Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Genome Biol ; 22(1): 52, 2021 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33514394

RESUMEN

BACKGROUND: Mouse models have allowed for the direct interrogation of genetic effects on molecular, physiological, and behavioral brain phenotypes. However, it is unknown to what extent neurological or psychiatric traits may be human- or primate-specific and therefore which components can be faithfully recapitulated in mouse models. RESULTS: We compare conservation of co-expression in 116 independent data sets derived from human, mouse, and non-human primate representing more than 15,000 total samples. We observe greater changes occurring on the human lineage than mouse, and substantial regional variation that highlights cerebral cortex as the most diverged region. Glia, notably microglia, astrocytes, and oligodendrocytes are the most divergent cell type, three times more on average than neurons. We show that cis-regulatory sequence divergence explains a significant fraction of co-expression divergence. Moreover, protein coding sequence constraint parallels co-expression conservation, such that genes with loss of function intolerance are enriched in neuronal, rather than glial modules. We identify dozens of human neuropsychiatric and neurodegenerative disease risk genes, such as COMT, PSEN-1, LRRK2, SHANK3, and SNCA, with highly divergent co-expression between mouse and human and show that 3D human brain organoids recapitulate in vivo co-expression modules representing several human cell types. CONCLUSIONS: We identify robust co-expression modules reflecting whole-brain and regional patterns of gene expression. Compared with those that represent basic metabolic processes, cell-type-specific modules, most prominently glial modules, are the most divergent between species. These data and analyses serve as a foundational resource to guide human disease modeling and its interpretation.


Asunto(s)
Encéfalo/metabolismo , Evolución Molecular , Transcriptoma , Animales , Astrocitos/metabolismo , Catecol O-Metiltransferasa/metabolismo , Corteza Cerebral/metabolismo , Perfilación de la Expresión Génica , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Ratones , Proteínas de Microfilamentos , Proteínas del Tejido Nervioso/metabolismo , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo , Presenilina-1/metabolismo , Primates , alfa-Sinucleína/metabolismo
2.
Nat Neurosci ; 24(9): 1313-1323, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34294919

RESUMEN

Gene networks have yielded numerous neurobiological insights, yet an integrated view across brain regions is lacking. We leverage RNA sequencing in 864 samples representing 12 brain regions to robustly identify 12 brain-wide, 50 cross-regional and 114 region-specific coexpression modules. Nearly 40% of genes fall into brain-wide modules, while 25% comprise region-specific modules reflecting regional biology, such as oxytocin signaling in the hypothalamus, or addiction pathways in the nucleus accumbens. Schizophrenia and autism genetic risk are enriched in brain-wide and multiregional modules, indicative of broad impact; these modules implicate neuronal proliferation and activity-dependent processes, including endocytosis and splicing, in disease pathophysiology. We find that cell-type-specific long noncoding RNA and gene isoforms contribute substantially to regional synaptic diversity and that constrained, mutation-intolerant genes are primarily enriched in neurons. We leverage these data using an omnigenic-inspired network framework to characterize how coexpression and gene regulatory networks reflect neuropsychiatric disease risk, supporting polygenic models.


Asunto(s)
Encéfalo/fisiopatología , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes/fisiología , Predisposición Genética a la Enfermedad/genética , Trastornos Mentales/genética , Humanos , Trastornos Mentales/fisiopatología , Transcriptoma
3.
Nat Commun ; 12(1): 3958, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-34172753

RESUMEN

Astrocytes play important roles in neurological disorders such as stroke, injury, and neurodegeneration. Most knowledge on astrocyte biology is based on studies of mouse models and the similarities and differences between human and mouse astrocytes are insufficiently characterized, presenting a barrier in translational research. Based on analyses of acutely purified astrocytes, serum-free cultures of primary astrocytes, and xenografted chimeric mice, we find extensive conservation in astrocytic gene expression between human and mouse samples. However, the genes involved in defense response and metabolism show species-specific differences. Human astrocytes exhibit greater susceptibility to oxidative stress than mouse astrocytes, due to differences in mitochondrial physiology and detoxification pathways. In addition, we find that mouse but not human astrocytes activate a molecular program for neural repair under hypoxia, whereas human but not mouse astrocytes activate the antigen presentation pathway under inflammatory conditions. Here, we show species-dependent properties of astrocytes, which can be informative for improving translation from mouse models to humans.


Asunto(s)
Astrocitos/fisiología , Animales , Presentación de Antígeno , Astrocitos/efectos de los fármacos , Células Cultivadas , Expresión Génica/efectos de los fármacos , Humanos , Inactivación Metabólica , Inflamación , Ratones , Mitocondrias/metabolismo , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Enfermedades del Sistema Nervioso/patología , Estrés Oxidativo , Poli I-C/farmacología , Poli I-C/uso terapéutico , Especificidad de la Especie , Transcriptoma/efectos de los fármacos , Factor de Necrosis Tumoral alfa/farmacología , Factor de Necrosis Tumoral alfa/uso terapéutico
4.
Elife ; 42015 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-26523393

RESUMEN

The mammalian suprachiasmatic nucleus (SCN) drives daily rhythmic behavior and physiology, yet a detailed understanding of its coordinated transcriptional programmes is lacking. To reveal the finer details of circadian variation in the mammalian SCN transcriptome we combined laser-capture microdissection (LCM) and RNA-seq over a 24 hr light / dark cycle. We show that 7-times more genes exhibited a classic sinusoidal expression signature than previously observed in the SCN. Another group of 766 genes unexpectedly peaked twice, near both the start and end of the dark phase; this twin-peaking group is significantly enriched for synaptic transmission genes that are crucial for light-induced phase shifting of the circadian clock. 341 intergenic non-coding RNAs, together with novel exons of annotated protein-coding genes, including Cry1, also show specific circadian expression variation. Overall, our data provide an important chronobiological resource (www.wgpembroke.com/shiny/SCNseq/) and allow us to propose that transcriptional timing in the SCN is gating clock resetting mechanisms.


Asunto(s)
Relojes Biológicos , Regulación de la Expresión Génica , Núcleo Supraquiasmático/fisiología , Transcripción Genética , Animales , Perfilación de la Expresión Génica , Captura por Microdisección con Láser , Ratones Endogámicos C3H , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA