Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Antimicrob Agents Chemother ; 68(8): e0024324, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39028190

RESUMEN

Bromodomains are structural folds present in all eukaryotic cells that bind to other proteins recognizing acetylated lysines. Most proteins with bromodomains are part of nuclear complexes that interact with acetylated histone residues and regulate DNA replication, transcription, and repair through chromatin structure remodeling. Bromodomain inhibitors are small molecules that bind to the hydrophobic pocket of bromodomains, interfering with the interaction with acetylated histones. Using a fluorescent probe, we have developed an assay to select inhibitors of the bromodomain factor 2 of Trypanosoma cruzi (TcBDF2) using fluorescence polarization. Initially, a library of 28,251 compounds was screened in an endpoint assay. The top 350-ranked compounds were further analyzed in a dose-response assay. From this analysis, seven compounds were obtained that had not been previously characterized as bromodomain inhibitors. Although these compounds did not exhibit significant trypanocidal activity, all showed bona fide interaction with TcBDF2 with dissociation constants between 1 and 3 µM validating these assays to search for bromodomain inhibitors.


Asunto(s)
Polarización de Fluorescencia , Ensayos Analíticos de Alto Rendimiento , Proteínas Protozoarias , Tripanocidas , Trypanosoma cruzi , Trypanosoma cruzi/efectos de los fármacos , Trypanosoma cruzi/metabolismo , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/metabolismo , Tripanocidas/farmacología , Tripanocidas/química , Ensayos Analíticos de Alto Rendimiento/métodos , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo
2.
Proc Natl Acad Sci U S A ; 116(19): 9318-9323, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-30962368

RESUMEN

Visceral leishmaniasis (VL), caused by the protozoan parasites Leishmania donovani and Leishmania infantum, is one of the major parasitic diseases worldwide. There is an urgent need for new drugs to treat VL, because current therapies are unfit for purpose in a resource-poor setting. Here, we describe the development of a preclinical drug candidate, GSK3494245/DDD01305143/compound 8, with potential to treat this neglected tropical disease. The compound series was discovered by repurposing hits from a screen against the related parasite Trypanosoma cruzi Subsequent optimization of the chemical series resulted in the development of a potent cidal compound with activity against a range of clinically relevant L. donovani and L. infantum isolates. Compound 8 demonstrates promising pharmacokinetic properties and impressive in vivo efficacy in our mouse model of infection comparable with those of the current oral antileishmanial miltefosine. Detailed mode of action studies confirm that this compound acts principally by inhibition of the chymotrypsin-like activity catalyzed by the ß5 subunit of the L. donovani proteasome. High-resolution cryo-EM structures of apo and compound 8-bound Leishmania tarentolae 20S proteasome reveal a previously undiscovered inhibitor site that lies between the ß4 and ß5 proteasome subunits. This induced pocket exploits ß4 residues that are divergent between humans and kinetoplastid parasites and is consistent with all of our experimental and mutagenesis data. As a result of these comprehensive studies and due to a favorable developability and safety profile, compound 8 is being advanced toward human clinical trials.


Asunto(s)
Antiprotozoarios/administración & dosificación , Leishmania donovani/efectos de los fármacos , Leishmania infantum/efectos de los fármacos , Leishmaniasis Visceral/diagnóstico por imagen , Inhibidores de Proteasoma/administración & dosificación , Proteínas Protozoarias/antagonistas & inhibidores , Animales , Antiprotozoarios/química , Sitios de Unión , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Humanos , Leishmania donovani/química , Leishmania donovani/enzimología , Leishmania infantum/química , Leishmania infantum/enzimología , Leishmaniasis Visceral/parasitología , Masculino , Ratones , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/química , Conformación Proteica , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-29463533

RESUMEN

With the World Health Organization reporting over 30,000 deaths and 200,000 to 400,000 new cases annually, visceral leishmaniasis is a serious disease affecting some of the world's poorest people. As drug resistance continues to rise, there is a huge unmet need to improve treatment. Miltefosine remains one of the main treatments for leishmaniasis, yet its mode of action (MoA) is still unknown. Understanding the MoA of this drug and parasite response to treatment could help pave the way for new and more successful treatments for leishmaniasis. A novel method has been devised to study the metabolome and lipidome of Leishmania donovani axenic amastigotes treated with miltefosine. Miltefosine caused a dramatic decrease in many membrane phospholipids (PLs), in addition to amino acid pools, while sphingolipids (SLs) and sterols increased. Leishmania major promastigotes devoid of SL biosynthesis through loss of the serine palmitoyl transferase gene (ΔLCB2) were 3-fold less sensitive to miltefosine than wild-type (WT) parasites. Changes in the metabolome and lipidome of miltefosine-treated L. major mirrored those of L. donovani A lack of SLs in the ΔLCB2 mutant was matched by substantial alterations in sterol content. Together, these data indicate that SLs and ergosterol are important for miltefosine sensitivity and, perhaps, MoA.


Asunto(s)
Antiprotozoarios/farmacología , Leishmania donovani/metabolismo , Leishmania major/metabolismo , Fosforilcolina/análogos & derivados , Serina C-Palmitoiltransferasa/genética , Esfingolípidos/metabolismo , Esteroles/metabolismo , Ergosterol/metabolismo , Humanos , Leishmaniasis Visceral/tratamiento farmacológico , Leishmaniasis Visceral/parasitología , Lípidos de la Membrana/metabolismo , Metaboloma/efectos de los fármacos , Metaboloma/genética , Fosfolípidos/metabolismo , Fosforilcolina/farmacología
4.
Antimicrob Agents Chemother ; 60(6): 3524-32, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27021313

RESUMEN

The protozoan parasite Leishmania donovani is the causative agent of visceral leishmaniasis, a disease potentially fatal if not treated. Current available treatments have major limitations, and new and safer drugs are urgently needed. In recent years, advances in high-throughput screening technologies have enabled the screening of millions of compounds to identify new antileishmanial agents. However, most of the compounds identified in vitro did not translate their activities when tested in in vivo models, highlighting the need to develop more predictive in vitro assays. In the present work, we describe the development of a robust replicative, high-content, in vitro intracellular L. donovani assay. Horse serum was included in the assay media to replace standard fetal bovine serum, to completely eliminate the extracellular parasites derived from the infection process. A novel phenotypic in vitro infection model has been developed, complemented with the identification of the proliferation of intracellular amastigotes measured by EdU incorporation. In vitro and in vivo results for miltefosine, amphotericin B, and the selected compound 1 have been included to validate the assay.


Asunto(s)
Anfotericina B/farmacología , Antiprotozoarios/uso terapéutico , Evaluación Preclínica de Medicamentos/métodos , Leishmania donovani/crecimiento & desarrollo , Leishmaniasis Visceral/tratamiento farmacológico , Fosforilcolina/análogos & derivados , Animales , Línea Celular Tumoral , Femenino , Humanos , Leishmania donovani/efectos de los fármacos , Macrófagos/parasitología , Ratones , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Parasitaria , Fosforilcolina/farmacología
5.
J Med Chem ; 66(15): 10413-10431, 2023 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-37506194

RESUMEN

There is an urgent need for new treatments for Chagas disease, a parasitic infection which mostly impacts South and Central America. We previously reported on the discovery of GSK3494245/DDD01305143, a preclinical candidate for visceral leishmaniasis which acted through inhibition of the Leishmania proteasome. A related analogue, active against Trypanosoma cruzi, showed suboptimal efficacy in an animal model of Chagas disease, so alternative proteasome inhibitors were investigated. Screening a library of phenotypically active analogues against the T. cruzi proteasome identified an active, selective pyridazinone, the development of which is described herein. We obtained a cryo-EM co-structure of proteasome and a key inhibitor and used this to drive optimization of the compounds. Alongside this, optimization of the absorption, distribution, metabolism, and excretion (ADME) properties afforded a suitable compound for mouse efficacy studies. The outcome of these studies is discussed, alongside future plans to further understand the series and its potential to deliver a new treatment for Chagas disease.


Asunto(s)
Enfermedad de Chagas , Leishmaniasis Visceral , Tripanocidas , Trypanosoma cruzi , Ratones , Animales , Inhibidores de Proteasoma/farmacología , Inhibidores de Proteasoma/uso terapéutico , Complejo de la Endopetidasa Proteasomal , Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/parasitología , Leishmaniasis Visceral/tratamiento farmacológico , Tripanocidas/farmacología , Tripanocidas/uso terapéutico , Tripanocidas/química
6.
J Med Chem ; 62(3): 1180-1202, 2019 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-30570265

RESUMEN

The leishmaniases are diseases that affect millions of people across the world, in particular visceral leishmaniasis (VL) which is fatal unless treated. Current standard of care for VL suffers from multiple issues and there is a limited pipeline of new candidate drugs. As such, there is a clear unmet medical need to identify new treatments. This paper describes the optimization of a phenotypic hit against Leishmania donovani, the major causative organism of VL. The key challenges were to balance solubility and metabolic stability while maintaining potency. Herein, strategies to address these shortcomings and enhance efficacy are discussed, culminating in the discovery of preclinical development candidate GSK3186899/DDD853651 (1) for VL.


Asunto(s)
Leishmaniasis Visceral/tratamiento farmacológico , Morfolinas/uso terapéutico , Pirazoles/uso terapéutico , Pirimidinas/uso terapéutico , Tripanocidas/uso terapéutico , Animales , Femenino , Células Hep G2 , Humanos , Leishmania donovani/efectos de los fármacos , Masculino , Ratones Endogámicos BALB C , Estructura Molecular , Morfolinas/síntesis química , Morfolinas/toxicidad , Pruebas de Sensibilidad Parasitaria , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/toxicidad , Pirazoles/síntesis química , Pirazoles/toxicidad , Pirimidinas/síntesis química , Pirimidinas/toxicidad , Ratas Sprague-Dawley , Relación Estructura-Actividad , Tripanocidas/síntesis química , Tripanocidas/toxicidad
7.
Sci Rep ; 8(1): 11765, 2018 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-30082744

RESUMEN

The growing drug resistance (DR) raises major concerns for the control of visceral leishmaniasis (VL), a neglected disease lethal in 95 percent of the cases if left untreated. Resistance has rendered antimonials (SSG) obsolete in the Indian Sub-Continent (ISC) and the first miltefosine-resistant Leishmania donovani were isolated. New chemotherapeutic options are needed and novel compounds are being identified by high-throughput screening (HTS). HTS is generally performed with old laboratory strains such as LdBOB and we aimed here to validate the activity of selected compounds against recent clinical isolates. In this academic/industrial collaboration, 130 compounds from the GSK "Leishbox" were screened against one SSG-sensitive and one SSG-resistant strain of L. donovani recently isolated from ISC patients, using an intracellular assay of L. donovani-infected THP1-derived macrophages. We showed that only 45% of the compounds were active in both clinical isolates and LdBOB. There were also different compound efficiencies linked to the SSG susceptibility background of the strains. In addition, our results suggested that the differential susceptibility profiles were chemical series-dependent. In conclusion, we demonstrate the potential value of including clinical isolates (as well as resistant strains) in the HTS progression cascade.


Asunto(s)
Antiprotozoarios/uso terapéutico , Leishmania donovani/patogenicidad , Leishmaniasis Visceral/tratamiento farmacológico , Leishmaniasis Visceral/parasitología , Descubrimiento de Drogas , Resistencia a Medicamentos , Humanos , Leishmania donovani/efectos de los fármacos , Macrófagos/parasitología , Fosforilcolina/análogos & derivados , Fosforilcolina/uso terapéutico , Células THP-1
8.
ACS Chem Biol ; 13(5): 1361-1369, 2018 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-29671577

RESUMEN

A lack of viable hits, increasing resistance, and limited knowledge on mode of action is hindering drug discovery for many diseases. To optimize prioritization and accelerate the discovery process, a strategy to cluster compounds based on more than chemical structure is required. We show the power of metabolomics in comparing effects on metabolism of 28 different candidate treatments for Leishmaniasis (25 from the GSK Leishmania box, two analogues of Leishmania box series, and amphotericin B as a gold standard treatment), tested in the axenic amastigote form of Leishmania donovani. Capillary electrophoresis-mass spectrometry was applied to identify the metabolic profile of Leishmania donovani, and principal components analysis was used to cluster compounds on potential mode of action, offering a medium throughput screening approach in drug selection/prioritization. The comprehensive and sensitive nature of the data has also made detailed effects of each compound obtainable, providing a resource to assist in further mechanistic studies and prioritization of these compounds for the development of new antileishmanial drugs.


Asunto(s)
Antiprotozoarios/uso terapéutico , Descubrimiento de Drogas , Leishmaniasis/tratamiento farmacológico , Antiprotozoarios/química , Análisis por Conglomerados , Evaluación Preclínica de Medicamentos/métodos , Electroforesis Capilar , Ensayos Analíticos de Alto Rendimiento , Leishmania donovani/efectos de los fármacos , Leishmania donovani/metabolismo , Espectrometría de Masas , Metabolómica , Análisis de Componente Principal , Proteínas Protozoarias/metabolismo
9.
PLoS Negl Trop Dis ; 11(5): e0005629, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28542202

RESUMEN

In recent years, the neglected diseases drug discovery community has elected phenotypic screening as the key approach for the identification of novel hit compounds. However, when this approach is applied, important questions related to the mode of action for these compounds remain unanswered. One of such questions is related to the rate of action, a useful piece of information when facing the challenge of prioritising the most promising hit compounds. In the present work, compounds of the "Leishmania donovani box" were evaluated using a rate of action assay adapted from a replicative intracellular high content assay recently developed. The potency of each compound was determined every 24 hours up to 96 hours, and standard drugs amphotericin B and miltefosine were used as references to group these compounds according to their rate of action. Independently of this biological assessment, compounds were also clustered according to their minimal chemical scaffold. Comparison of the results showed a complete correlation between the chemical scaffold and the biological group for the vast majority of compounds, demonstrating how the assay was able to bring information on the rate of action for each chemical series, a property directly linked to the mode of action. Overall, the assay here described permitted us to evaluate the rate of action of the "Leishmania donovani box" using two of the currently available drugs as references and, also, to propose a number of fast-acting chemical scaffolds present in the box as starting points for future drug discovery projects to the wider scientific community. The results here presented validate the use of this assay for the determination of the rate of action early in the discovery process, to assist in the prioritisation of hit compounds.


Asunto(s)
Anfotericina B/farmacología , Antiprotozoarios/farmacología , Evaluación Preclínica de Medicamentos/métodos , Leishmania donovani/efectos de los fármacos , Macrófagos/parasitología , Fosforilcolina/análogos & derivados , Línea Celular Tumoral , Humanos , Leishmaniasis Visceral/tratamiento farmacológico , Fosforilcolina/farmacología
10.
PLoS Negl Trop Dis ; 9(1): e0003493, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25615687

RESUMEN

BACKGROUND: Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, represents a very important public health problem in Latin America where it is endemic. Although mostly asymptomatic at its initial stage, after the disease becomes chronic, about a third of the infected patients progress to a potentially fatal outcome due to severe damage of heart and gut tissues. There is an urgent need for new drugs against Chagas disease since there are only two drugs available, benznidazole and nifurtimox, and both show toxic side effects and variable efficacy against the chronic stage of the disease. METHODOLOGY/PRINCIPAL FINDINGS: Genetically engineered parasitic strains are used for high throughput screening (HTS) of large chemical collections in the search for new anti-parasitic compounds. These assays, although successful, are limited to reporter transgenic parasites and do not cover the wide T. cruzi genetic background. With the aim to contribute to the early drug discovery process against Chagas disease we have developed an automated image-based 384-well plate HTS assay for T. cruzi amastigote replication in a rat myoblast host cell line. An image analysis script was designed to inform on three outputs: total number of host cells, ratio of T. cruzi amastigotes per cell and percentage of infected cells, which respectively provides one host cell toxicity and two T. cruzi toxicity readouts. The assay was statistically robust (Z´ values >0.6) and was validated against a series of known anti-trypanosomatid drugs. CONCLUSIONS/SIGNIFICANCE: We have established a highly reproducible, high content HTS assay for screening of chemical compounds against T. cruzi infection of myoblasts that is amenable for use with any T. cruzi strain capable of in vitro infection. Our visual assay informs on both anti-parasitic and host cell toxicity readouts in a single experiment, allowing the direct identification of compounds selectively targeted to the parasite.


Asunto(s)
Mioblastos/parasitología , Trypanosoma cruzi/efectos de los fármacos , Animales , Automatización de Laboratorios , Línea Celular , Chlorocebus aethiops , Evaluación Preclínica de Medicamentos , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Nifurtimox/farmacología , Nitroimidazoles/farmacología , Ratas
11.
Sci Rep ; 5: 8771, 2015 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-25740547

RESUMEN

Using whole-cell phenotypic assays, the GlaxoSmithKline high-throughput screening (HTS) diversity set of 1.8 million compounds was screened against the three kinetoplastids most relevant to human disease, i.e. Leishmania donovani, Trypanosoma cruzi and Trypanosoma brucei. Secondary confirmatory and orthogonal intracellular anti-parasiticidal assays were conducted, and the potential for non-specific cytotoxicity determined. Hit compounds were chemically clustered and triaged for desirable physicochemical properties. The hypothetical biological target space covered by these diversity sets was investigated through bioinformatics methodologies. Consequently, three anti-kinetoplastid chemical boxes of ~200 compounds each were assembled. Functional analyses of these compounds suggest a wide array of potential modes of action against kinetoplastid kinases, proteases and cytochromes as well as potential host-pathogen targets. This is the first published parallel high throughput screening of a pharma compound collection against kinetoplastids. The compound sets are provided as an open resource for future lead discovery programs, and to address important research questions.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Ensayos Analíticos de Alto Rendimiento , Kinetoplastida/efectos de los fármacos , Pruebas de Sensibilidad Parasitaria/métodos , Bibliotecas de Moléculas Pequeñas , Animales , Antiprotozoarios/farmacología , Línea Celular , Genoma de Protozoos , Humanos , Kinetoplastida/clasificación , Kinetoplastida/genética , Ratones , Filogenia
12.
J Biomol Screen ; 15(10): 1281-6, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20847192

RESUMEN

The use of thermally denatured bovine serum albumin (tdBSA) as an additive in high-throughput screening (HTS) buffers has been studied with the aim of finding a surrogate to native albumin devoid of its inconveniences, in particular its compound masking effect. The presence of aggregates in the thermally denatured material did not have any negative impact on common readout technologies used in HTS such as fluorescence intensity (FLINT), fluorescence polarization, time-resolved fluorescence resonance energy transfer (TR-FRET) and luminescence. tdBSA rendered the same beneficial effects as native albumin in several assays or even improved its performance due to the lack of specific binding properties. Although tdBSA still binds compounds nonspecifically as any other protein does, it mitigates the compound masking effect observed with native albumin and can be postulated as a convenient surrogate to BSA for HTS purposes.


Asunto(s)
Pruebas de Enzimas/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Desnaturalización Proteica , Albúmina Sérica Bovina/química , Animales , Tampones (Química) , Bovinos , Polarización de Fluorescencia , Transferencia Resonante de Energía de Fluorescencia , Mediciones Luminiscentes , Albúmina Sérica Bovina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA