Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Med ; 75: 99-111, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38285515

RESUMEN

When the US Food and Drug Administration used the accelerated approval process to authorize the use of the antiamyloid drug aducanumab to treat Alzheimer's disease (AD), many people hoped this signaled a new era of disease-modifying treatment. But 2 years later, aducanumab's failure to launch provides a cautionary tale about the complexities of dementia and the need for a thorough and transparent review of the role that regulatory agencies and various stakeholders play in approving AD drugs. We highlight the events leading to aducanumab's controversial approval and discuss some of the key lessons learned from the drug's failure to deliver the hoped-for benefits. These lessons include the inherent limitations of antiamyloid strategies for a complex disease in which amyloid is only one of several pathological processes, the need for clinical trials that better reflect the diversity of communities affected by AD, the potential pitfalls of futility analyses in clinical trials, the need for greater transparency and other modifications to the approval process, and the dementia field's unreadiness to move from the highly controlled environment of clinical trials to the widespread and chronic use of resource-intensive, disease-modifying drugs in real-world treatment scenarios. People with dementia desperately need effective therapies. We hope that the aducanumab story will inspire changes to the approval process-changes that restore public trust and improve future efforts to deliver disease-modifying therapies to the clinic.


Asunto(s)
Enfermedad de Alzheimer , Estados Unidos , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Proteínas Amiloidogénicas , Anticuerpos Monoclonales Humanizados/uso terapéutico , United States Food and Drug Administration , Péptidos beta-Amiloides
2.
Cerebellum ; 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38165578

RESUMEN

The Cerebellar Cognitive Affective/Schmahmann Syndrome (CCAS) manifests as impaired executive control, linguistic processing, visual spatial function, and affect regulation. The CCAS has been described in the spinocerebellar ataxias (SCAs), but its prevalence is unknown. We analyzed results of the CCAS/Schmahmann Scale (CCAS-S), developed to detect and quantify CCAS, in two natural history studies of 309 individuals Symptomatic for SCA1, SCA2, SCA3, SCA6, SCA7, or SCA8, 26 individuals Pre-symptomatic for SCA1 or SCA3, and 37 Controls. We compared total raw scores, domain scores, and total fail scores between Symptomatic, Pre-symptomatic, and Control cohorts, and between SCA types. We calculated scale sensitivity and selectivity based on CCAS category designation among Symptomatic individuals and Controls, and correlated CCAS-S performance against age and education, and in Symptomatic patients, against genetic repeat length, onset age, disease duration, motor ataxia, depression, and fatigue. Definite CCAS was identified in 46% of the Symptomatic group. False positive rate among Controls was 5.4%. Symptomatic individuals had poorer global CCAS-S performance than Controls, accounting for age and education. The domains of semantic fluency, phonemic fluency, and category switching that tap executive function and linguistic processing consistently separated Symptomatic individuals from Controls. CCAS-S scores correlated most closely with motor ataxia. Controls were similar to Pre-symptomatic individuals whose nearness to symptom onset was unknown. The use of the CCAS-S identifies a high CCAS prevalence in a large cohort of SCA patients, underscoring the utility of the scale and the notion that the CCAS is the third cornerstone of clinical ataxiology.

3.
Alzheimers Dement ; 20(3): 1807-1814, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38126555

RESUMEN

INTRODUCTION: We investigated associations of Alzheimer's disease (AD) serum biomarkers with longitudinal changes in cognitive function from mid- to late life among women. METHODS: The study population included 192 women with the median age of 53.3 years at baseline, from the Study of Women's Health Across the Nation Michigan Cohort, followed up over 14 years. Associations between baseline serum amyloid ß (Aß)42, the Aß42/40 ratio, phosphorylated tau181 (p-tau181), and total tau with longitudinal changes in cognition were evaluated using linear mixed effects models. RESULTS: After adjusting for confounders, lower Aß42/40 ratios were associated with faster declines in the Digit Span Backward Test. Higher p-tau181 also showed a borderline statistically significant association with more rapid decline in the Symbol Digit Modalities Test. DISCUSSION: Our findings suggest that mid-life serum AD biomarkers could be associated with accelerated cognitive decline from mid- to late life in women. Future studies with larger samples are needed to validate and extend our findings. HIGHLIGHTS: This study investigates midlife serum AD biomarkers on longitudinal cognitive function changes in women. Mid-life serum AD biomarkers are associated with accelerated cognitive decline. A decrease in the Aß42/40 ratio was associated with a faster decline in the DSB score. A higher p-tau181 concentration was associated with a faster decline in the SDMT score.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Femenino , Persona de Mediana Edad , Enfermedad de Alzheimer/epidemiología , Péptidos beta-Amiloides , Proteínas tau , Cognición , Biomarcadores
4.
Alzheimers Dement ; 20(4): 2719-2730, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38400528

RESUMEN

INTRODUCTION: Little is known regarding quality of life (QoL) in dementia with Lewy bodies (DLB), particularly in advanced stages. METHODS: Dyads of individuals with moderate-advanced DLB and their primary caregivers were recruited from specialty clinics, advocacy organizations, and research registries. The study collected demographics, disease-related measures, and measures of patient/caregiver experiences. RESULTS: The Quality of Life in Alzheimer's Disease (QoL-AD) was completed by the person with DLB and the caregiver (proxy) in 61 dyads; 85 dyads had only a proxy-completed QoL-AD. Patient- and proxy-reported scores were moderately correlated (r = 0.57, P < 0.0001). Worse patient-reported QoL correlated with daytime sleepiness, autonomic symptom burden, and behavioral symptoms. Proxy ratings correlated with dementia severity, daytime sleepiness, behavioral symptoms, dependence in activities of daily living, and caregiver experience measures. DISCUSSION: Patient- and proxy-reported quality of life (QoL) should be assessed separately in advanced DLB. Some symptoms associated with QoL have available therapeutic options. Research is needed regarding strategies to optimally improve QoL in DLB. HIGHLIGHTS: Patient and proxy quality of life (QoL) ratings had moderate correlation in advanced dementia with Lewy bodies. Daytime sleepiness affected patient- and proxy-reported QoL. Behavioral symptoms affected patient- and proxy-reported QoL. Autonomic symptom burden affected patient-reported QoL. Dementia severity, dependence, and caregiver experiences affected proxy ratings.


Asunto(s)
Enfermedad de Alzheimer , Trastornos de Somnolencia Excesiva , Enfermedad por Cuerpos de Lewy , Humanos , Calidad de Vida , Enfermedad por Cuerpos de Lewy/diagnóstico , Actividades Cotidianas , Enfermedad de Alzheimer/diagnóstico , Cuidadores
5.
J Neurosci ; 42(8): 1604-1617, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35042771

RESUMEN

Spinocerebellar ataxia Type 3 (SCA3), the most common dominantly inherited ataxia, is a polyglutamine neurodegenerative disease for which there is no disease-modifying therapy. The polyglutamine-encoding CAG repeat expansion in the ATXN3 gene results in expression of a mutant form of the ATXN3 protein, a deubiquitinase that causes selective neurodegeneration despite being widely expressed. The mechanisms driving neurodegeneration in SCA3 are unclear. Research to date, however, has focused almost exclusively on neurons. Here, using equal male and female age-matched transgenic mice expressing full-length human mutant ATXN3, we identified early and robust transcriptional changes in selectively vulnerable brain regions that implicate oligodendrocytes in disease pathogenesis. We mapped transcriptional changes across early, mid, and late stages of disease in two selectively vulnerable brain regions: the cerebellum and brainstem. The most significant disease-associated module through weighted gene coexpression network analysis revealed dysfunction in SCA3 oligodendrocyte maturation. These results reflect a toxic gain-of-function mechanism, as ATXN3 KO mice do not exhibit any impairments in oligodendrocyte maturation. Genetic crosses to reporter mice revealed a marked reduction in mature oligodendrocytes in SCA3-disease vulnerable brain regions, and ultrastructural microscopy confirmed abnormalities in axonal myelination. Further study of isolated oligodendrocyte precursor cells from SCA3 mice established that this impairment in oligodendrocyte maturation is a cell-autonomous process. We conclude that SCA3 is not simply a disease of neurons, and the search for therapeutic strategies and disease biomarkers will need to account for non-neuronal involvement in SCA3 pathogenesis.SIGNIFICANCE STATEMENT Despite advances in spinocerebellar ataxia Type 3 (SCA3) disease understanding, much remains unknown about how the disease gene causes brain dysfunction ultimately leading to cell death. We completed a longitudinal transcriptomic analysis of vulnerable brain regions in SCA3 mice to define the earliest and most robust changes across disease progression. Through gene network analyses followed up with biochemical and histologic studies in SCA3 mice, we provide evidence for severe dysfunction in oligodendrocyte maturation early in SCA3 pathogenesis. Our results advance understanding of SCA3 disease mechanisms, identify additional routes for therapeutic intervention, and may provide broader insight into polyglutamine diseases beyond SCA3.


Asunto(s)
Enfermedad de Machado-Joseph , Enfermedades Neurodegenerativas , Oligodendroglía , Animales , Ataxina-3/genética , Ataxina-3/metabolismo , Femenino , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/metabolismo , Enfermedad de Machado-Joseph/patología , Masculino , Ratones , Ratones Transgénicos , Enfermedades Neurodegenerativas/metabolismo , Oligodendroglía/metabolismo , Oligodendroglía/patología
6.
J Neurosci ; 42(9): 1845-1863, 2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-35082119

RESUMEN

Tau protein accumulation drives toxicity in several neurodegenerative disorders. To better understand the pathways regulating tau homeostasis in disease, we investigated the role of ubiquilins (UBQLNs)-a class of proteins linked to ubiquitin-mediated protein quality control (PQC) and various neurodegenerative diseases-in regulating tau. Cell-based assays identified UBQLN2 as the primary brain-expressed UBQLN to regulate tau. UBQLN2 efficiently lowered wild-type tau levels regardless of aggregation, suggesting that UBQLN2 interacts with and regulates tau protein under normal conditions or early in disease. Moreover, UBQLN2 itself proved to be prone to accumulation as insoluble protein in male and female tau transgenic mice and the human tauopathy progressive supranuclear palsy. Genetic manipulation of UBQLN2 in a tauopathy mouse model demonstrated that a physiological UBQLN2 balance is required for tau homeostasis. UBQLN2 overexpression exacerbated phosphorylated tau pathology and toxicity in mice expressing P301S mutant tau, whereas P301S mice lacking UBQLN2 showed significantly reduced phosphorylated tau. Further studies support the view that an imbalance of UBQLN2 perturbs ubiquitin-dependent PQC and autophagy. We conclude that changes in UBQLN2 levels, whether because of pathogenic mutations or secondary to disease states, such as tauopathy, contribute to proteostatic imbalances that exacerbate neurodegeneration.SIGNIFICANCE STATEMENT We defined a role for the protein quality control protein Ubiquilin-2 (UBQLN2), in age-related neurodegenerative tauopathies. This group of disorders is characterized by the accumulation of tau protein aggregates, which differ when UBQLN2 levels are altered. Given the lack of effective disease-modifying therapies for tauopathies and the function of UBQLN2 in handling various disease-linked proteins, we explored the role of UBQLN2 in regulating tau. We found that UBQLN2 reduced tau levels in cell models but behaved differently in mouse brain, where it accelerated mutant tau pathology and tau-mediated toxicity. A better understanding of the diverse functions of regulatory proteins like UBQLN2 can elucidate some of the causative factors in neurodegenerative disease and outline new routes to therapeutic intervention.


Asunto(s)
Enfermedades Neurodegenerativas , Tauopatías , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Transgénicos , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo , Tauopatías/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
7.
J Biol Chem ; 298(8): 102219, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35780830

RESUMEN

Recent studies demonstrated that the Golgi reassembly stacking proteins (GRASPs), especially GRASP55, regulate Golgi-independent unconventional secretion of certain cytosolic and transmembrane cargoes; however, the underlying mechanism remains unknown. Here, we surveyed several neurodegenerative disease-related proteins, including mutant huntingtin (Htt-Q74), superoxide dismutase 1 (SOD1), tau, and TAR DNA-binding protein 43 (TDP-43), for unconventional secretion; our results show that Htt-Q74 is most robustly secreted in a GRASP55-dependent manner. Using Htt-Q74 as a model system, we demonstrate that unconventional secretion of Htt is GRASP55 and autophagy dependent and is enhanced under stress conditions such as starvation and endoplasmic reticulum stress. Mechanistically, we show that GRASP55 facilitates Htt secretion by tethering autophagosomes to lysosomes to promote autophagosome maturation and subsequent lysosome secretion and by stabilizing p23/TMED10, a channel for translocation of cytoplasmic proteins into the lumen of the endoplasmic reticulum-Golgi intermediate compartment. Moreover, we found that GRASP55 levels are upregulated by various stresses to facilitate unconventional secretion, whereas inhibition of Htt-Q74 secretion by GRASP55 KO enhances Htt aggregation and toxicity. Finally, comprehensive secretomic analysis identified novel cytosolic cargoes secreted by the same unconventional pathway, including transgelin (TAGLN), multifunctional protein ADE2 (PAICS), and peroxiredoxin-1 (PRDX1). In conclusion, this study defines the pathway of GRASP55-mediated unconventional protein secretion and provides important insights into the progression of Huntington's disease.


Asunto(s)
Enfermedades Neurodegenerativas , Animales , Autofagosomas/metabolismo , Aparato de Golgi/genética , Aparato de Golgi/metabolismo , Proteínas de la Matriz de Golgi/metabolismo , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Lisosomas/metabolismo , Ratones , Enfermedades Neurodegenerativas/metabolismo
8.
Cerebellum ; 22(5): 790-809, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35962273

RESUMEN

Spinocerebellar ataxias (SCAs) are progressive neurodegenerative disorders, but there is no metric that predicts disease severity over time. We hypothesized that by developing a new metric, the Severity Factor (S-Factor) using immutable disease parameters, it would be possible to capture disease severity independent of clinical rating scales. Extracting data from the CRC-SCA and READISCA natural history studies, we calculated the S-Factor for 438 participants with symptomatic SCA1, SCA2, SCA3, or SCA6, as follows: ((length of CAG repeat expansion - maximum normal repeat length) /maximum normal repeat length) × (current age - age at disease onset) × 10). Within each SCA type, the S-Factor at the first Scale for the Assessment and Rating of Ataxia (SARA) visit (baseline) was correlated against scores on SARA and other motor and cognitive assessments. In 281 participants with longitudinal data, the slope of the S-Factor over time was correlated against slopes of scores on SARA and other motor rating scales. At baseline, the S-Factor showed moderate-to-strong correlations with SARA and other motor rating scales at the group level, but not with cognitive performance. Longitudinally the S-Factor slope showed no consistent association with the slope of performance on motor scales. Approximately 30% of SARA slopes reflected a trend of non-progression in motor symptoms. The S-Factor is an observer-independent metric of disease burden in SCAs. It may be useful at the group level to compare cohorts at baseline in clinical studies. Derivation and examination of the S-factor highlighted challenges in the use of clinical rating scales in this population.


Asunto(s)
Ataxias Espinocerebelosas , Humanos , Ataxias Espinocerebelosas/diagnóstico , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/epidemiología , Gravedad del Paciente , Progresión de la Enfermedad
9.
Alzheimer Dis Assoc Disord ; 37(4): 328-334, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37862614

RESUMEN

BACKGROUND: Early detection is necessary for the treatment of dementia. Computerized testing has become more widely used in clinical trials; however, it is unclear how sensitive these measures are to early signs of neurodegeneration. We investigated the use of the NIH Toolbox-Cognition (NIHTB-CB) and Cogstate-Brief computerized neuropsychological batteries in the identification of mild cognitive impairment (MCI) versus healthy older adults [healthy control (HC)] and amnestic (aMCI) versus nonamnestic MCI (naMCI). Exploratory analyses include investigating potential racial differences. METHODS: Two hundred six older adults were diagnosed as aMCI (n = 58), naMCI (n = 15), or cognitively healthy (HC; n = 133). RESULTS: The NIH Toolbox-CB subtests of Flanker, Picture Sequence Memory, and Picture Vocabulary significantly differentiated MCI from HC. Further, subtests from both computerized batteries differentiated patients with aMCI from those with naMCI. Although the main effect of race differences was noted on tests and in diagnostic groups was significant, there were no significant race-by-test interactions. CONCLUSIONS: Computer-based subtests vary in their ability to help distinguish MCI subtypes, though these tests provide less expensive and easier-to-administer clinical screeners to help identify patients early who may qualify for more comprehensive evaluations. Further work is needed, however, to refine computerized tests to achieve better precision in distinguishing impairment subtypes.


Asunto(s)
Amnesia , Disfunción Cognitiva , Humanos , Anciano , Amnesia/diagnóstico , Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/psicología , Cognición , Pruebas Neuropsicológicas
10.
Alzheimer Dis Assoc Disord ; 37(1): 50-58, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36821177

RESUMEN

INTRODUCTION: Lewy body dementia (LBD) is common, yet under-recognized and under-researched. To plan studies with the highest impact, engagement of the community personally affected by these conditions is essential. METHODS: A web-based survey of people living with LBD and current and former caregivers of people with LBD queried research priorities through forced ranking and exploration of burden of LBD symptoms. Specific caregiving needs in LBD and perceptions of research participation were also investigated. RESULTS: Between April 7, 2021 and July 1, 2021, 984 responses were recorded. Top research priorities included disease-modifying therapies and improved disease detection and staging. People with LBD were interested in pathophysiology and more bothered by motor symptoms; caregivers were interested in risk factors and symptomatic therapies and more bothered by neuropsychiatric symptoms. Few available LBD treatments and resources were rated as helpful, and many valuable services were never received. Previous participation in LBD research was infrequent, but interest was high. DISCUSSION: People with LBD and caregivers highlighted the need for research across all aspects of LBD, from pathophysiology and disease modification to prognosis, education, symptomatic treatments, and caregiver support. Funders should increase support for all aspects of LBD research to target the many needs identified by individuals and families living with LBD.


Asunto(s)
Enfermedad por Cuerpos de Lewy , Humanos , Enfermedad por Cuerpos de Lewy/diagnóstico , Cuidadores/psicología , Encuestas y Cuestionarios , Internet
11.
J Pharmacol Sci ; 152(3): 182-192, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37257946

RESUMEN

Missense mutations of ubiquilin 2 (UBQLN2) have been identified to cause X-linked amyotrophic lateral sclerosis (ALS). Proteasome-mediated protein degradation is reported to be impaired by ALS-associated mutations of UBQLN2. However, it remains unknown how these mutations affect autophagy-lysosome protein degradation, which consists of macroautophagy (MA), microautophagy (mA), and chaperone-mediated autophagy (CMA). Using a CMA/mA fluorescence reporter we found that overexpression of wild-type UBQLN2 impairs CMA. Conversely, knockdown of endogenous UBQLN2 increases CMA activity, suggesting that normally UBQLN2 negatively regulates CMA. ALS-associated mutant forms of UBQLN2 exacerbate this impairment of CMA. Using cells stably transfected with wild-type or ALS-associated mutant UBQLN2, we further determined that wild-type UBQLN2 increased the ratio of LAMP2A (a CMA-related protein) to LAMP1 (a lysosomal protein). This could represent a compensatory reaction to the impairment of CMA by wild-type UBQLN2. However, ALS-associated mutant UBQLN2 failed to show this compensation, exacerbating the impairment of CMA by mutant UBQLN2. We further demonstrated that ALS-associated mutant forms of UBQLN2 also impair MA, but wild-type UBQLN2 does not. These results support the view that ALS-associated mutant forms of UBQLN2 impair both CMA and MA which may contribute to the neurodegeneration observed in patients with UBQLN2-mediated ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Proteínas Adaptadoras Transductoras de Señales/genética , Autofagia/genética , Mutación , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Factores de Transcripción/metabolismo , Lisosomas/metabolismo , Lisosomas/patología
12.
Cell Mol Life Sci ; 79(3): 176, 2022 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-35247097

RESUMEN

The brain-expressed ubiquilins (UBQLNs) 1, 2 and 4 are a family of ubiquitin adaptor proteins that participate broadly in protein quality control (PQC) pathways, including the ubiquitin proteasome system (UPS). One family member, UBQLN2, has been implicated in numerous neurodegenerative diseases including ALS/FTD. UBQLN2 typically resides in the cytoplasm but in disease can translocate to the nucleus, as in Huntington's disease where it promotes the clearance of mutant Huntingtin. How UBQLN2 translocates to the nucleus and clears aberrant nuclear proteins, however, is not well understood. In a mass spectrometry screen to discover UBQLN2 interactors, we identified a family of small (13 kDa), highly homologous uncharacterized proteins, RTL8, and confirmed the interaction between UBQLN2 and RTL8 both in vitro using recombinant proteins and in vivo using mouse brain tissue. Under endogenous and overexpressed conditions, RTL8 localizes to nucleoli. When co-expressed with UBQLN2, RTL8 promotes nuclear translocation of UBQLN2. RTL8 also facilitates UBQLN2's nuclear translocation during heat shock. UBQLN2 and RTL8 colocalize within ubiquitin-enriched subnuclear structures containing PQC components. The robust effect of RTL8 on the nuclear translocation and subnuclear localization of UBQLN2 does not extend to the other brain-expressed ubiquilins, UBQLN1 and UBQLN4. Moreover, compared to UBQLN1 and UBQLN4, UBQLN2 preferentially stabilizes RTL8 levels in human cell lines and in mouse brain, supporting functional heterogeneity among UBQLNs. As a novel UBQLN2 interactor that recruits UBQLN2 to specific nuclear compartments, RTL8 may regulate UBQLN2 function in nuclear protein quality control.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Proteínas Adaptadoras Transductoras de Señales/genética , Secuencia de Aminoácidos , Animales , Proteínas Relacionadas con la Autofagia/deficiencia , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Encéfalo/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Nucléolo Celular/metabolismo , Células HEK293 , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Alineación de Secuencia , Temperatura , Ubiquitina/metabolismo
13.
J Biol Chem ; 296: 100508, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33675750

RESUMEN

The aggregation of amyloidogenic polypeptides is strongly linked to several neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. Conformational antibodies that selectively recognize protein aggregates are leading therapeutic agents for selectively neutralizing toxic aggregates, diagnostic and imaging agents for detecting disease, and biomedical reagents for elucidating disease mechanisms. Despite their importance, it is challenging to generate high-quality conformational antibodies in a systematic and site-specific manner due to the properties of protein aggregates (hydrophobic, multivalent, and heterogeneous) and limitations of immunization (uncontrolled antigen presentation and immunodominant epitopes). Toward addressing these challenges, we have developed a systematic directed evolution procedure for affinity maturing antibodies against Alzheimer's Aß fibrils and selecting variants with strict conformational and sequence specificity. We first designed a library based on a lead conformational antibody by sampling combinations of amino acids in the antigen-binding site predicted to mediate high antibody specificity. Next, we displayed this library on the surface of yeast, sorted it against Aß42 aggregates, and identified promising clones using deep sequencing. The resulting antibodies displayed similar or higher affinities than clinical-stage Aß antibodies (aducanumab and crenezumab). Moreover, the affinity-matured antibodies retained high conformational specificity for Aß aggregates, as observed for aducanumab and unlike crenezumab. Notably, the affinity-maturated antibodies displayed extremely low levels of nonspecific interactions, as observed for crenezumab and unlike aducanumab. We expect that our systematic methods for generating antibodies with unique combinations of desirable properties will improve the generation of high-quality conformational antibodies specific for diverse types of aggregated conformers.


Asunto(s)
Amiloide/metabolismo , Anticuerpos Monoclonales/inmunología , Encéfalo/patología , Amiloide/antagonistas & inhibidores , Amiloide/inmunología , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/metabolismo , Sitios de Unión de Anticuerpos , Encéfalo/inmunología , Estudios de Casos y Controles , Humanos , Ratones , Modelos Moleculares , Conformación Proteica
14.
Hum Mol Genet ; 29(15): 2596-2610, 2020 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-32681165

RESUMEN

Divergent protein context helps explain why polyglutamine expansion diseases differ clinically and pathologically. This heterogeneity may also extend to how polyglutamine disease proteins are handled by cellular pathways of proteostasis. Studies suggest, for example, that the ubiquitin-proteasome shuttle protein Ubiquilin-2 (UBQLN2) selectively interacts with specific polyglutamine disease proteins. Here we employ cellular models, primary neurons and mouse models to investigate the potential differential regulation by UBQLN2 of two polyglutamine disease proteins, huntingtin (HTT) and ataxin-3 (ATXN3). In cells, overexpressed UBQLN2 selectively lowered levels of full-length pathogenic HTT but not of HTT exon 1 fragment or full-length ATXN3. Consistent with these results, UBQLN2 specifically reduced accumulation of aggregated mutant HTT but not mutant ATXN3 in mouse models of Huntington's disease (HD) and spinocerebellar ataxia type 3 (SCA3), respectively. Normally a cytoplasmic protein, UBQLN2 translocated to the nuclei of neurons in HD mice but not in SCA3 mice. Remarkably, instead of reducing the accumulation of nuclear mutant ATXN3, UBQLN2 induced an accumulation of cytoplasmic ATXN3 aggregates in neurons of SCA3 mice. Together these results reveal a selective action of UBQLN2 toward polyglutamine disease proteins, indicating that polyglutamine expansion alone is insufficient to promote UBQLN2-mediated clearance of this class of disease proteins. Additional factors, including nuclear translocation of UBQLN2, may facilitate its action to clear intranuclear, aggregated disease proteins like HTT.


Asunto(s)
Ataxina-3/genética , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Enfermedad de Machado-Joseph/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteínas Relacionadas con la Autofagia/genética , Modelos Animales de Enfermedad , Exones , Heterogeneidad Genética , Humanos , Ratones , Neuronas/metabolismo , Neuronas/patología , Péptidos/genética , Complejo de la Endopetidasa Proteasomal
15.
Nat Rev Neurosci ; 18(10): 613-626, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28855740

RESUMEN

The dominantly inherited spinocerebellar ataxias (SCAs) are a large and diverse group of neurodegenerative diseases. The most prevalent SCAs (SCA1, SCA2, SCA3, SCA6 and SCA7) are caused by expansion of a glutamine-encoding CAG repeat in the affected gene. These SCAs represent a substantial portion of the polyglutamine neurodegenerative disorders and provide insight into this class of diseases as a whole. Recent years have seen considerable progress in deciphering the clinical, pathological, physiological and molecular aspects of the polyglutamine SCAs, with these advances establishing a solid base from which to pursue potential therapeutic approaches.


Asunto(s)
Péptidos/genética , Ataxias Espinocerebelosas , Animales , Encéfalo/fisiopatología , Modelos Animales de Enfermedad , Humanos , Modelos Genéticos , Modelos Neurológicos , Mutación , Proteínas del Tejido Nervioso/genética , Péptidos/fisiología , Ataxias Espinocerebelosas/diagnóstico , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/fisiopatología
16.
Cerebellum ; 20(1): 41-53, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32789747

RESUMEN

Spinocerebellar ataxia type 3 (SCA3) is the second-most common CAG repeat disease, caused by a glutamine-encoding expansion in the ATXN3 protein. SCA3 is characterized by spinocerebellar degeneration leading to progressive motor incoordination and early death. Previous studies suggest that potassium channel dysfunction underlies early abnormalities in cerebellar cortical Purkinje neuron firing in SCA3. However, cerebellar cortical degeneration is often modest both in the human disease and mouse models of SCA3, raising uncertainty about the role of cerebellar dysfunction in SCA3. Here, we address this question by investigating Purkinje neuron excitability in SCA3. In early-stage SCA3 mice, we confirm a previously identified increase in excitability of cerebellar Purkinje neurons and associate this excitability with reduced transcripts of two voltage-gated potassium (KV) channels, Kcna6 and Kcnc3, as well as motor impairment. Intracerebroventricular delivery of antisense oligonucleotides (ASO) to reduce mutant ATXN3 restores normal excitability to SCA3 Purkinje neurons and rescues transcript levels of Kcna6 and Kcnc3. Interestingly, while an even broader range of KV channel transcripts shows reduced levels in late-stage SCA3 mice, cerebellar Purkinje neuron physiology was not further altered despite continued worsening of motor impairment. These results suggest the progressive motor phenotype observed in SCA3 may not reflect ongoing changes in the cerebellar cortex but instead dysfunction of other neuronal structures within and beyond the cerebellum. Nevertheless, the early rescue of both KV channel expression and neuronal excitability by ASO treatment suggests that cerebellar cortical dysfunction contributes meaningfully to motor dysfunction in SCA3.


Asunto(s)
Ataxina-3/genética , Enfermedad de Machado-Joseph/tratamiento farmacológico , Enfermedad de Machado-Joseph/genética , Oligonucleótidos Antisentido/uso terapéutico , Células de Purkinje/patología , Proteínas Represoras/genética , Animales , Conducta Animal , Humanos , Inyecciones Intraventriculares , Canal de Potasio Kv1.6/efectos de los fármacos , Canal de Potasio Kv1.6/genética , Enfermedad de Machado-Joseph/psicología , Ratones , Ratones Transgénicos , Técnicas de Placa-Clamp , Fenotipo , Canales de Potasio con Entrada de Voltaje/efectos de los fármacos , Canales de Potasio Shaw/efectos de los fármacos , Canales de Potasio Shaw/genética , Resultado del Tratamiento
17.
Proc Natl Acad Sci U S A ; 115(44): E10495-E10504, 2018 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-30333186

RESUMEN

UBQLN2 is one of a family of proteins implicated in ubiquitin-dependent protein quality control and integrally tied to human neurodegenerative disease. Whereas wild-type UBQLN2 accumulates in intraneuronal deposits in several common age-related neurodegenerative diseases, mutations in the gene encoding this protein result in X-linked amyotrophic lateral sclerosis/frontotemporal dementia associated with TDP43 accumulation. Using in vitro protein analysis, longitudinal fluorescence imaging and cellular, neuronal, and transgenic mouse models, we establish that UBQLN2 is intrinsically prone to self-assemble into higher-order complexes, including liquid-like droplets and amyloid aggregates. UBQLN2 self-assembly and solubility are reciprocally modulated by the protein's ubiquitin-like and ubiquitin-associated domains. Moreover, a pathogenic UBQLN2 missense mutation impairs droplet dynamics and favors amyloid-like aggregation associated with neurotoxicity. These data emphasize the critical link between UBQLN2's role in ubiquitin-dependent pathways and its propensity to self-assemble and aggregate in neurodegenerative diseases.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Agregación Patológica de Proteínas , Proteínas Adaptadoras Transductoras de Señales , Proteínas Adaptadoras del Transporte Vesicular/genética , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Proteínas Relacionadas con la Autofagia , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Regulación de la Expresión Génica , Ratones , Ratones Transgénicos , Mutación , Neuronas , Conformación Proteica , Dominios Proteicos , Ubiquitina
18.
J Biol Chem ; 294(21): 8438-8451, 2019 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-30918024

RESUMEN

Antibodies that recognize amyloidogenic aggregates with high conformational and sequence specificity are important for detecting and potentially treating a wide range of neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. However, these types of antibodies are challenging to generate because of the large size, hydrophobicity, and heterogeneity of protein aggregates. To address this challenge, we developed a method for generating antibodies specific for amyloid aggregates. First, we grafted amyloidogenic peptide segments from the target polypeptide [Alzheimer's amyloid-ß (Aß) peptide] into the complementarity-determining regions (CDRs) of a stable antibody scaffold. Next, we diversified the grafted and neighboring CDR sites using focused mutagenesis to sample each WT or grafted residue, as well as one to five of the most commonly occurring amino acids at each site in human antibodies. Finally, we displayed these antibody libraries on the surface of yeast cells and selected antibodies that strongly recognize Aß-amyloid fibrils and only weakly recognize soluble Aß. We found that this approach enables the generation of monovalent and bivalent antibodies with nanomolar affinity for Aß fibrils. These antibodies display high conformational and sequence specificity as well as low levels of nonspecific binding and recognize a conformational epitope at the extreme N terminus of human Aß. We expect that this systematic approach will be useful for generating antibodies with conformational and sequence specificity against a wide range of peptide and protein aggregates associated with neurodegenerative disorders.


Asunto(s)
Péptidos beta-Amiloides , Regiones Determinantes de Complementariedad , Anticuerpos de Cadena Única , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/inmunología , Regiones Determinantes de Complementariedad/química , Regiones Determinantes de Complementariedad/genética , Regiones Determinantes de Complementariedad/inmunología , Humanos , Mutagénesis Sitio-Dirigida , Anticuerpos de Cadena Única/química , Anticuerpos de Cadena Única/genética , Anticuerpos de Cadena Única/inmunología
19.
Neurobiol Dis ; 134: 104635, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31669734

RESUMEN

Tandem repeat diseases include the neurodegenerative disorders known as polyglutamine (polyQ) diseases, caused by CAG repeat expansions in the coding regions of the respective disease genes. The nine known polyQ disease include Huntington's disease (HD), dentatorubral-pallidoluysian atrophy (DRPLA), spinal bulbar muscular atrophy (SBMA), and six spinocerebellar ataxias (SCA1, SCA2, SCA3, SCA6, SCA7, and SCA17). The underlying disease mechanism in the polyQ diseases is thought principally to reflect dominant toxic properties of the disease proteins which, when harboring a polyQ expansion, differentially interact with protein partners and are prone to aggregate. Among the polyQ diseases, SCA3 is the most common SCA, and second to HD in prevalence worldwide. Here we summarize current understanding of SCA3 disease mechanisms within the broader context of the broader polyQ disease field. We emphasize properties of the disease protein, ATXN3, and new discoveries regarding three potential pathogenic mechanisms: 1) altered protein homeostasis; 2) DNA damage and dysfunctional DNA repair; and 3) nonneuronal contributions to disease. We conclude with an overview of the therapeutic implications of recent mechanistic insights.


Asunto(s)
Enfermedad de Machado-Joseph , Péptidos , Animales , Humanos , Expansión de Repetición de Trinucleótido
20.
Neurobiol Dis ; 137: 104697, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31783119

RESUMEN

Spinocerebellar Ataxia type 3 (SCA3, also known as Machado-Joseph disease) is a neurodegenerative disorder caused by a CAG repeat expansion encoding an abnormally long polyglutamine (polyQ) tract in the disease protein, ataxin-3 (ATXN3). No preventive treatment is yet available for SCA3. Because SCA3 is likely caused by a toxic gain of ATXN3 function, a rational therapeutic strategy is to reduce mutant ATXN3 levels by targeting pathways that control its production or stability. Here, we sought to identify genes that modulate ATXN3 levels as potential therapeutic targets in this fatal disorder. We screened a collection of siRNAs targeting 2742 druggable human genes using a cell-based assay based on luminescence readout of polyQ-expanded ATXN3. From 317 candidate genes identified in the primary screen, 100 genes were selected for validation. Among the 33 genes confirmed in secondary assays, 15 were validated in an independent cell model as modulators of pathogenic ATXN3 protein levels. Ten of these genes were then assessed in a Drosophila model of SCA3, and one was confirmed as a key modulator of physiological ATXN3 abundance in SCA3 neuronal progenitor cells. Among the 15 genes shown to modulate ATXN3 in mammalian cells, orthologs of CHD4, FBXL3, HR and MC3R regulate mutant ATXN3-mediated toxicity in fly eyes. Further mechanistic studies of one of these genes, FBXL3, encoding a F-box protein that is a component of the SKP1-Cullin-F-box (SCF) ubiquitin ligase complex, showed that it reduces levels of normal and pathogenic ATXN3 in SCA3 neuronal progenitor cells, primarily via a SCF complex-dependent manner. Bioinformatic analysis of the 15 genes revealed a potential molecular network with connections to tumor necrosis factor-α/nuclear factor-kappa B (TNF/NF-kB) and extracellular signal-regulated kinases 1 and 2 (ERK1/2) pathways. Overall, we identified 15 druggable genes with diverse functions to be suppressors or enhancers of pathogenic ATXN3 abundance. Among identified pathways highlighted by this screen, the FBXL3/SCF axis represents a novel molecular pathway that regulates physiological levels of ATXN3 protein.


Asunto(s)
Ataxina-3/genética , Enfermedad de Machado-Joseph/genética , Neuronas/metabolismo , Proteínas Represoras/genética , Humanos , Enfermedad de Machado-Joseph/patología , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Proteínas del Tejido Nervioso/metabolismo , Enfermedades Neurodegenerativas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA