Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Respir Care ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39079724

RESUMEN

BACKGROUND: Beneficial effects of breathing at FIO2 < 0.21 on disease outcomes have been reported in previous preclinical and clinical studies. However, the safety and intra-hospital feasibility of breathing hypoxic gas for 5 d have not been established. In this study, we examined the physiologic effects of breathing a gas mixture with FIO2 as low as 0.11 in 5 healthy volunteers. METHODS: All 5 subjects completed the study, spending 5 consecutive days in a hypoxic tent, where the ambient oxygen level was lowered in a stepwise manner over 5 d, from FIO2 of 0.16 on the first day to FIO2 of 0.11 on the fifth day of the study. All the subjects returned to an environment at room air on the sixth day. The subjects' SpO2 , heart rate, and breathing frequency were continuously recorded, along with daily blood sampling, neurologic evaluations, transthoracic echocardiography, and mental status assessments. RESULTS: Breathing hypoxia concentration dependently caused profound physiologic changes, including decreased SpO2 and increased heart rate. At FIO2 of 0.14, the mean SpO2 was 92%; at FIO2 of 0.13, the mean SpO2 was 93%; at FIO2 of 0.12, the mean SpO2 was 88%; at FIO2 of 0.11, the mean SpO2 was 85%; and, finally, at an FIO2 of 0.21, the mean SpO2 was 98%. These changes were accompanied by increased erythropoietin levels and reticulocyte counts in blood. All 5 subjects concluded the study with no adverse events. No subjects exhibited signs of mental status changes or pulmonary hypertension. CONCLUSIONS: Results of the current physiologic study suggests that, within a hospital setting, delivering FIO2 as low as 0.11 is feasible and safe in healthy subjects, and provides the foundation for future studies in which therapeutic effects of hypoxia breathing are tested.

2.
JACC Heart Fail ; 6(4): 329-339, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29525330

RESUMEN

OBJECTIVES: This study sought to characterize the functional and prognostic significance of oxygen uptake (VO2) kinetics following peak exercise in individuals with heart failure (HF). BACKGROUND: It is unknown to what extent patterns of VO2 recovery following exercise reflect circulatory response during exercise in HF with preserved ejection fraction (HFpEF) and HF with reduced ejection fraction (HFrEF). METHODS: We investigated patients (30 HFpEF, 20 HFrEF, and 22 control subjects) who underwent cardiopulmonary exercise testing with invasive hemodynamic monitoring and a second distinct HF cohort (n = 106) who underwent noninvasive cardiopulmonary exercise testing with assessment of long-term outcomes. Fick cardiac output (CO) and cardiac filling pressures were measured at rest and throughout exercise in the initial cohort. A novel metric, VO2 recovery delay (VO2RD), defined as time until post-exercise VO2 falls permanently below peak VO2, was measured to characterize VO2 recovery kinetics. RESULTS: VO2RD in patients with HFpEF (median 25 s [interquartile range (IQR): 9 to 39 s]) and HFrEF (28 s [IQR: 2 to 52 s]) was in excess of control subjects (5 s [IQR: 0 to 7 s]; p < 0.0001 and p = 0.003, respectively). VO2RD was inversely related to cardiac output augmentation during exercise in HFpEF (ρ = -0.70) and HFrEF (ρ = -0.73, both p < 0.001). In the second cohort, VO2RD predicted transplant-free survival in univariate and multivariable Cox regression analysis (Cox hazard ratios: 1.49 and 1.37 per 10-s increase in VO2RD, respectively; both p < 0.005). CONCLUSIONS: Post-exercise VO2RD is an easily recognizable, noninvasively derived pattern that signals impaired cardiac output augmentation during exercise and predicts outcomes in HF. The presence and duration of VO2RD may complement established exercise measurements for assessment of cardiac reserve capacity.


Asunto(s)
Ejercicio Físico/fisiología , Insuficiencia Cardíaca/fisiopatología , Consumo de Oxígeno/fisiología , Volumen Sistólico/fisiología , Adulto , Anciano , Gasto Cardíaco , Estudios de Casos y Controles , Prueba de Esfuerzo , Femenino , Hemodinámica , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Modelos de Riesgos Proporcionales , Factores de Tiempo
3.
Cancer Cell ; 34(6): 922-938.e7, 2018 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-30537514

RESUMEN

Drug resistance represents a major challenge to achieving durable responses to cancer therapeutics. Resistance mechanisms to epigenetically targeted drugs remain largely unexplored. We used bromodomain and extra-terminal domain (BET) inhibition in neuroblastoma as a prototype to model resistance to chromatin modulatory therapeutics. Genome-scale, pooled lentiviral open reading frame (ORF) and CRISPR knockout rescue screens nominated the phosphatidylinositol 3-kinase (PI3K) pathway as promoting resistance to BET inhibition. Transcriptomic and chromatin profiling of resistant cells revealed that global enhancer remodeling is associated with upregulation of receptor tyrosine kinases (RTKs), activation of PI3K signaling, and vulnerability to RTK/PI3K inhibition. Large-scale combinatorial screening with BET inhibitors identified PI3K inhibitors among the most synergistic upfront combinations. These studies provide a roadmap to elucidate resistance to epigenetic-targeted therapeutics and inform efficacious combination therapies.


Asunto(s)
Azepinas/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Indazoles/farmacología , Terapia Molecular Dirigida/métodos , Neuroblastoma/tratamiento farmacológico , Sulfonamidas/farmacología , Triazoles/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Línea Celular Tumoral , Supervivencia sin Enfermedad , Epigénesis Genética/efectos de los fármacos , Femenino , Humanos , Ratones Desnudos , Neuroblastoma/genética , Neuroblastoma/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas/antagonistas & inhibidores , Proteínas/metabolismo , Transducción de Señal/efectos de los fármacos
4.
J Cell Biol ; 211(6): 1157-76, 2015 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-26694839

RESUMEN

Many single-transmembrane proteins are sequentially cleaved by ectodomain-shedding α-secretases and the γ-secretase complex, a process called regulated intramembrane proteolysis (RIP). These cleavages are thought to be spatially and temporally separate. In contrast, we provide evidence for a hitherto unrecognized multiprotease complex containing both α- and γ-secretase. ADAM10 (A10), the principal neuronal α-secretase, interacted and cofractionated with γ-secretase endogenously in cells and mouse brain. A10 immunoprecipitation yielded γ-secretase proteolytic activity and vice versa. In agreement, superresolution microscopy showed that portions of A10 and γ-secretase colocalize. Moreover, multiple γ-secretase inhibitors significantly increased α-secretase processing (r = -0.86) and decreased ß-secretase processing of ß-amyloid precursor protein. Select members of the tetraspanin web were important both in the association between A10 and γ-secretase and the γ → α feedback mechanism. Portions of endogenous BACE1 coimmunoprecipitated with γ-secretase but not A10, suggesting that ß- and α-secretases can form distinct complexes with γ-secretase. Thus, cells possess large multiprotease complexes capable of sequentially and efficiently processing transmembrane substrates through a spatially coordinated RIP mechanism.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Membrana Celular/metabolismo , Modelos Biológicos , Proteolisis , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Animales , Células CHO , Células Cultivadas , Cricetulus , Humanos , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA