Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Biol Cell ; 112(2): 39-52, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31845361

RESUMEN

BACKGROUND INFORMATION: Primary cilia are highly conserved multifunctional cell organelles that extend from the cell membrane. A range of genetic disorders, collectively termed ciliopathies, is attributed to primary cilia dysfunction. The archetypical ciliopathy is the Bardet-Biedl syndrome (BBS), patients of which display virtually all symptoms associated with dysfunctional cilia. The primary cilium acts as a sensory organelle transmitting intra- and extracellular signals thereby transducing various signalling pathways facilitated by the BBS proteins. Growing evidence suggests that cilia proteins also have alternative functions in ciliary independent mechanisms, which might be contributing to disease etiology. RESULTS: In an attempt to gain more insight into possible differences in organ specific roles, we examined whether relative gene expression for individual Bbs genes was constant across different tissues in mouse, in order to distinguish possible differences in organ specific roles. All tested tissues show differentially expressed Bbs transcripts with some tissues showing a more similar stoichiometric composition of transcripts than others do.  However, loss of Bbs6 or Bbs8 affects expression of other Bbs transcripts in a tissue-dependent way. CONCLUSIONS AND SIGNIFICANCE: Our data support the hypothesis that in some organs, BBS proteins not only function in a complex but might also have alternative functions in a ciliary independent context. This significantly alters our understanding of disease pathogenesis and development of possible treatment strategies.


Asunto(s)
Síndrome de Bardet-Biedl , Regulación de la Expresión Génica , Transducción de Señal/genética , Animales , Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/metabolismo , Síndrome de Bardet-Biedl/patología , Modelos Animales de Enfermedad , Ratones , Ratones Noqueados , Especificidad de Órganos/genética
2.
Cell Mol Life Sci ; 76(4): 757-775, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30446775

RESUMEN

Primary cilia are conserved organelles that mediate cellular communication crucial for organogenesis and homeostasis in numerous tissues. The retinal pigment epithelium (RPE) is a ciliated monolayer in the eye that borders the retina and is vital for visual function. Maturation of the RPE is absolutely critical for visual function and the role of the primary cilium in this process has been largely ignored to date. We show that primary cilia are transiently present during RPE development and that as the RPE matures, primary cilia retract, and gene expression of ciliary disassembly components decline. We observe that ciliary-associated BBS proteins protect against HDAC6-mediated ciliary disassembly via their recruitment of Inversin to the base of the primary cilium. Inhibition of ciliary disassembly components was able to rescue ciliary length defects in BBS deficient cells. This consequently affects ciliary regulation of Wnt signaling. Our results shed light onto the mechanisms by which cilia-mediated signaling facilitates tissue maturation.


Asunto(s)
Cilios/metabolismo , Chaperoninas del Grupo II/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Animales , Cilios/genética , Proteínas del Citoesqueleto , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Chaperoninas del Grupo II/genética , Células HEK293 , Histona Desacetilasa 6/genética , Histona Desacetilasa 6/metabolismo , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/genética , Interferencia de ARN , Epitelio Pigmentado de la Retina/embriología , Epitelio Pigmentado de la Retina/ultraestructura , Vía de Señalización Wnt/genética
3.
Front Genome Ed ; 6: 1342193, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38362491

RESUMEN

Genome editing using the CRISPR/Cas system has revolutionized the field of genetic engineering, offering unprecedented opportunities for therapeutic applications in vivo. Despite the numerous ongoing clinical trials focusing on ex vivo genome editing, recent studies emphasize the therapeutic promise of in vivo gene editing using CRISPR/Cas technology. However, it is worth noting that the complete attainment of the inherent capabilities of in vivo therapy in humans is yet to be accomplished. Before the full realization of in vivo therapeutic potential, it is crucial to achieve enhanced specificity in selectively targeting defective cells while minimizing harm to healthy cells. This review examines emerging studies, focusing on CRISPR/Cas-based pre-clinical and clinical trials for innovative therapeutic approaches for a wide range of diseases. Furthermore, we emphasize targeting cancer-specific sequences target in genes associated with tumors, shedding light on the diverse strategies employed in cancer treatment. We highlight the various challenges associated with in vivo CRISPR/Cas-based cancer therapy and explore their prospective clinical translatability and the strategies employed to overcome these obstacles.

4.
Antioxidants (Basel) ; 8(9)2019 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-31450606

RESUMEN

Age-related macular degeneration (AMD), the most common visual disorder in elderly people, is characterized by the formation of deposits beneath the retinal pigment epithelium (RPE) and by dysfunction of RPE and photoreceptor cells. The biologically active form of vitamin D, 1,25-(OH)2D3 (VITD), is categorized as a multifunctional steroid hormone that modulates many transcriptional processes of different genes and is involved in a broad range of cellular functions. Epidemiological and genetic association studies demonstrate that VITD may have a protective role in AMD, while single nucleotide polymorphisms in the vitamin D metabolism gene (CYP24A1) increase the risk of AMD. However, the functional mechanisms of VITD in AMD are not fully understood. In the current study, we investigated the impact of VITD on H2O2-induced oxidative stress and inflammation in human RPE cells. We demonstrate that exposure to H2O2 caused significantly reduced cell viability, increased production of reactive oxygen species (ROS), lowered expression of antioxidant enzymes and enhanced inflammation. VITD exposure notably counteracted the above H2O2-induced effects. Our data suggest that VITD protects the RPE from oxidative damage and elucidate molecular mechanisms of VITD deficiency in the development of AMD.

5.
Invest Ophthalmol Vis Sci ; 60(4): 1132-1143, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30901771

RESUMEN

Purpose: Bardet-Biedl syndrome (BBS) is an archetypical ciliopathy caused by defective ciliary trafficking and consequent function. Insights gained from BBS mouse models are applicable to other syndromic and nonsyndromic retinal diseases. This progressive characterization of the visual phenotype in three BBS mouse models sets a baseline for testing therapeutic interventions. Methods: Longitudinal acquisition of electroretinograms, optical coherence tomography scans, and visual acuity using the optomotor reflex in Bbs6/Mkks, Bbs8/Ttc8, and Bbs5 knockout mice. Gene and protein expression analysis in vivo and in vitro. Results: Complete loss of BBS5, BBS6, or BBS8 leads to different rates of retinal degeneration and visual function over time. BBS8-deficient mice showed the fastest rate of degeneration, and BBS8 seems to be required for cone photoreceptors to reach functional maturity. In contrast, the loss of BBS5 (a further BBSome component) showed very little degeneration. Loss of BBS8 versus BBS5 resulted in different physiologic responses both in vivo and in vitro. BBS6-deficient mice show a slower rate of degeneration with both rod and cone function reducing at a similar rate. Conclusions: The mouse models analyzed show distinct and diverging courses of degeneration upon loss of BBS5, BBS6, or BBS8, which can be used as a benchmark to test therapeutic interventions. Close consideration of the different phenotypes reveal subtle but important differences relating to their function. Because we also see differences in terms of phenotype depending on the type of visual assessment used, our data highlight the importance of using a combinatorial approach for assessment of visual function.


Asunto(s)
Síndrome de Bardet-Biedl/fisiopatología , Modelos Animales de Enfermedad , Retina/fisiopatología , Degeneración Retiniana/fisiopatología , Visión Ocular/fisiología , Envejecimiento/fisiología , Animales , Síndrome de Bardet-Biedl/genética , Western Blotting , Proteínas Portadoras/genética , Proteínas del Citoesqueleto , Electrorretinografía , Técnicas de Genotipaje , Chaperoninas del Grupo II/genética , Inmunohistoquímica , Ratones , Ratones Noqueados , Ratones Mutantes , Proteínas Asociadas a Microtúbulos/genética , Fenotipo , Proteínas de Unión a Fosfato , Reacción en Cadena en Tiempo Real de la Polimerasa , Degeneración Retiniana/genética , Transducción de Señal/fisiología , Tomografía de Coherencia Óptica
6.
PLoS One ; 13(11): e0207222, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30440011

RESUMEN

The retinal pigment epithelium (RPE) is an epithelial monolayer in the back of the vertebrate eye. RPE dysfunction is associated with retinal degeneration and blindness. In order to fully understand how dysregulation affects visual function, RPE-specific gene knockouts are indispensable. Since the currently available RPE-specific Cre recombinases show lack of specificity or poor recombination, we sought to generate an alternative. We generated a tamoxifen-inducible RPE-specific Cre transgenic mouse line under transcriptional control of an RPE-specific Tyrosinase enhancer. We characterized the Cre-mediated recombinant expression by crossing our RPE-Tyrosinase-CreErT2 mouse line with the tdTomato reporter line, Ai14. Detected fluorescence was quantified via high-content image analysis. Recombination was predominantly observed in the RPE and adjacent ciliary body. RPE flatmount preparations revealed a high level of recombination in adult mice (47.25-69.48%). Regional analysis of dorsal, ventral, nasal and temporal areas did not show significant changes in recombination. However, recombination was higher in the central RPE compared to the periphery. Higher levels of Cre-mediated recombinant expression was observed in embryonic RPE (~83%). Compared to other RPE-specific Cre transgenic mouse lines, this newly generated RPE-Tyrosinase-CreErT2 line shows a more uniform and higher level of recombination with the advantage to initiate recombination in both, prenatal and postnatal animals. This line can serve as a valuable tool for researches exploring the role of individual gene functions, in both developing and differentiated RPE.


Asunto(s)
Ratones Transgénicos , Epitelio Pigmentado de la Retina/metabolismo , Animales , Femenino , Integrasas , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Ratones Endogámicos C57BL , Modelos Animales , Monofenol Monooxigenasa/metabolismo , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/crecimiento & desarrollo , Epitelio Pigmentado de la Retina/ultraestructura
7.
Oncotarget ; 9(33): 23183-23197, 2018 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-29796181

RESUMEN

Ciliopathies are a group of genetically heterogeneous disorders, characterized by defects in cilia genesis or maintenance. Mutations in the RPGR gene and its interacting partners, RPGRIP1 and RPGRIP1L, cause ciliopathies, but the function of their proteins remains unclear. Here we show that knockdown (KD) of RPGR, RPGRIP1 or RPGRIP1L in hTERT-RPE1 cells results in abnormal actin cytoskeleton organization. The actin cytoskeleton rearrangement is regulated by the small GTPase RhoA via the planar cell polarity (PCP) pathway. RhoA activity was upregulated in the absence of RPGR, RPGRIP1 or RPGRIP1L proteins. In RPGR, RPGRIP1 or RPGRIP1L KD cells, we observed increased levels of DVl2 and DVl3 proteins, the core components of the PCP pathway, due to impaired proteasomal activity. RPGR, RPGRIP1 or RPGRIP1L KD cells treated with thapsigargin (TG), an inhibitor of sarcoendoplasmic reticulum Ca2+- ATPases, showed impaired store-operated Ca2+ entry (SOCE), which is mediated by STIM1 and Orai1 proteins. STIM1 was not localized to the ER-PM junction upon ER store depletion in RPGR, RPGRIP1 or RPGRIP1L KD cells. Our results demonstrate that the RPGR protein complex is required for regulating proteasomal activity and for modulating SOCE, which may contribute to the ciliopathy phenotype.

8.
Cell Rep ; 22(1): 189-205, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29298421

RESUMEN

Primary cilia are sensory organelles that protrude from the cell membrane. Defects in the primary cilium cause ciliopathy disorders, with retinal degeneration as a prominent phenotype. Here, we demonstrate that the retinal pigment epithelium (RPE), essential for photoreceptor development and function, requires a functional primary cilium for complete maturation and that RPE maturation defects in ciliopathies precede photoreceptor degeneration. Pharmacologically enhanced ciliogenesis in wild-type induced pluripotent stem cells (iPSC)-RPE leads to fully mature and functional cells. In contrast, ciliopathy patient-derived iPSC-RPE and iPSC-RPE with a knockdown of ciliary-trafficking protein remain immature, with defective apical processes, reduced functionality, and reduced adult-specific gene expression. Proteins of the primary cilium regulate RPE maturation by simultaneously suppressing canonical WNT and activating PKCδ pathways. A similar cilium-dependent maturation pathway exists in lung epithelium. Our results provide insights into ciliopathy-induced retinal degeneration, demonstrate a developmental role for primary cilia in epithelial maturation, and provide a method to mature iPSC epithelial cells for clinical applications.


Asunto(s)
Ciliopatías/metabolismo , Degeneración Retiniana/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Animales , Cilios/genética , Cilios/metabolismo , Cilios/patología , Ciliopatías/genética , Ciliopatías/patología , Ciliopatías/terapia , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Células Madre Pluripotentes Inducidas/trasplante , Ratones , Ratones Noqueados , Proteína Quinasa C-delta/genética , Proteína Quinasa C-delta/metabolismo , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/patología , Degeneración Retiniana/genética , Degeneración Retiniana/patología , Degeneración Retiniana/terapia , Epitelio Pigmentado de la Retina/patología
9.
J Ophthalmol ; 2015: 414781, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26124960

RESUMEN

Ciliopathies encompass a group of genetic disorders characterized by defects in the formation, maintenance, or function of cilia. Retinitis pigmentosa (RP) is frequently one of the clinical features presented in diverse ciliopathies. RP is a heterogeneous group of inherited retinal disorders, characterized by the death of photoreceptors and affecting more than one million individuals worldwide. The retinitis pigmentosa GTPase regulator (RPGR) gene is mutated in up to 20% of all RP patients. RPGR protein has different interacting partners to function in ciliary protein trafficking. In this review, we specifically focus on RPGR and its two interacting proteins: RPGRIP1 and RPGRIP1L. We summarize the function of the three proteins and highlight recent studies that provide insight into the cellular function of those proteins.

10.
J Ophthalmol ; 2015: 309510, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26124959

RESUMEN

DICER1, a multidomain RNase III endoribonuclease, plays a critical role in microRNA (miRNA) and RNA-interference (RNAi) functional pathways. Loss of Dicer1 affects different developmental processes. Dicer1 is essential for retinal development and maintenance. DICER1 was recently shown to have another function of silencing the toxicity of Alu RNAs in retinal pigment epithelium (RPE) cells, which are involved in the pathogenesis of age related macular degeneration. In this study, we characterized a Dicer1 mutant fish line, which carries a nonsense mutation (W1457Ter) induced by N-ethyl-N-nitrosourea mutagenesis. Zebrafish DICER1 protein is highly conserved in the evolution. Zebrafish Dicer1 is expressed at the earliest stages of zebrafish development and persists into late developmental stages; it is widely expressed in adult tissues. Homozygous Dicer1 mutant fish (DICER1(W1457Ter/W1457Ter)) have an arrest in early growth with significantly smaller eyes and are dead at 14-18 dpf. Heterozygous Dicer1 mutant fish have similar retinal structure to that of control fish; the retinal pigment epithelium (RPE) cells are normal with no sign of degeneration at the age of 20 months.

11.
Invest Ophthalmol Vis Sci ; 53(7): 3951-8, 2012 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-22577079

RESUMEN

PURPOSE: Mutations in the retinitis pigmentosa (RP) GTPase regulator (RPGR) gene account for more than 70% of X-linked RP cases. This study aims to characterize the proximal promoter region of the human RPGR gene. METHODS: The 5'-flanking region (5 kb) of human RPGR was cloned and sequenced. A potential transcription start site and transcription factor binding motifs were identified by bioinformatic analysis. Constructs containing the putative human RPGR promoter region upstream of a luciferase reporter gene were generated and analyzed by transient transfection and luciferase assays. Transgenic mouse lines carrying a 3-kb human RPGR promoter sequence fused to lacZ were generated and RPGR proximal promoter activity was analyzed by X-gal staining. RESULTS: Bioinformatic analyses of the human RPGR 5'-flanking region uncovered potential transcription factor binding sites and a CpG island. Transient transfection assays with RPGR promoter/luciferase reporter constructs revealed a 980-bp fragment (-952 to +28) that produced higher levels of luciferase activity. Mutagenesis identified a putative Sp1 binding site that was critical for regulating transcriptional activity. We generated transgenic mice in which a lacZ reporter gene was controlled by the 3-kb upstream region of RPGR. ß-galactosidase expression was predominantly found in mouse retina, brain, and kidney. In the retina, the photoreceptor cell layer showed the strongest ß-galactosidase staining. CONCLUSIONS: Our study defined the human RPGR proximal promoter region in which a 3-kb fragment contained sufficient regulatory elements to control RPGR expression in mouse retina and other tissues. Characterization of the RPGR promoter will facilitate understanding of the functional role of RPGR in the retina and gene therapy of X-linked RP.


Asunto(s)
Proteínas del Ojo/genética , Regulación de la Expresión Génica , Mutación , Retina/metabolismo , Retinitis Pigmentosa/genética , Animales , Línea Celular , Modelos Animales de Enfermedad , Ensayo de Cambio de Movilidad Electroforética , Proteínas del Ojo/biosíntesis , Femenino , Factores de Intercambio de Guanina Nucleótido , Humanos , Ratones , Ratones Transgénicos , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Secuencias Reguladoras de Ácidos Nucleicos , Retina/patología , Retinitis Pigmentosa/metabolismo , Retinitis Pigmentosa/patología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA