Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Am J Physiol Heart Circ Physiol ; 322(4): H579-H596, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35179974

RESUMEN

During the past two decades, the field of mammalian myocardial regeneration has grown dramatically, and with this expanded interest comes increasing claims of experimental manipulations that mediate bona fide proliferation of cardiomyocytes. Too often, however, insufficient evidence or improper controls are provided to support claims that cardiomyocytes have definitively proliferated, a process that should be strictly defined as the generation of two de novo functional cardiomyocytes from one original cardiomyocyte. Throughout the literature, one finds inconsistent levels of experimental rigor applied, and frequently the specific data supplied as evidence of cardiomyocyte proliferation simply indicate cell-cycle activation or DNA synthesis, which do not necessarily lead to the generation of new cardiomyocytes. In this review, we highlight potential problems and limitations faced when characterizing cardiomyocyte proliferation in the mammalian heart, and summarize tools and experimental standards, which should be used to support claims of proliferation-based remuscularization. In the end, definitive establishment of de novo cardiomyogenesis can be difficult to prove; therefore, rigorous experimental strategies should be used for such claims.


Asunto(s)
Miocitos Cardíacos , Regeneración , Animales , Ciclo Celular , Proliferación Celular , Corazón/fisiología , Mamíferos , Miocitos Cardíacos/fisiología
2.
J Mol Cell Cardiol ; 142: 126-134, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32289320

RESUMEN

Cardiomyocyte (CM) proliferative potential varies considerably across species. While lower vertebrates and neonatal mammals retain robust capacities for CM proliferation, adult mammalian CMs lose proliferative potential due to cell-cycle withdrawal and polyploidization, failing to mount a proliferative response to regenerate lost CMs after cardiac injury. The decline of murine CM proliferative potential occurs in the neonatal period when the endocrine system undergoes drastic changes for adaptation to extrauterine life. We recently demonstrated that thyroid hormone (TH) signaling functions as a primary factor driving CM proliferative potential loss in vertebrates. Whether other hormonal pathways govern this process remains largely unexplored. Here we showed that agonists of glucocorticoid receptor (GR) and vitamin D receptor (VDR) suppressed neonatal CM proliferation. We next examined CM nucleation and proliferation in neonatal mutant mice lacking GR or VDR specifically in CMs, but we observed no difference between mutant and control littermates at postnatal day 14. Additionally, we generated compound mutant mice that lack GR or VDR and express dominant-negative TH receptor alpha in their CMs, and similarly observed no increase in CM proliferative potential compared to dominant-negative TH receptor alpha mice alone. Thus, although GR and VDR activation is sufficient to inhibit CM proliferation, they seem to be dispensable for neonatal CM cell-cycle exit and polyploidization in vivo. In addition, given the recent report that VDR activation in zebrafish promotes CM proliferation and tissue regeneration, our results suggest distinct roles of VDR in zebrafish and rodent CM cell-cycle regulation.


Asunto(s)
Miocitos Cardíacos/metabolismo , Receptores de Calcitriol/genética , Receptores de Glucocorticoides/genética , Animales , Animales Recién Nacidos , Biomarcadores , División Celular , Proliferación Celular/genética , Células Cultivadas , Femenino , Técnica del Anticuerpo Fluorescente , Inmunohistoquímica , Masculino , Ratones , Ratones Noqueados , Receptores de Calcitriol/agonistas , Receptores de Calcitriol/metabolismo , Receptores de Glucocorticoides/metabolismo , Transducción de Señal , Hormonas Tiroideas/metabolismo
3.
Nat Chem Biol ; 12(9): 694-701, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27376691

RESUMEN

The transcription factor T-box 16 (Tbx16, or Spadetail) is an essential regulator of paraxial mesoderm development in zebrafish (Danio rerio). Mesodermal progenitor cells (MPCs) fail to differentiate into trunk somites in tbx16 mutants and instead accumulate within the tailbud in an immature state. However, the mechanisms by which Tbx16 controls mesoderm patterning have remained enigmatic. We describe here the use of photoactivatable morpholino oligonucleotides to determine the Tbx16 transcriptome in MPCs. We identified 124 Tbx16-regulated genes that were expressed in zebrafish gastrulae, including several developmental signaling proteins and regulators of gastrulation, myogenesis and somitogenesis. Unexpectedly, we observed that a loss of Tbx16 function precociously activated posterior hox genes in MPCs, and overexpression of a single posterior hox gene was sufficient to disrupt MPC migration. Our studies support a model in which Tbx16 regulates the timing of collinear hox gene activation to coordinate the anterior-posterior fates and positions of paraxial MPCs.


Asunto(s)
Genes Homeobox/genética , Mesodermo/metabolismo , Células Madre/metabolismo , Proteínas de Dominio T Box/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Mesodermo/citología , Estructura Molecular , Células Madre/citología , Proteínas de Dominio T Box/genética , Pez Cebra , Proteínas de Pez Cebra/genética
5.
Proc Natl Acad Sci U S A ; 111(30): 11061-6, 2014 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-25024229

RESUMEN

Hedgehog (Hh) pathway activation and Gli-dependent transcription play critical roles in embryonic patterning, tissue homeostasis, and tumorigenesis. By conducting a genome-scale cDNA overexpression screen, we have identified the Rho GAP family member Arhgap36 as a positive regulator of the Hh pathway in vitro and in vivo. Arhgap36 acts in a Smoothened (Smo)-independent manner to inhibit Gli repressor formation and to promote the activation of full-length Gli proteins. Arhgap36 concurrently induces the accumulation of Gli proteins in the primary cilium, and its ability to induce Gli-dependent transcription requires kinesin family member 3a and intraflagellar transport protein 88, proteins that are essential for ciliogenesis. Arhgap36 also functionally and biochemically interacts with Suppressor of Fused. Transcriptional profiling further reveals that Arhgap36 is overexpressed in murine medulloblastomas that acquire resistance to chemical Smo inhibitors and that ARHGAP36 isoforms capable of Gli activation are up-regulated in a subset of human medulloblastomas. Our findings reveal a new mechanism of Gli transcription factor activation and implicate ARHGAP36 dysregulation in the onset and/or progression of GLI-dependent cancers.


Asunto(s)
Proteínas Activadoras de GTPasa/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Meduloblastoma/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Cilios/genética , Cilios/metabolismo , Proteínas Activadoras de GTPasa/genética , Perfilación de la Expresión Génica , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Meduloblastoma/genética , Meduloblastoma/patología , Ratones , Ratones Noqueados , Células 3T3 NIH , Proteínas Nucleares/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptor Smoothened , Factores de Transcripción/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteína con Dedos de Zinc GLI1
6.
WIREs Mech Dis ; 16(1): e1629, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37700522

RESUMEN

Interest in vertebrate cardiac regeneration has exploded over the past two decades since the discovery that adult zebrafish are capable of complete heart regeneration, contrasting the limited regenerative potential typically observed in adult mammalian hearts. Undercovering the mechanisms that both support and limit cardiac regeneration across the animal kingdom may provide unique insights in how we may unlock this capacity in adult humans. In this review, we discuss key discoveries in the heart regeneration field over the last 20 years. Initially, seminal findings revealed that pre-existing cardiomyocytes are the major source of regenerated cardiac muscle, drawing interest into the intrinsic mechanisms regulating cardiomyocyte proliferation. Moreover, recent studies have identified the importance of intercellular interactions and physiological adaptations, which highlight the vast complexity of the cardiac regenerative process. Finally, we compare strategies that have been tested to increase the regenerative capacity of the adult mammalian heart. This article is categorized under: Cardiovascular Diseases > Stem Cells and Development.


Asunto(s)
Miocitos Cardíacos , Pez Cebra , Animales , Adulto , Humanos , Miocitos Cardíacos/fisiología , Pez Cebra/fisiología , Proliferación Celular , Miocardio , Investigación , Mamíferos
7.
Appl Sci (Basel) ; 14(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38818302

RESUMEN

Cardiomyocyte hypertrophy, characterized by an increase in cell size, is associated with various cardiovascular diseases driven by factors including hypertension, myocardial infarction, and valve dysfunction. In vitro primary cardiomyocyte culture models have yielded numerous insights into the intrinsic and extrinsic mechanisms driving hypertrophic growth. However, due to limitations in current approaches, the dynamics of cardiomyocyte hypertrophic responses remain poorly characterized. In this study, we evaluate the application of the Holomonitor M4 digital holographic imaging microscope to track dynamic changes in cardiomyocyte surface area and volume in response to norepinephrine treatment, a model hypertrophic stimulus. The Holomonitor M4 permits non-invasive, label-free imaging of three-dimensional changes in cell morphology with minimal phototoxicity, thus enabling long-term imaging studies. Untreated and norepinephrine-stimulated primary neonatal rat cardiomyocytes were live-imaged on the Holomonitor M4, which was followed by image segmentation and single-cell tracking using the HOLOMONITOR App Suite software version 4.0.1.546. The 24 h treatment of cultured cardiomyocytes with norepinephrine increased cardiomyocyte spreading and optical volume as expected, validating the reliability of the approach. Single-cell tracking of both cardiomyocyte surface area and three-dimensional optical volume revealed dynamic increases in these parameters throughout the 24 h imaging period, demonstrating the potential of this technology to explore cardiomyocyte hypertrophic responses with greater temporal resolution; however, technological limitations were also observed and should be considered in the experimental design and interpretation of results. Overall, leveraging the unique advantages of the Holomonitor M4 digital holographic imaging system has the potential to empower future work towards understanding the molecular and cellular mechanisms underlying cardiomyocyte hypertrophy with enhanced temporal clarity.

8.
Biochem Biophys Res Commun ; 433(4): 396-400, 2013 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-23454382

RESUMEN

As a subunit of mitochondrial complex III, UQCRB plays an important role in complex III stability, electron transport, and cellular oxygen sensing. Herein, we report UQCRB function regarding angiogenesis in vivo with the zebrafish (Danio rerio). UQCRB knockdown inhibited angiogenesis in zebrafish leading to the suppression of VEGF expression. Moreover, the UQCRB-targeting small molecule terpestacin also inhibited angiogenesis and VEGF levels in zebrafish, supporting the role of UQCRB in angiogenesis. Collectively, UQCRB loss of function by either genetic and pharmacological means inhibited angiogenesis, indicating that UQCRB plays a key role in this process and can be a prognostic marker of angiogenesis- and mitochondria-related diseases.


Asunto(s)
Proteínas Portadoras/metabolismo , Regulación del Desarrollo de la Expresión Génica , Neovascularización Fisiológica/genética , Pez Cebra/fisiología , Secuencia de Aminoácidos , Animales , Compuestos Bicíclicos con Puentes/farmacología , Proteínas Portadoras/genética , Relación Dosis-Respuesta a Droga , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/fisiología , Desarrollo Embrionario , Técnicas de Silenciamiento del Gen , Mitocondrias/genética , Mitocondrias/metabolismo , Datos de Secuencia Molecular , Morfolinos/farmacología , Pronóstico , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra/genética
9.
bioRxiv ; 2023 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-37961676

RESUMEN

Cardiac regeneration in newborn rodents depends on the ability of pre-existing cardiomyocytes to proliferate and divide. This capacity is lost within the first week of postnatal development when these cells rapidly switch from hyperplasia to hypertrophy, withdraw from the cell cycle, become binucleated, and increase in size. How these dynamic changes in size and ploidy impact cardiomyocyte proliferative potential is not well understood. In this study, we innovate the application of a commercially available digital holographic imaging microscope, the Holomonitor M4, to evaluate the proliferative responses of mononucleated diploid and binucleated tetraploid cardiomyocytes. This instrument coupled with the powerful Holomonitor App Suite software enables long-term label-free quantitative three-dimensional tracking of primary cardiomyocyte dynamics in real-time with single-cell resolution. Our digital holographic imaging results provide direct evidence that mononucleated cardiomyocytes retain significant proliferative potential as most can successfully divide with high frequency. In contrast, binucleated cardiomyocytes exhibit a blunted response to a proliferative stimulus with the majority not attempting to divide at all. Nevertheless, some binucleated cardiomyocytes were capable of complete division, suggesting that these cells still do retain limited proliferative capacity. By quantitatively tracking cardiomyocyte volume dynamics during these proliferative responses, we reveal that both mononucleated and binucleated cells reach a unique size threshold prior to attempted cell division. The absolute threshold is increased by binucleation, which may limit the ability of binucleated cardiomyocytes to divide. By defining the interrelationship between cardiomyocyte size, ploidy, and cell cycle control, we will better understand the cellular mechanisms that drive the loss of mammalian cardiac regenerative capacity after birth.

10.
J Endocrinol ; 252(3): R71-R82, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34935637

RESUMEN

While adult zebrafish and newborn mice possess a robust capacity to regenerate their hearts, this ability is generally lost in adult mammals. The logic behind the diversity of cardiac regenerative capacity across the animal kingdom is not well understood. We have recently reported that animal metabolism is inversely correlated to the abundance of mononucleated diploid cardiomyocytes in the heart, which retain proliferative and regenerative potential. Thyroid hormones are classical regulators of animal metabolism, mitochondrial function, and thermogenesis, and a growing body of scientific evidence demonstrates that these hormonal regulators also have direct effects on cardiomyocyte proliferation and maturation. We propose that thyroid hormones dually control animal metabolism and cardiac regenerative potential through distinct mechanisms, which may represent an evolutionary tradeoff for the acquisition of endothermy and loss of heart regenerative capacity. In this review, we describe the effects of thyroid hormones on animal metabolism and cardiomyocyte regeneration and highlight recent reports linking the loss of mammalian cardiac regenerative capacity to metabolic shifts occurring after birth.


Asunto(s)
Corazón/fisiología , Metabolismo , Regeneración , Hormonas Tiroideas/fisiología , Animales
11.
Dev Cell ; 53(1): 5-7, 2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-32259493

RESUMEN

Regenerative capacity is robust in the neonatal mouse heart but is lost during postnatal development when cardiomyocytes undergo cell-cycle arrest and polyploidization. In this issue of Developmental Cell, Han et al. (2020) show that Lamin B2, a nuclear lamina filament supporting cardiomyocyte karyokinesis, also facilitates cell division and cardiac regeneration.


Asunto(s)
Lamina Tipo B , Miocitos Cardíacos , Animales , Núcleo Celular , División del Núcleo Celular , Ratones
12.
Science ; 364(6436): 184-188, 2019 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-30846611

RESUMEN

Tissue regenerative potential displays striking divergence across phylogeny and ontogeny, but the underlying mechanisms remain enigmatic. Loss of mammalian cardiac regenerative potential correlates with cardiomyocyte cell-cycle arrest and polyploidization as well as the development of postnatal endothermy. We reveal that diploid cardiomyocyte abundance across 41 species conforms to Kleiber's law-the ¾-power law scaling of metabolism with bodyweight-and inversely correlates with standard metabolic rate, body temperature, and serum thyroxine level. Inactivation of thyroid hormone signaling reduces mouse cardiomyocyte polyploidization, delays cell-cycle exit, and retains cardiac regenerative potential in adults. Conversely, exogenous thyroid hormones inhibit zebrafish heart regeneration. Thus, our findings suggest that loss of heart regenerative capacity in adult mammals is triggered by increasing thyroid hormones and may be a trade-off for the acquisition of endothermy.


Asunto(s)
Corazón/fisiología , Miocitos Cardíacos/fisiología , Poliploidía , Regeneración/fisiología , Hormonas Tiroideas/fisiología , Animales , Regulación de la Temperatura Corporal , Puntos de Control del Ciclo Celular , Proliferación Celular , Diploidia , Ratones , Miocitos Cardíacos/clasificación , Filogenia , Receptores de Hormona Tiroidea/genética , Receptores de Hormona Tiroidea/fisiología , Regeneración/efectos de los fármacos , Regeneración/genética , Transducción de Señal , Hormonas Tiroideas/farmacología , Pez Cebra
13.
Dev Cell ; 43(6): 657-658, 2017 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-29257948

RESUMEN

Muscles are traditionally considered in the context of force generation. Scimone et al. (2017), reporting in Nature, now examine muscles in a developmental setting and find unexpected roles for distinct planarian muscle fibers. The authors show that muscles provide patterning signals to promote regeneration and guide tissue growth after injury.


Asunto(s)
Planarias/fisiología , Regeneración/fisiología , Animales , Tipificación del Cuerpo/fisiología , Diferenciación Celular/fisiología , Fibras Musculares Esqueléticas/fisiología , Músculos/fisiología
14.
Artículo en Inglés | MEDLINE | ID: mdl-28078793

RESUMEN

The nucleus contains the genetic blueprint of the cell and myriad interactions within this subcellular structure are required for gene regulation. In the current scientific era, characterization of these gene regulatory networks through biochemical techniques coupled with systems-wide 'omic' approaches has become commonplace. However, these strategies are limited because they represent a mere snapshot of the cellular state. To obtain a holistic understanding of nuclear dynamics, relevant molecules must be studied in their native contexts in living systems. Live-cell imaging approaches are capable of providing quantitative assessment of the dynamics of gene regulatory interactions within the nucleus. We survey recent insights into what live-cell imaging approaches have provided the field of nuclear dynamics. In this review, we focus on interactions of DNA with other DNA loci, proteins, RNA, and the nuclear envelope. WIREs Syst Biol Med 2017, 9:e1372. doi: 10.1002/wsbm.1372 For further resources related to this article, please visit the WIREs website.


Asunto(s)
Núcleo Celular/metabolismo , Modelos Biológicos , ADN/química , ADN/metabolismo , Membrana Nuclear/química , Membrana Nuclear/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , ARN/química , ARN/metabolismo
15.
PLoS One ; 12(2): e0171898, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28207787

RESUMEN

Using genome-wide transcriptional profiling and whole-mount expression analyses of zebrafish larvae, we have identified hyaluronan synthase 3 (has3) as an upregulated gene during caudal fin regeneration. has3 expression is induced in the wound epithelium within hours after tail amputation, and its onset and maintenance requires fibroblast growth factor, phosphoinositide 3-kinase, and transforming growth factor-ß signaling. Inhibition of hyaluronic acid (HA) synthesis by the small molecule 4-methylumbelliferone (4-MU) impairs tail regeneration in zebrafish larvae by preventing injury-induced cell proliferation. In addition, 4-MU reduces the expression of genes associated with wound epithelium and blastema function. Treatment with glycogen synthase kinase 3 inhibitors rescues 4-MU-induced defects in cell proliferation and tail regeneration, while restoring a subset of wound epithelium and blastema markers. Our findings demonstrate a role for HA biosynthesis in zebrafish tail regeneration and delineate its epistatic relationships with other regenerative processes.


Asunto(s)
Aletas de Animales/fisiología , Glucuronosiltransferasa/fisiología , Ácido Hialurónico/fisiología , Regeneración/genética , Proteínas de Pez Cebra/fisiología , Pez Cebra/fisiología , Animales , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Epistasis Genética , Regulación de la Expresión Génica/efectos de los fármacos , Glucuronosiltransferasa/genética , Glucuronosiltransferasa/metabolismo , Hialuronano Sintasas , Ácido Hialurónico/biosíntesis , Himecromona/farmacología , Regeneración/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Cicatrización de Heridas/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
16.
Nat Genet ; 48(11): 1370-1376, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27668660

RESUMEN

Long noncoding RNAs (lncRNAs) are prevalent genes with frequently precise regulation but mostly unknown functions. Here we demonstrate that lncRNAs guide the organismal DNA damage response. DNA damage activated transcription of the DINO (Damage Induced Noncoding) lncRNA via p53. DINO was required for p53-dependent gene expression, cell cycle arrest and apoptosis in response to DNA damage, and DINO expression was sufficient to activate damage signaling and cell cycle arrest in the absence of DNA damage. DINO bound to p53 protein and promoted its stabilization, mediating a p53 auto-amplification loop. Dino knockout or promoter inactivation in mice dampened p53 signaling and ameliorated acute radiation syndrome in vivo. Thus, inducible lncRNA can create a feedback loop with its cognate transcription factor to amplify cellular signaling networks.


Asunto(s)
Daño del ADN , ARN Largo no Codificante/fisiología , Animales , Línea Celular , Retroalimentación Fisiológica , Femenino , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratas , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo
17.
ACS Chem Biol ; 10(6): 1466-75, 2015 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-25781211

RESUMEN

In addition to their cell-autonomous roles in mesoderm development, the zebrafish T-box transcription factors no tail a (ntla) and spadetail (spt/tbx16) are required for medial floor plate (MFP) formation. Posterior MFP cells are completely absent in zebrafish embryos lacking both Ntla and Spt function, and genetic mosaic analyses have shown that the two T-box genes promote MFP development in a non-cell-autonomous manner. On the basis of these observations, it has been proposed that Ntla/Spt-dependent mesoderm-derived signals are required for the induction of posterior but not anterior MFP cells. To investigate the mechanisms by which Ntla and Spt regulate MFP development, we have used photoactivatable caged morpholinos (cMOs) to silence these T-box genes with spatiotemporal control. We find that posterior MFP formation requires Ntla or Spt activity during early gastrulation, specifically in lateral margin-derived cells that converge toward the midline during epiboly and somitogenesis. Nodal signaling-dependent MFP specification is maintained in the absence of Ntla and Spt function; however, midline cells in ntla;spt morphants exhibit aberrant morphogenetic movements, resulting in their anterior mislocalization. Our findings indicate that Ntla and Spt do not differentially regulate MFP induction along the anterior-posterior axis; rather, the T-box genes act redundantly within margin-derived cells to promote the posterior extension of MFP progenitors.


Asunto(s)
Proteínas Fetales/genética , Sondas Moleculares/química , Morfolinos/química , Proteínas de Dominio T Box/genética , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Embrión no Mamífero , Proteínas Fetales/química , Proteínas Fetales/metabolismo , Regulación del Desarrollo de la Expresión Génica , Luz , Mesodermo/embriología , Mesodermo/metabolismo , Morfogénesis/genética , Procesos Fotoquímicos , Transducción de Señal , Proteínas de Dominio T Box/química , Proteínas de Dominio T Box/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/metabolismo
18.
ACS Chem Biol ; 9(1): 111-5, 2014 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-24180414

RESUMEN

Post-translational regulation of protein abundance in cells is a powerful tool for studying protein function. Here, we describe a novel genetically encoded protein domain that is degraded upon exposure to nontoxic blue light. We demonstrate that fusion proteins containing this domain are rapidly degraded in cultured cells and in zebrafish upon illumination.


Asunto(s)
Avena/genética , Proteínas Luminiscentes/química , Proteínas Luminiscentes/genética , Fotólisis , Fototropinas/química , Fototropinas/genética , Estabilidad Proteica , Animales , Avena/química , Luz , Ratones , Células 3T3 NIH , Ingeniería de Proteínas , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Pez Cebra
19.
PLoS One ; 9(7): e103661, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25068273

RESUMEN

The Hedgehog (Hh) pathway is essential for embryonic development and tissue regeneration, and its dysregulation can lead to birth defects and tumorigenesis. Understanding how this signaling mechanism contributes to these processes would benefit from an ability to visualize Hedgehog pathway activity in live organisms, in real time, and with single-cell resolution. We report here the generation of transgenic zebrafish lines that express nuclear-localized mCherry fluorescent protein in a Gli transcription factor-dependent manner. As demonstrated by chemical and genetic perturbations, these lines faithfully report Hedgehog pathway state in individual cells and with high detection sensitivity. They will be valuable tools for studying dynamic Gli-dependent processes in vertebrates and for identifying new chemical and genetic regulators of the Hh pathway.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas Luminiscentes/metabolismo , Transducción de Señal , Proteínas de Pez Cebra/metabolismo , Aletas de Animales/embriología , Aletas de Animales/crecimiento & desarrollo , Aletas de Animales/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Hedgehog/genética , Proteínas Luminiscentes/genética , Microscopía Fluorescente , Mutación , Reproducibilidad de los Resultados , Somitos/embriología , Somitos/crecimiento & desarrollo , Somitos/metabolismo , Imagen de Lapso de Tiempo/métodos , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Proteínas de Pez Cebra/genética , Proteína Fluorescente Roja
20.
J Phys Chem B ; 115(49): 14784-8, 2011 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-22029390

RESUMEN

This study examines the properties of a 4 × 2 matrix of aqueous cations and anions at concentrations up to 8.0 M. The apparent molar water volume, as calculated by subtracting the mass and volume of the ions from the corresponding solution density, was found to exceed the molar volume of ice in many concentrated electrolyte solutions, underscoring the nonideal behavior of these systems. The solvent properties of water were also analyzed by measuring the solubility of diketopiperazine (DKP) in 2.000 M salt solutions prepared from the same ion combinations. Solution rankings for DKP solubility were found to parallel the Hofmeister series for both cations and anions, whereas molar water volume concurred with the cation series only. The results are discussed within the framework of a desolvation energy model that attributes solute-specific changes in equilibria to solute-dependent changes in the free energy of bulk water.


Asunto(s)
Dicetopiperazinas/química , Agua/química , Aniones/química , Cationes/química , Solubilidad , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA