RESUMEN

In addition to tau and Aß pathologies, inflammation plays an important role in Alzheimer's disease (AD). Variants in APOE and TREM2 increase AD risk. ApoE4 exacerbates tau-linked neurodegeneration and inflammation in P301S tau mice and removal of microglia blocks tau-dependent neurodegeneration. Microglia adopt a heterogeneous population of transcriptomic states in response to pathology, at least some of which are dependent on TREM2. Previously, we reported that knockout (KO) of TREM2 attenuated neurodegeneration in P301S mice that express mouse Apoe. Because of the possible common pathway of ApoE and TREM2 in AD, we tested whether TREM2 KO (T2KO) would block neurodegeneration in P301S Tau mice expressing ApoE4 (TE4), similar to that observed with microglial depletion. Surprisingly, we observed exacerbated neurodegeneration and tau pathology in TE4-T2KO versus TE4 mice, despite decreased TREM2-dependent microgliosis. Our results suggest that tau pathology-dependent microgliosis, that is, TREM2-independent microgliosis, facilitates tau-mediated neurodegeneration in the presence of ApoE4.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteína E4 , Ratones , Animales , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Enfermedad de Alzheimer/metabolismo , Inflamación/metabolismo , Microglía/metabolismo , Modelos Animales de Enfermedad , Glicoproteínas de Membrana/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo
11.
Hum Mutat ; 32(3): 292-8, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21972110

RESUMEN

Sotos syndrome is a human developmental and cognitive disorder caused by happloinsufficiency of transcription factor NSD1. Similar phenotypes arise from NSD1 gene deletion or from point mutations in 9 of 13 NSD1 domains, including all 6 PHD domains, indicating that each NSD1 domain performs an essential role. To gain insight into the biochemical basis of Sotos syndrome, we tested the ability of each NSD1 PHD domain to bind histone H3 when methylated at regulatory sites Lys4, Lys9, Lys27, Lys36, and Lys79, and histone H4 at regulatory Lys20, and determined whether Sotos point mutations disrupted methylation site-specific binding. NSD1 PHD domains 1, 4, 5, and 6 bound histone H3 methylated at Lys4 or Lys9. Eleven of 12 Sotos mutations in PHD4, PHD5, and PHD6 disrupted binding to these methylated lysines, and 8 of 9 mutations in PHD4 and PHD6 severely compromised binding to transcription cofactor Nizp1. One mutation in PHD1 did not alter binding to specific methylated histone H3, and one mutation in PHD4 did not alter binding to either methylated histone or Nizp1. Our data suggests that Sotos point mutations in NSD1 PHD domains disrupt its transcriptional regulation by interfering with its ability to bind epigenetic marks and recruit cofactors.


Asunto(s)
Histonas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Síndrome de Sotos/metabolismo , Haploinsuficiencia , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Péptidos y Proteínas de Señalización Intracelular/genética , Metilación , Proteínas Nucleares/química , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Mutación Puntual , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Análisis de Secuencia de Proteína , Síndrome de Sotos/genética , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ubiquitinación
12.
Mol Cell Biol ; 26(10): 3902-16, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16648484

RESUMEN

Homeobox transcription factors Meis1 and Hoxa9 promote hematopoietic progenitor self-renewal and cooperate to cause acute myeloid leukemia (AML). While Hoxa9 alone blocks the differentiation of nonleukemogenic myeloid cell-committed progenitors, coexpression with Meis1 is required for the production of AML-initiating progenitors, which also transcribe a group of hematopoietic stem cell genes, including Cd34 and Flt3 (defined as Meis1-related leukemic signature genes). Here, we use dominant trans-activating (Vp16 fusion) or trans-repressing (engrailed fusion) forms of Meis1 to define its biochemical functions that contribute to leukemogenesis. Surprisingly, Vp16-Meis1 (but not engrailed-Meis1) functioned as an autonomous oncoprotein that mimicked combined activities of Meis1 plus Hoxa9, immortalizing early progenitors, inducing low-level expression of Meis1-related signature genes, and causing leukemia without coexpression of exogenous or endogenous Hox genes. Vp16-Meis1-mediated transformation required the Meis1 function of binding to Pbx and DNA but not its C-terminal domain (CTD). The absence of endogenous Hox gene expression in Vp16-Meis1-immortalized progenitors allowed us to investigate how Hox alters gene expression and cell biology in early hematopoietic progenitors. Strikingly, expression of Hoxa9 or Hoxa7 stimulated both leukemic aggressiveness and transcription of Meis1-related signature genes in Vp16-Meis1 progenitors. Interestingly, while the Hoxa9 N-terminal domain (NTD) is essential for cooperative transformation with wild-type Meis1, it was dispensable in Vp16-Meis1 progenitors. The fact that a dominant transactivation domain fused to Meis1 replaces the essential functions of both the Meis1 CTD and Hoxa9 NTD suggests that Meis-Pbx and Hox-Pbx (or Hox-Pbx-Meis) complexes co-occupy cellular promoters that drive leukemogenesis and that Meis1 CTD and Hox NTD cooperate in gene activation. Chromatin immunoprecipitation confirmed co-occupancy of Hoxa9 and Meis1 on the Flt3 promoter.


Asunto(s)
Regulación Leucémica de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Proteínas de Neoplasias/metabolismo , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo , Activación Transcripcional , Animales , Línea Celular Transformada , Proliferación Celular , Células Cultivadas , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Perfilación de la Expresión Génica , Proteínas de Homeodominio/química , Proteínas de Homeodominio/genética , Factor C1 de la Célula Huésped/metabolismo , Leucemia Mieloide/etiología , Ratones , Ratones Endogámicos BALB C , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide , Proteínas de Neoplasias/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Plásmidos/genética , Mutación Puntual , Factor de Transcripción 1 de la Leucemia de Células Pre-B , Proteínas Recombinantes de Fusión/metabolismo , Retroviridae/genética , Trasplante de Células Madre , Células Madre/citología
13.
Science ; 366(6469): 1134-1139, 2019 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-31727856

RESUMEN

Noncoding genetic variation is a major driver of phenotypic diversity, but functional interpretation is challenging. To better understand common genetic variation associated with brain diseases, we defined noncoding regulatory regions for major cell types of the human brain. Whereas psychiatric disorders were primarily associated with variants in transcriptional enhancers and promoters in neurons, sporadic Alzheimer's disease (AD) variants were largely confined to microglia enhancers. Interactome maps connecting disease-risk variants in cell-type-specific enhancers to promoters revealed an extended microglia gene network in AD. Deletion of a microglia-specific enhancer harboring AD-risk variants ablated BIN1 expression in microglia, but not in neurons or astrocytes. These findings revise and expand the list of genes likely to be influenced by noncoding variants in AD and suggest the probable cell types in which they function.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Enfermedad de Alzheimer/genética , Encéfalo/metabolismo , Elementos de Facilitación Genéticos/genética , Variación Genética , Microglía/metabolismo , Proteínas Nucleares/genética , Regiones Promotoras Genéticas/genética , Proteínas Supresoras de Tumor/genética , Células Cultivadas , Cromatina/metabolismo , Redes Reguladoras de Genes , Estudio de Asociación del Genoma Completo , Humanos , Eliminación de Secuencia
14.
Science ; 356(6344)2017 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-28546318

RESUMEN

Microglia play essential roles in central nervous system (CNS) homeostasis and influence diverse aspects of neuronal function. However, the transcriptional mechanisms that specify human microglia phenotypes are largely unknown. We examined the transcriptomes and epigenetic landscapes of human microglia isolated from surgically resected brain tissue ex vivo and after transition to an in vitro environment. Transfer to a tissue culture environment resulted in rapid and extensive down-regulation of microglia-specific genes that were induced in primitive mouse macrophages after migration into the fetal brain. Substantial subsets of these genes exhibited altered expression in neurodegenerative and behavioral diseases and were associated with noncoding risk variants. These findings reveal an environment-dependent transcriptional network specifying microglia-specific programs of gene expression and facilitate efforts to understand the roles of microglia in human brain diseases.


Asunto(s)
Ambiente , Redes Reguladoras de Genes/fisiología , Microglía/citología , Microglía/fisiología , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/fisiopatología , Células Cultivadas , Epilepsia/genética , Epilepsia/fisiopatología , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL
15.
Oncogene ; 21(27): 4247-56, 2002 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-12082612

RESUMEN

The association between acute myeloid leukaemia (AML) and the aberrant expression of Hoxa9 is evidenced by (1) proviral activation of Hoxa9 and Meis1 in BXH-2 murine AML, (2) formation of the chimeric Nup98-HoxA9 transactivator protein as a consequence of the t(7;11) translocation in human AML, and (3) the strong expression of HoxA9 and Meis1 in human AML. In mouse models, enforced retroviral expression of Hoxa9 alone in marrow is not sufficient to cause rapid AML, while co-expression of Meis1 and Hoxa9 induces rapid AML. In contrast, retroviral expression of Nup98-HoxA9 is sufficient to cause rapid AML in the absence of enforced Meis1 expression. Previously, we demonstrated that Hoxa9 could block the differentiation of murine marrow progenitors cultured in granulocyte-macrophage colony-simulating factor (GM-CSF). These progenitors lacked Meis1 expression, could not proliferate in stem cell factor (SCF), but could differentiate into neutrophils when switched into granulocyte colony-simulating factor (G-CSF). Ectopic expression of Meis1 in these Hoxa9 cells suppressed their G-CSF-induced differentiation, permitted proliferation in SCF, and therein offered a potential explanation of cooperative function. Because Meis1 binds N-terminal Hoxa9 sequences that are replaced by Nup98, we hypothesized that Nup98-HoxA9 might consolidate the biochemical functions of both Hoxa9 and Meis1 on target gene promoters and might evoke their same lymphokine-responsive profile in immortalized progenitors. Here we report that Nup98-HoxA9, indeed mimicks Hoxa9 plus Meis1 coexpression - it immortalizes myeloid progenitors, prevents differentiation in response to GM-CSF, IL-3, G-CSF, and permits proliferation in SCF. Unexpectedly, however, Nup98-Hoxa9 also enforced strong transcription of the cellular Hoxa9, Hoxa7 and Meis1 genes at levels similar to those found in mouse AML's generated by proviral activation of Hoxa9 and Meis1. Using Hoxa9(-/-) marrow, we demonstrate that expression of Hoxa9 is not required for myeloid immortalization by Nup98-HoxA9. Rapid leukaemogenesis by Nup98-HoxA9 may therefore result from both the intrinsic functions of Nup98-HoxA9, as well as of those of coexpressed HOX and MEIS1 genes.


Asunto(s)
Transformación Celular Neoplásica/genética , Citocinas/farmacología , Regulación de la Expresión Génica , Proteínas de Homeodominio/fisiología , Células Mieloides/citología , Proteínas de Neoplasias/fisiología , Proteínas de Complejo Poro Nuclear/fisiología , Proteínas de Fusión Oncogénica/fisiología , Secuencias de Aminoácidos , Animales , Northern Blotting , Diferenciación Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Factor Estimulante de Colonias de Granulocitos/farmacología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Proteínas de Homeodominio/biosíntesis , Proteínas de Homeodominio/genética , Interleucina-3/farmacología , Leucemia Mieloide/etiología , Ratones , Ratones Endogámicos BALB C , Familia de Multigenes , Células Mieloides/efectos de los fármacos , Células Mieloides/metabolismo , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/genética , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Fusión Oncogénica/genética , Regiones Promotoras Genéticas , Proteínas Recombinantes de Fusión/fisiología , Factor de Células Madre/farmacología , Transcripción Genética/fisiología , Translocación Genética
16.
G3 (Bethesda) ; 5(6): 1107-16, 2015 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-25840431

RESUMEN

Severe hypoxia is a common cause of major brain, heart, and kidney injury in adults, children, and newborns. However, mild hypoxia can be protective against later, more severe hypoxia exposure via "hypoxic preconditioning," a phenomenon that is not yet fully understood. Accordingly, we have established and optimized an embryonic zebrafish model to study hypoxic preconditioning. Using a functional genomic approach, we used this zebrafish model to identify and validate five novel hypoxia-protective genes, including irs2, crtc3, and camk2g2, which have been previously implicated in metabolic regulation. These results extend our understanding of the mechanisms of hypoxic preconditioning and affirm the discovery potential of this novel vertebrate hypoxic stress model.


Asunto(s)
Glucosa/metabolismo , Hipoxia/genética , Insulina/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Animales , Embrión no Mamífero/metabolismo , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Genoma , Fenotipo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados , Estrés Fisiológico/genética , Transcripción Genética , Pez Cebra/embriología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
17.
Nat Methods ; 3(4): 287-93, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16554834

RESUMEN

Differentiation mechanisms and inflammatory functions of neutrophils and macrophages are usually studied by genetic and biochemical approaches that require costly breeding and time-consuming purification to obtain phagocytes for functional analysis. Because Hox oncoproteins enforce self-renewal of factor-dependent myeloid progenitors, we queried whether estrogen-regulated Hoxb8 (ER-Hoxb8) could immortalize macrophage or neutrophil progenitors that would execute normal differentiation and normal innate immune function upon ER-Hoxb8 inactivation. Here we describe methods to derive unlimited quantities of mouse macrophages or neutrophils by immortalizing their respective progenitors with ER-Hoxb8 using different cytokines to target expansion of different committed progenitors. ER-Hoxb8 neutrophils and macrophages are functionally superior to those produced by many other ex vivo differentiation models, have strong inflammatory responses and can be derived easily from embryonic day 13 (e13) fetal liver of mice exhibiting embryonic-lethal phenotypes. Using knockout or small interfering RNA (siRNA) technologies, this ER-Hoxb8 phagocyte maturation system represents a rapid analytical tool for studying macrophage and neutrophil biology.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Estrógenos/farmacología , Proteínas de Homeodominio/farmacología , Macrófagos/efectos de los fármacos , Neutrófilos/efectos de los fármacos , Animales , Técnicas Biosensibles , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Células Cultivadas , Citocinas/farmacología , Modelos Animales de Enfermedad , Inflamación/metabolismo , Inflamación/patología , Hígado/embriología , Hígado/patología , Macrófagos/metabolismo , Macrófagos/ultraestructura , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados/genética , Células Progenitoras Mieloides/metabolismo , Neutrófilos/metabolismo , Neutrófilos/ultraestructura , Fenotipo , ARN Interferente Pequeño/genética
18.
Blood ; 106(1): 254-64, 2005 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-15755900

RESUMEN

Meis1 is a homeodomain transcription factor coexpressed with Hoxa9 in most human acute myeloid leukemias (AMLs). In mouse models of leukemia produced by Hoxa9, Meis1 accelerates leukemogenesis. Because Hoxa9 immortalizes myeloid progenitors in the absence of Meis1 expression, the contribution of Meis1 toward leukemia remains unclear. Here, we describe a cultured progenitor model in which Meis1 programs leukemogenicity. Progenitors immortalized by Hoxa9 in culture are myeloid-lineage restricted and only infrequently caused leukemia after more than 250 days. Coexpressed Meis1 programmed rapid AML-initiating character, maintained multipotent progenitor potential, and induced expression of genes associated with short-term hematopoietic stem cells (HSCs), such as FLT3 and CD34, whose expression also characterizes the leukemia-initiating stem cells of human AML. Meis1 leukemogenesis functions required binding to Pbx, binding to DNA, and a conserved function of its C-terminal tail. We hypothesize that Meis1 is required for the homing and survival of leukemic progenitors within their hematopoietic niches, functions mediated by HSC-specific genes such as CD34 and Fms-like tyrosine kinase 3 (FLT3), respectively. This is the first example of a transcription factor oncoprotein (Meis1) that establishes expression of a tyrosine kinase oncoprotein (FLT3), and explains their coexpression in human leukemia. This cultured progenitor model will be useful to define the genetic basis of leukemogenesis involving Hoxa9 and Meis1.


Asunto(s)
Células Madre Hematopoyéticas/fisiología , Proteínas de Homeodominio/metabolismo , Leucemia Mieloide/fisiopatología , Proteínas de Neoplasias/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Tirosina Quinasas Receptoras/genética , Enfermedad Aguda , Animales , Diferenciación Celular/fisiología , División Celular/fisiología , Línea Celular Transformada , Linaje de la Célula/fisiología , Femenino , Regulación Leucémica de la Expresión Génica , Células Madre Hematopoyéticas/citología , Factor de Crecimiento de Hepatocito/farmacología , Proteínas de Homeodominio/química , Proteínas de Homeodominio/genética , Leucemia Mieloide/genética , Ratones , Ratones Endogámicos BALB C , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide , Proteínas de Neoplasias/química , Fenotipo , Estructura Terciaria de Proteína , Receptores de Interleucina-7/genética , Factores de Transcripción/genética , Transcripción Genética/fisiología , Células Tumorales Cultivadas , Tirosina Quinasa 3 Similar a fms
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA