Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Chemphyschem ; 22(15): 1603-1610, 2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34058042

RESUMEN

The vulnerability towards CO poisoning is a major drawback affecting the efficiency and long-term performance of platinum catalysts in fuel cells. In the present work, by a combination of density functional theory calculations and mass spectrometry experiments, we test and explain the promotional effect of Ge on Pt catalysts with higher resistance to deactivation via CO poisoning. A thorough exploration of the configurational space of gas-phase Ptn + and GePtn-1 + (n=5-9) clusters using global minima search techniques and the subsequent electronic structure analysis reveals that germanium doping reduces the binding strength between Pt and CO by hindering the 2π-back-donation. Importantly, the clusters remain catalytically active towards H2 dissociation. The ability of Ge to weaken the Pt-CO interaction was confirmed by mass spectrometry experiments. Ge can be a promising alloying agent to tune the selectivity and improve the durability of Pt particles, thus opening the way to novel catalytic alternatives for fuel cells.

2.
Brain ; 140(4): 868-877, 2017 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-28007994

RESUMEN

Recessive mutations in the gene encoding the histidine triad nucleotide binding protein 1 (HINT1) were recently shown to cause a motor-predominant Charcot-Marie-Tooth neuropathy. About 80% of the patients exhibit neuromyotonia, a striking clinical and electrophysiological hallmark that can help to distinguish this disease and to guide diagnostic screening. HINT1 neuropathy has worldwide distribution and is particularly prevalent in populations inhabiting central and south-eastern Europe. With 12 different mutations identified in more than 60 families, it ranks among the most common subtypes of axonal Charcot-Marie-Tooth neuropathy. This article provides an overview of the present knowledge on HINT1 neuropathy with the aim to increase awareness and spur interest among clinicians and researchers in the field. We propose diagnostic guidelines to recognize and differentiate this entity and suggest treatment strategies to manage common symptoms. As a recent player in the field of hereditary neuropathies, the role of HINT1 in peripheral nerves is unknown and the underlying disease mechanisms are unexplored. We provide a comprehensive overview of the structural and functional characteristics of the HINT1 protein that may guide further studies into the molecular aetiology and treatment strategies of this peculiar Charcot-Marie-Tooth subtype.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Neuropatía Hereditaria Motora y Sensorial/genética , Síndrome de Isaacs/genética , Miotonía/genética , Proteínas del Tejido Nervioso/genética , Enfermedades del Sistema Nervioso Periférico/genética , Enfermedad de Charcot-Marie-Tooth/epidemiología , Enfermedad de Charcot-Marie-Tooth/patología , Neuropatía Hereditaria Motora y Sensorial/epidemiología , Neuropatía Hereditaria Motora y Sensorial/patología , Humanos , Síndrome de Isaacs/epidemiología , Síndrome de Isaacs/patología , Miotonía/epidemiología , Miotonía/patología , Enfermedades del Sistema Nervioso Periférico/epidemiología , Enfermedades del Sistema Nervioso Periférico/patología
3.
Ann Neurol ; 80(6): 823-833, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27686364

RESUMEN

OBJECTIVE: To identify the unknown genetic cause in a large pedigree previously classified with a distinct form of axonal Charcot-Marie-Tooth disease type 2G (CMT2G) and to explore its transcriptional consequences. METHODS: Clinical reevaluation of the pedigree was performed, followed by linkage analysis with the redefined disease statuses, and whole genome and exome sequencing. The impact of the mutation was investigated by immunoblotting and transcriptome sequencing. RESULTS: Thirteen affected individuals over 3 generations displayed mild and quiescent lower-limb axonal sensorimotor neuropathy. Magnetic resonance imaging (MRI) of lower-limb musculature systematically showed fatty atrophy in clinical and subclinical mutation carriers. We redefined the disease-linked region to chr9q31.3-q34.2 and subsequently identified a novel missense variant in the E3 ubiquitin-protein ligase LRSAM1 (p.Cys694Tyr). Unlike previous reports, we demonstrated in patients' lymphoblasts that the mutation does not influence overall protein levels of LRSAM1, nor of its ubiquitylation target TSG101. The mutation is associated with several transcriptional changes, including a significant upregulation of another E3 ubiquitin-protein ligase, NEDD4L, and of TNFRSF21, a key regulator of axonal degeneration. INTERPRETATION: Our findings demonstrate that the isolated genetic entity CMT2G is caused by a missense mutation in LRSAM1 and should be reclassified as CMT2P. MRI of lower-limb musculature can be used to detect minimal signs of the disease. Transcriptome analysis of patients' cells highlights novel molecular players associated with LRSAM1 dysfunction, and reveals pathways and therapeutic targets shared with amyotrophic lateral sclerosis and Alzheimer disease. Ann Neurol 2016;80:823-833.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Receptores del Factor de Necrosis Tumoral/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Mutación Missense , Ubiquitina-Proteína Ligasas Nedd4 , Conducción Nerviosa/genética , Conducción Nerviosa/fisiología , Linaje , Regulación hacia Arriba
4.
Am J Hum Genet ; 92(6): 955-64, 2013 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-23664119

RESUMEN

The most common form of spinal muscular atrophy (SMA) is a recessive disorder caused by deleterious SMN1 mutations in 5q13, whereas the genetic etiologies of non-5q SMA are very heterogeneous and largely remain to be elucidated. In a Bulgarian family affected by autosomal-dominant proximal SMA, we performed genome-wide linkage analysis and whole-exome sequencing and found a heterozygous de novo c.320C>T (p.Ser107Leu) mutation in bicaudal D homolog 2 (Drosophila) (BICD2). Further analysis of BICD2 in a cohort of 119 individuals with non-5q SMA identified a second de novo BICD2 mutation, c.2321A>G (p.Glu774Gly), in a simplex case. Detailed clinical and electrophysiological investigations revealed that both families are affected by a very similar disease course, characterized by early childhood onset, predominant involvement of lower extremities, and very slow disease progression. The amino acid substitutions are located in two interaction domains of BICD2, an adaptor protein linking the dynein molecular motor with its cargo. Our immunoprecipitation and localization experiments in HeLa and SH-SY5Y cells and affected individuals' lymphoblasts demonstrated that p.Ser107Leu causes increased dynein binding and thus leads to accumulation of BICD2 at the microtubule-organizing complex and Golgi fragmentation. In addition, the altered protein had a reduced colocalization with RAB6A, a regulator of vesicle trafficking between the Golgi and the endoplasmic reticulum. The interaction between p.Glu744Gly altered BICD2 and RAB6A was impaired, which also led to their reduced colocalization. Our study identifies BICD2 mutations as a cause of non-5q linked SMA and highlights the importance of dynein-mediated motility in motor neuron function in humans.


Asunto(s)
Proteínas Portadoras/genética , Genes Dominantes , Atrofia Muscular Espinal/genética , Mutación Missense , Adulto , Secuencia de Bases , Proteínas Portadoras/metabolismo , Niño , Preescolar , Femenino , Estudios de Asociación Genética , Células HeLa , Humanos , Masculino , Proteínas Asociadas a Microtúbulos , Persona de Mediana Edad , Atrofia Muscular Espinal/metabolismo , Linaje , Transporte de Proteínas , Análisis de Secuencia de ADN , Adulto Joven , Proteínas de Unión al GTP rab/metabolismo
5.
Hum Mutat ; 36(3): 287-91, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25512093

RESUMEN

The heavy chain 1 of cytoplasmic dynein (DYNC1H1) is responsible for movement of the motor complex along microtubules and recruitment of dynein components. Mutations in DYNC1H1 are associated with spinal muscular atrophy (SMA), hereditary motor and sensory neuropathy (HMSN), cortical malformations, or a combination of these. Combining linkage analysis and whole-exome sequencing, we identified a novel dominant defect in the DYNC1H1 tail domain (c.1792C>T, p.Arg598Cys) causing axonal HMSN. Mutation analysis of the tail region in 355 patients identified a de novo mutation (c.791G>T, p.Arg264Leu) in an isolated SMA patient. Her phenotype was more severe than previously described, characterized by multiple congenital contractures and delayed motor milestones, without brain malformations. The mutations in DYNC1H1 increase the interaction with its adaptor BICD2. This relates to previous studies on BICD2 mutations causing a highly similar phenotype. Our findings broaden the genetic heterogeneity and refine the clinical spectrum of DYNC1H1, and have implications for molecular diagnostics of motor neuron diseases.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Dineínas Citoplasmáticas/genética , Dineínas/metabolismo , Atrofia Muscular Espinal/genética , Mutación , Enfermedad de Charcot-Marie-Tooth/fisiopatología , Dineínas Citoplasmáticas/metabolismo , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Atrofia Muscular Espinal/fisiopatología , Estructura Terciaria de Proteína/genética
6.
Brain ; 137(Pt 11): 2879-96, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24970098

RESUMEN

Hereditary spinal muscular atrophy is a motor neuron disorder characterized by muscle weakness and atrophy due to degeneration of the anterior horn cells of the spinal cord. Initially, the disease was considered purely as an autosomal recessive condition caused by loss-of-function SMN1 mutations on 5q13. Recent developments in next generation sequencing technologies, however, have unveiled a growing number of clinical conditions designated as non-5q forms of spinal muscular atrophy. At present, 16 different genes and one unresolved locus are associated with proximal non-5q forms, having high phenotypic variability and diverse inheritance patterns. This review provides an overview of the current knowledge regarding the phenotypes, causative genes, and disease mechanisms associated with proximal SMN1-negative spinal muscular atrophies. We describe the molecular and cellular functions enriched among causative genes, and discuss the challenges in the post-genomics era of spinal muscular atrophy research.


Asunto(s)
Edad de Inicio , Atrofia Muscular Espinal , Animales , Humanos , Atrofia Muscular Espinal/clasificación , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/fisiopatología
7.
Brain ; 134(Pt 9): 2664-76, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21840889

RESUMEN

Early onset hereditary motor and sensory neuropathies are rare disorders encompassing congenital hypomyelinating neuropathy with disease onset in the direct post-natal period and Dejerine-Sottas neuropathy starting in infancy. The clinical spectrum, however, reaches beyond the boundaries of these two historically defined disease entities. De novo dominant mutations in PMP22, MPZ and EGR2 are known to be a typical cause of very early onset hereditary neuropathies. In addition, mutations in several other dominant and recessive genes for Charcot-Marie-Tooth disease may lead to similar phenotypes. To estimate mutation frequencies and to gain detailed insights into the genetic and phenotypic heterogeneity of early onset hereditary neuropathies, we selected a heterogeneous cohort of 77 unrelated patients who presented with symptoms of peripheral neuropathy within the first year of life. The majority of these patients were isolated in their family. We performed systematic mutation screening by means of direct sequencing of the coding regions of 11 genes: MFN2, PMP22, MPZ, EGR2, GDAP1, NEFL, FGD4, MTMR2, PRX, SBF2 and SH3TC2. In addition, screening for the Charcot-Marie-Tooth type 1A duplication on chromosome 17p11.2-12 was performed. In 35 patients (45%), mutations were identified. Mutations in MPZ, PMP22 and EGR2 were found most frequently in patients presenting with early hypotonia and breathing difficulties. The recessive genes FGD4, PRX, MTMR2, SBF2, SH3TC2 and GDAP1 were mutated in patients presenting with early foot deformities and variable delay in motor milestones after an uneventful neonatal period. Several patients displaying congenital foot deformities but an otherwise normal early development carried the Charcot-Marie-Tooth type 1A duplication. This study clearly illustrates the genetic heterogeneity underlying hereditary neuropathies with infantile onset.


Asunto(s)
Edad de Inicio , Neuropatía Hereditaria Motora y Sensorial/genética , Adolescente , Adulto , Anciano , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/patología , Enfermedad de Charcot-Marie-Tooth/fisiopatología , Niño , Preescolar , Estudios de Cohortes , Análisis Mutacional de ADN , Neuropatía Hereditaria Motora y Sensorial/patología , Neuropatía Hereditaria Motora y Sensorial/fisiopatología , Humanos , Lactante , Persona de Mediana Edad , Mutación , Fenotipo , Adulto Joven
8.
Orphanet J Rare Dis ; 17(1): 374, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36242072

RESUMEN

BACKGROUND: Recessive loss-of-function variations in HINT1 cause a peculiar subtype of Charcot-Marie-Tooth disease: neuromyotonia and axonal neuropathy (NMAN; OMIM[#137200]). With 25 causal variants identified worldwide, HINT1 mutations are among the most common causes of recessive neuropathy. The majority of patients are compound heterozygous or homozygous for a Slavic founder variant (c.110G>C, p.Arg37Pro) that has spread throughout Eurasia and America. RESULTS: In a cohort of 46 genetically unresolved Lithuanian patients with suspected inherited neuropathy, we identified eight families with HINT1 biallelic variations. Most patients displayed sensorimotor or motor-predominant axonal polyneuropathy and were homozygous for the p.Arg37Pro variant. However, in three families we identified a novel variant (c.299A>G, p.Glu100Gly). The same variant was also found in an American patient with distal hereditary motor neuropathy in compound heterozygous state (p.Arg37Pro/p.Glu100Gly). Haplotype analysis demonstrated a shared chromosomal region of 1.9 Mb between all p.Glu100Gly carriers, suggesting a founder effect. Functional characterization showed that the p.Glu100Gly variant renders a catalytically active enzyme, yet highly unstable in patient cells, thus supporting a loss-of-function mechanism. CONCLUSION: Our findings broaden NMAN's genetic epidemiology and have implications for the molecular diagnostics of inherited neuropathies in the Baltic region and beyond. Moreover, we provide mechanistic insights allowing patient stratification for future treatment strategies.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Síndrome de Isaacs , Enfermedad de Charcot-Marie-Tooth/genética , Heterocigoto , Humanos , Síndrome de Isaacs/genética , Lituania/epidemiología , Mutación/genética , Proteínas del Tejido Nervioso/genética
9.
Orphanet J Rare Dis ; 16(1): 74, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33568173

RESUMEN

In the past decade, mutations in LRSAM1 were identified as the genetic cause of both dominant and recessive forms of axonal CMT type 2P (CMT2P). Despite demonstrating different inheritance patterns, dominant CMT2P is usually characterized by relatively mild, slowly progressive axonal neuropathy, mainly involving lower limbs, with age of onset between the second and fifth decades of life. Asymptomatic individuals were identified in several pedigrees exemplifying the strong phenotypic variability of these patients requiring serial clinical evaluation to establish correct diagnosis; in this respect, magnetic resonance imaging of lower-limb musculature showing fatty atrophy might be helpful in detecting subclinical gene mutation carriers. LRSAM1 is a universally expressed RING-type E3 ubiquitin protein ligase catalysing the final step in the ubiquitination cascade. Strikingly, TSG101 remains the only known ubiquitination target hampering our mechanistic understanding of the role of LRSAM1 in the cell. The recessive CMT mutations lead to complete loss of LRSAM1, contrary to the heterozygous dominant variants. These tightly cluster in the C-terminal RING domain highlighting its importance in governing the CMT disease. The domain is crucial for the ubiquitination function of LRSAM1 and CMT mutations disrupt its function, however it remains unknown how this leads to the peripheral neuropathy. Additionally, recent studies have linked LRSAM1 with other neurodegenerative diseases of peripheral and central nervous systems. In this review we share our experience with the challenging clinical diagnosis of CMT2P and summarize the mechanistic insights about the LRSAM1 dysfunction that might be helpful for the neurodegenerative field at large.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Axones , Enfermedad de Charcot-Marie-Tooth/diagnóstico , Enfermedad de Charcot-Marie-Tooth/genética , Humanos , Mutación/genética , Linaje , Ubiquitina-Proteína Ligasas/genética
10.
Orphanet J Rare Dis ; 16(1): 116, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33663550

RESUMEN

BACKGROUND: Autosomal recessive axonal neuropathy with neuromyotonia has been linked to loss of functional HINT1. The disease is particularly prevalent in Central and South-East Europe, Turkey and Russia due to the high carrier frequency of the c.110G > C (p.Arg37Pro) founder variant. RESULTS: In a cohort of 748 Norwegian patients with suspected peripheral neuropathy, we identified two seemingly unrelated individuals, compound heterozygous for a new variant (c.284G > A, p.Arg95Gln) and the most common pathogenic founder variant (c.110G > C, p.Arg37Pro) in the HINT1 gene. Probands presented with motor greater than sensory neuropathy of various onset, accompanied by muscle stiffness and cramps in the limbs. Furthermore, they displayed non-classical symptoms, including pain in the extremities and signs of central nervous system involvement. Haplotype analysis in both patients revealed a common chromosomal background for p.Arg95Gln; moreover, the variant was identified in Swedish carriers. Functional characterization in HINT1-knockout and patient-derived cellular models, and in HNT1-knockout yeast, suggested that the new variant is deleterious for the function of HINT1 and provided mechanistic insights allowing patient stratification for future treatment strategies. CONCLUSION: Our findings broaden the genetic epidemiology of HINT1-neuropathy and have implications for molecular diagnostics of inherited peripheral neuropathies in Scandinavia.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Proteínas del Tejido Nervioso , Enfermedades del Sistema Nervioso Periférico , Europa (Continente) , Humanos , Mutación , Proteínas del Tejido Nervioso/genética , Noruega/epidemiología , Enfermedades del Sistema Nervioso Periférico/epidemiología , Enfermedades del Sistema Nervioso Periférico/genética , Turquía
11.
Mol Genet Genomic Med ; 9(10): e1783, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34562060

RESUMEN

BACKGROUND: Recessive loss-of-function mutations in HINT1 are associated with predominantly motor axonal peripheral neuropathy with neuromyotonia. Twenty-four distinct pathogenic variants are reported all over the world, including four confirmed founder variations in Europe and Asia. The majority of patients carry the ancient Slavic founder variant c.110G>C (p.Arg37Pro) that shows a distribution gradient from east to west throughout Europe. METHODS: We report a case of HINT1 neuropathy in South America, identified by massive parallel sequencing of a neuropathy gene panel. To investigate the origin of the variant, we performed haplotyping analysis. RESULTS: A Brazilian adolescent presented with recessive axonal motor neuropathy with asymmetric onset and fasciculations. Neuromyotonia was found on needle electromyography. His parents were not consanguineous and had no European ancestry. The patient carried biallelic pathogenic p.Arg37Pro alterations in the first exon of HINT1. Both alleles were identical by descent and originated from the same ancestral founder allele as reported in Europe. CONCLUSION: Our findings expand the geographic distribution of HINT1 neuropathy to South America, where we describe a recognized founder variant in a Brazilian adolescent with no apparent European ancestry. We confirm the association of the hallmark sign of neuromyotonia with the disease.


Asunto(s)
Efecto Fundador , Síndrome de Isaacs/diagnóstico , Síndrome de Isaacs/genética , Mutación , Proteínas del Tejido Nervioso/genética , Enfermedades del Sistema Nervioso Periférico/diagnóstico , Enfermedades del Sistema Nervioso Periférico/genética , Adolescente , Alelos , Sustitución de Aminoácidos , Brasil , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Genotipo , Haplotipos , Humanos , América del Sur
12.
Orphanet J Rare Dis ; 14(1): 197, 2019 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-31412900

RESUMEN

BACKGROUND: Charcot-Marie-Tooth (CMT) disease is the most common inherited neuromuscular disorder characterized by wide clinical, genetic and pathomechanistic heterogeneity. Recently, the gene encoding peripheral myelin protein 2 (PMP2) was identified as a novel cause for CMT neuropathy with three mutations that structurally cluster together (p.Ile43Asn, p.Thr51Pro, p.Ile52Thr) reported in five families. RESULTS: Using whole exome sequencing and cohort screening we identified two novel missense substitutions in PMP2 in Bulgarian (p.Met114Thr, c.341C > T) and German (p.Val115Ala, c.344 T > C) families. The mutations affect adjacent and highly conserved amino acid residues outside of the known mutation-rich region in the protein. Crystal structure analysis positions the affected residues within a cluster of highly conserved fatty acid coordinating residues implying their functional significance. The clinical, electrophysiological and imaging features in both families were consistent with a childhood onset polyneuropathy with variable patterns of demyelination, slow to very slow progression, and most severe involvement of the peroneal muscles. CONCLUSIONS: We expand the genetic and phenotypic spectrum of PMP2-related peripheral neuropathy. Our findings reveal a second mutational cluster in the protein.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/etiología , Enfermedad de Charcot-Marie-Tooth/genética , Proteína P2 de Mielina/genética , Adolescente , Adulto , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Mutación , Linaje , Fenotipo , Secuenciación del Exoma , Adulto Joven
13.
J Neurol ; 264(8): 1655-1677, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28364294

RESUMEN

Charcot-Marie-Tooth disease (CMT) is the most frequent form of inherited neuropathy with great variety of phenotypes, inheritance patterns, and causative genes. According to median motor nerve conduction velocity (MNCV), CMT is divided into demyelinating (CMT1) with MNCV below 38 m/s, axonal (CMT2) with MNCV above 38 m/s, and intermediate CMT with MNCV between 25 and 45 m/s. In each category, transmission may be autosomal dominant, autosomal recessive, or X-linked. The nosology of intermediate CMT is controversial because of concerns about electrophysiological delimitation. A systematic computer-based literature search was conducted on PubMed, using the following MeSH: (1) intermediate Charcot-Marie-Tooth; (2) X-linked intermediate Charcot-Marie-Tooth; and (3) X-linked Charcot-Marie-Tooth and electrophysiology. We retrieved 225 articles reporting X-linked CMT or intermediate CMT with electrophysiological information. After eligibility, 156 papers were used for this review. In assessing median MNCV, compound muscle action potential (CMAP) amplitudes were taken into account. In cases with attenuated CMAP and wherever possible, proximal median MNCV was used for accurate definition of conduction slowing in the intermediate range. In the vast majority of males with X-linked CMT associated with GJB1 mutation (CMTX1), median MNCV was intermediate. CMT associated with DRP2 mutation is another well-documented X-linked intermediate disorder. Autosomal dominant intermediate CMT (DI-CMT) encompasses 11 different types; six of them with assigned phenotype MIM number and the remaining five being unnumbered. Based on available electrophysiological information, we wonder if DI-CMTA should be reclassified within CMT2. Autosomal recessive intermediate CMT (RI-CMT) covers four numbered MIM phenotypes though, in accordance with reported electrophysiology, two of them (RI-CMTB and RI-CMTD) should probably be reclassified within AR-CMT2. We conclude that intermediate CMT is a complex inherited syndrome, whose characterization requires a specific electrophysiological protocol comprising evaluation of upper limb proximal nerve trunks when distal CMAP amplitudes are reduced, and that an updated version of MIM phenotype numbering is needed.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/fisiopatología , Animales , Enfermedad de Charcot-Marie-Tooth/patología , Humanos , Nervio Mediano/fisiopatología , Conducción Nerviosa
14.
Neurology ; 88(6): 533-542, 2017 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-28077491

RESUMEN

OBJECTIVE: To identify the unknown genetic cause in a nuclear family with an axonal form of peripheral neuropathy and atypical disease course. METHODS: Detailed neurologic, electrophysiologic, and neuropathologic examinations of the patients were performed. Whole exome sequencing of both affected individuals was done. The effect of the identified sequence variations was investigated at cDNA and protein level in patient-derived lymphoblasts. The plasma sphingoid base profile was analyzed. Functional consequences of neuron-specific downregulation of the gene were studied in Drosophila. RESULTS: Both patients present an atypical form of axonal peripheral neuropathy, characterized by acute or subacute onset and episodes of recurrent mononeuropathy. We identified compound heterozygous mutations cosegregating with disease and absent in controls in the SGPL1 gene, encoding sphingosine 1-phosphate lyase (SPL). The p.Ser361* mutation triggers nonsense-mediated mRNA decay. The missense p.Ile184Thr mutation causes partial protein degradation. The plasma levels of sphingosine 1-phosphate and sphingosine/sphinganine ratio were increased in the patients. Neuron-specific downregulation of the Drosophila orthologue impaired the morphology of the neuromuscular junction and caused progressive degeneration of the chemosensory neurons innervating the wing margin bristles. CONCLUSIONS: We suggest SPL deficiency as a cause of a distinct form of Charcot-Marie-Tooth disease in humans, thus extending the currently recognized clinical and genetic spectrum of inherited peripheral neuropathies. Our data emphasize the importance of sphingolipid metabolism for neuronal function.


Asunto(s)
Aldehído-Liasas/deficiencia , Aldehído-Liasas/genética , Aldehído-Liasas/metabolismo , Enfermedad de Charcot-Marie-Tooth/genética , Codón sin Sentido , Proteínas de Drosophila/metabolismo , Mutación Missense , Adulto , Animales , Animales Modificados Genéticamente , Células Cultivadas , Enfermedad de Charcot-Marie-Tooth/fisiopatología , Estudios de Cohortes , Proteínas de Drosophila/genética , Drosophila melanogaster , Femenino , Humanos , Linfocitos/metabolismo , Linfocitos/patología , Lisofosfolípidos/sangre , Masculino , Neuronas/metabolismo , Neuronas/patología , Hermanos , Esfingosina/análogos & derivados , Esfingosina/sangre
15.
J Neurol ; 263(2): 361-369, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26645395

RESUMEN

The purpose of this study was to describe a pedigree with NEFL N98S mutation associated with a dominant intermediate Charcot-Marie-Tooth disease (DI-CMT) and heterogeneous early-onset phenotype. The pedigree comprised two patients, the proband and her son, aged 38 and 5 years. The proband, evaluated at age 31, showed delayed motor milestones that, as of the second decade, evolved into severe phenotype consisting of sensorimotor neuropathy, pes cavus, clawing hands, gait and kinetic cerebellar ataxia, nystagmus and dysarthria, she being wheelchair bound. By then, a working diagnosis of sporadic early onset cerebellar ataxia with peripheral neuropathy was established. Screening of mutations associated with SCA and autosomal recessive cerebellar ataxias was negative. Her son showed a mild phenotype characterized by delayed motor milestones, and lower-limb hypotonia and areflexia. Electrophysiology in both patients showed nerve conduction slowing in the intermediate range, both in proximal and distal nerve segments, but where compound muscle action potentials exhibited severe attenuation there was conduction slowing down to the demyelinating range. In the proband, cranial magnetic resonance imaging (MRI) showed cerebellar atrophy, electromyography disclosed active denervation in tibialis anterior, and MRI of lower-limb musculature demonstrated widespread and distally accentuated muscle fatty atrophy; furthermore, on water sensitive MRI sequences there was edema of calf muscles. We conclude that the NEFL N98S mutation is associated with a DI-CMT phenotype characterized by early-onset sensorimotor neuropathy delaying motor milestones, which may evolve into a severe and complex clinical picture including cerebellar ataxia.


Asunto(s)
Ataxia Cerebelosa/genética , Enfermedad de Charcot-Marie-Tooth/genética , Proteínas de Neurofilamentos/genética , Adulto , Edad de Inicio , Atrofia , Ataxia Cerebelosa/patología , Cerebelo/patología , Enfermedad de Charcot-Marie-Tooth/complicaciones , Enfermedad de Charcot-Marie-Tooth/patología , Preescolar , Análisis Mutacional de ADN , Electromiografía , Femenino , Genotipo , Humanos , Imagen por Resonancia Magnética , Masculino , Músculo Esquelético/patología , Linaje , Fenotipo , Reacción en Cadena de la Polimerasa
16.
J Neurol ; 262(5): 1289-300, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25877835

RESUMEN

The purpose of the study was to describe a pedigree with NEFL E396K mutation associated with a novel dominant intermediate Charcot-Marie-Tooth disease (DI-CMT) phenotype. The pedigree comprised four patients over two generations, aged between 35 and 59 years, who have been serially evaluated since 1993. Their clinical picture was characterized by pes cavus, sensorimotor neuropathy and spastic gait. Both older patients showed ascending leg weakness to involve pelvic musculature. CMT neuropathy score ranged from 14 to 26 (moderate to severe disease). Electrophysiology showed uniform nerve conduction slowing in the intermediate range, both in distal and proximal nerve segments. Multimodal evoked potential and blink reflex studies revealed abnormalities indicative of central sensorimotor pathway dysfunction. On imaging studies of lower-limb musculature, there was massive atrophy of intrinsic foot muscles and to a lesser degree of calves and thighs predominating in muscles innervated by tibial and sciatic nerves. In both patients exhibiting waddling gait, there was atrophy of pelvic muscles mainly involving gluteus medius, gluteus minimus and piriformis. We conclude that NEFL E396K mutation may manifest with a novel DI-CMT phenotype, characterized by simultaneous involvement of the peripheral and central nervous system.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Glutamina/genética , Lisina/genética , Mutación/genética , Proteínas de Neurofilamentos/genética , Potenciales de Acción/genética , Adulto , Enfermedad de Charcot-Marie-Tooth/fisiopatología , Creatina Quinasa/sangre , Análisis Mutacional de ADN , Electrofisiología , Potenciales Evocados/genética , Salud de la Familia , Femenino , Estudios de Seguimiento , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Conducción Nerviosa/genética , Tomografía Computarizada por Rayos X
17.
Nat Genet ; 44(10): 1080-3, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22961002

RESUMEN

Inherited peripheral neuropathies are frequent neuromuscular disorders known for their clinical and genetic heterogeneity. In 33 families, we identified 8 mutations in HINT1 (encoding histidine triad nucleotide-binding protein 1) by combining linkage analyses with next-generation sequencing and subsequent cohort screening of affected individuals. Our study provides evidence that loss of functional HINT1 protein results in a distinct phenotype of autosomal recessive axonal neuropathy with neuromyotonia.


Asunto(s)
Anomalías Múltiples/genética , Neuropatía Hereditaria Motora y Sensorial/genética , Mutación Missense , Miotonía/genética , Proteínas del Tejido Nervioso/genética , Anomalías Múltiples/enzimología , Secuencia de Aminoácidos , Animales , Secuencia Conservada , Análisis Mutacional de ADN , Expresión Génica , Genes Recesivos , Estudios de Asociación Genética , Prueba de Complementación Genética , Neuropatía Hereditaria Motora y Sensorial/enzimología , Humanos , Ratones , Miotonía/enzimología , Proteínas del Tejido Nervioso/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Síndrome
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA