Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Idioma
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Zhonghua Nan Ke Xue ; 30(2): 174-179, 2024 Feb.
Artículo en Zh | MEDLINE | ID: mdl-39177353

RESUMEN

Ferroptosis is an iron-dependent form of programmed cell death triggered by the excessive accumulation of lipid peroxides on the cell membrane. Recent studies have found that ferroptosis can be induced by exposure of the testis tissue and germ cells to some high-risk factors, accompanied by various characteristic reproductive system injuries, including changes in cell morphology, ferroptosis-related physicochemical indicators and gene expressions. This review focuses on the association of ferroptosis with male reproductive system diseases from three key aspects: iron metabolism abnormalities, Cystine/GSH/GPX4 axis imbalance, and lipid peroxidation.


Asunto(s)
Ferroptosis , Masculino , Humanos , Peroxidación de Lípido , Hierro/metabolismo , Enfermedades de los Genitales Masculinos/etiología , Testículo/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Glutatión/metabolismo
2.
Zhonghua Nan Ke Xue ; 30(7): 640-647, 2024 Jul.
Artículo en Zh | MEDLINE | ID: mdl-39212400

RESUMEN

OBJECTIVE: To investigate the effects of Xiongcan Yishen Formula (XYF) on ferroptosis in mouse TM3 Leydig cells after oxidative stress injury (OSI) induced by H2O2. Methods: An oxidative stress injury model was established in mouse TM3 Leydig cells using H2O2 induction. The modeled TM3 cells were randomly divided into OSI group, XYF group, the ferroptosis inhibitor Ferrostatin-1 (F-1) group, and F-1+XYF group, which were respectively intervened with blank serum, 20% drug-containing serum, 2µmol/L F-1, and 2µmol/L F-1+ 20% drug-containing serum. A control group (normal TM3 cells + blank serum) was also set up. The morphology of cells in each group was observed, and the levels of testosterone, superoxide dismutase (SOD), reactive oxygen species (ROS), malondialdehyde (MDA), ferritin heavy chain 1 (FTH1), solute carrier family 7 member 11 (SLC7A11), glutathione (GSH), glutathione peroxidase 4 (GPX4), fatty acid CoA ligase 4 (FACL4), total iron ions, and ferrous ions were detected. RESULTS: Compared with the model group, the control group showed significantly decreased expression of ROS, MDA, FACL4, total iron, and ferrous ions (P<0.05), and significantly increased levels of testosterone, SOD, GSH, FTH1, SLC7A11, and GPX4 (P<0.05). The male silkworm kidney-tonifying formula group significantly promoted testosterone secretion by TM3 cells and upregulated the expression of FTH1, SLC7A11, GPX4, GSH, and SOD in TM3 cells (P<0.05), while significantly downregulating ROS, MDA, FACL4, total iron ions, and ferrous ions (P<0.05). CONCLUSION: Following H2O2 exposure, oxidative stress can induce ferroptosis in mouse TM3 Leydig cells. XYF can antagonize OSI and ferroptosis in TM3 cells by activating the SLC7A11/GSH/GPX4 axis, which may underlie the mechanism of XYF in the treatment of male late-onset hypogonadism.


Asunto(s)
Medicamentos Herbarios Chinos , Ferroptosis , Células Intersticiales del Testículo , Estrés Oxidativo , Animales , Ferroptosis/efectos de los fármacos , Masculino , Células Intersticiales del Testículo/metabolismo , Células Intersticiales del Testículo/efectos de los fármacos , Ratones , Estrés Oxidativo/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Peróxido de Hidrógeno , Superóxido Dismutasa/metabolismo , Malondialdehído/metabolismo , Testosterona , Glutatión/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Sistema de Transporte de Aminoácidos y+/metabolismo , Ciclohexilaminas , Fenilendiaminas
3.
Zhonghua Nan Ke Xue ; 29(1): 76-82, 2023 Jan.
Artículo en Zh | MEDLINE | ID: mdl-37846837

RESUMEN

OBJECTIVE: To investigate the effect of Xiongcan Yishen Formula (XYF) on the expressions of the clock genes in the testis tissue of the rats with late-onset hypogonadism (LOH). METHODS: Forty-eight 8-week-old male SD rats were randomly divided into 6 groups, normal control, model control, testosterone propionate (TP), and low-, medium- and high-dose XYF. The LOH model was made in the later 5 groups of rats by intraperitoneal injection of D-galactose at 480 mg/kg/d for 56 successive days, while the normal controls were injected with the same volume of normal saline. After modeling, the rats in the low-, medium- and high-dose XYF groups were treated intragastrically with XYF at 10.4, 20.8 and 41.6 g/kg/d, bid, respectively, those in the normal and model control groups with the same volume of distilled water, and those in the TP group intramuscularly with TP at 5.21 mg/kg/d, qd alt, all for 28 days. After treatment, the supernatant was obtained for measurement of the serum T level by ELISA, and the testis tissue collected for determination of the mRNA and protein expressions of BMAL1, NR1D1, PER2, CRY1, StAR and CYP11A1 by RT-qPCR and Western blot. RESULTS: Compared with the normal controls, the rats in the LOH model control group showed significantly decreased serum T and mRNA and protein expressions of BMAL1, NR1D1, PER2, CRY1, StAR and CYP11A1 (P < 0.05). In comparison with the findings in the model controls, the T level was remarkably increased in the TP and XYF groups (P < 0.05), the expressions of StAR mRNA and CYP11A1 mRNA and protein markedly up-regulated in the high-dose XYF group (P < 0.05), and so was the expression of the StAR protein in the XYF and TP groups (P < 0.05), those of BMAL1 and NR1D1 proteins and PER2 mRNA and protein in the high-dose XYF group (P < 0.05), those of BMAL1 mRNA and CRY1 protein in the medium- and high-dose XYF groups (P < 0.05), that of NR1D1 mRNA in the XYF and TP groups (P < 0.05), and that of CRY1 mRNA in the medium- and high-dose XYF and TP groups (P < 0.05). CONCLUSION: Xiongcan Yishen Formula could up-regulate the expressions of the clock genes in the testis tissue of the LOH rats and increase the serum T level as well, which may underlie the mechanisms of Xiongcan Yishen Formula acting on LOH.


Asunto(s)
Hipogonadismo , Propionato de Testosterona , Ratas , Masculino , Animales , Testículo , Testosterona , Factores de Transcripción ARNTL/farmacología , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol , Ratas Sprague-Dawley , Hipogonadismo/genética , ARN Mensajero , Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA