Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Clin Lab Anal ; 35(6): e23782, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33942374

RESUMEN

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a genetic heterogeneous disease with high mortality and poor prognosis. Hyaluronidase 1 (HYAL1) was found to be upregulated in fibroblasts from IPF patients, and overexpression of HYAL1 could prevent human fetal lung fibroblast proliferation. However, the genetic correlation between the HYAL1 and IPF or connective tissue diseases related interstitial lung disease (CTD-ILD) has not been determined. METHODS: A two-stage study was conducted in Southern Han Chinese population. We sequenced the coding regions and flanking regulatory regions of HYAL1 in stage one (253 IPF cases and 125 controls). A statistically significant variant was further genotyped in stage two (162 IPF cases, 182 CTD-ILD cases, and 225 controls). RESULTS: We identified a nonsynonymous polymorphism (rs117179004, T392M) significantly associated with increased IPF risk (dominant model: OR = 2.239, 95% CI = 1.212-4.137, p = 0.010 in stage one; OR = 2.383, 95% CI = 1.376-4.128, p = 0.002 in stage two). However, we did not observe this association in CTD-ILD (OR = 1.401, 95% CI = 0.790-2.485, p = 0.248). CONCLUSION: Our findings suggest that the nonsynonymous polymorphism (rs117179004, T392M) may confer susceptibility to IPF in Southern Han Chinese, but is not associated with susceptibility to CTD-ILD.


Asunto(s)
Hialuronoglucosaminidasa/genética , Fibrosis Pulmonar Idiopática/genética , Polimorfismo de Nucleótido Simple , Anciano , Pueblo Asiatico/genética , Estudios de Casos y Controles , Femenino , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Humanos , Enfermedades Pulmonares Intersticiales/genética , Masculino , Persona de Mediana Edad
2.
Hum Mutat ; 39(9): 1238-1245, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29920840

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a genetic heterogeneous disease with high mortality and poor prognosis. However, a large fraction of genetic cause remains unexplained, especially in sporadic IPF (∼80% IPF). By systemically reviewing related literature and potential pathogenic pathways, 92 potentially IPF-related genes were selected and sequenced in genomic DNAs from 253 sporadic IPF patients and 125 matched health controls using targeted massively parallel next-generation sequencing. The identified risk variants were confirmed by Sanger sequencing. We identified two pathogenic and 10 loss-of-function (LOF) candidate variants, accounting for 4.74% (12 out of 253) of all the IPF cases. In burden tests, rare missense variants in three genes (CSF3R, DSP, and LAMA3) were identified that have a statistically significant relationship with IPF. Four common SNPs (rs3737002, rs2296160, rs1800470, and rs35705950) were observed to be statistically associated with increased risk of IPF. In the cumulative risk model, high risk subjects had 3.47-fold (95%CI: 2.07-5.81, P = 2.34 × 10-6 ) risk of developing IPF compared with low risk subjects. We drafted a comprehensive map of genetic risks (including both rare and common candidate variants) in patients with IPF, which could provide insights to help in understanding mechanisms, providing genetic diagnosis, and predicting risk for IPF.


Asunto(s)
Desmoplaquinas/genética , Fibrosis Pulmonar Idiopática/genética , Laminina/genética , Receptores del Factor Estimulante de Colonias/genética , Femenino , Predisposición Genética a la Enfermedad , Genoma Humano/genética , Estudio de Asociación del Genoma Completo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Mutación Missense/genética , Polimorfismo de Nucleótido Simple/genética , Factores de Riesgo , Transducción de Señal/genética
3.
Am J Cancer Res ; 7(9): 1863-1873, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28979809

RESUMEN

The aim of this study is to elucidate whether and how miR-107 participates in the modulation of paclitaxel sensitivity in non small cell lung cancer (NSCLC). By qRT-PCR, we found that miR-107 is significantly down-regulated in paclitaxel-resistant A549/Taxol cells compared with corresponding paclitaxel-sensitive counterparts. Overexpression of miR-107 suppresses paclitaxel resistance of A549/Taxol cells through directly inhibiting Bcl-w. Overexpression of miR-107 promotes apoptosis and inhibits proliferation and mobility of A549/Taxol cells under treatment with paclitaxel in vitro. Moreover, miR-107 inhibits in vivo paclitaxel resistance in xenograft model. MiR-107/Bcl-w axis regulates paclitaxel chemoresistance through PI3K-Akt pathway. Our results suggest that up-regulation of miR-107 resensitizes paclitaxel-resistant NSCLC cells by targeting Bcl-w, which reveals a potential mechanism of miR-107 in reversing drug resistance.

4.
Cancer Med ; 6(3): 631-639, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28181425

RESUMEN

Pyropheophorbide-α methyl ester (MPPa) was a promising photosensitizer with stable chemical structure, strong absorption, higher tissue selectivity and longer activation wavelengths. The present study investigated the effect of MPPa-mediated photodynamic treatment on lung cancer A549 cells as well as the underlying mechanisms. Cell Counting Kit-8 was employed for cell viability assessment. Reactive oxygen species levels were determined by fluorescence microscopy and flow cytometry. Cell morphology was evaluated by Hoechst staining and transmission electron microscopy. Mitochondrial membrane potential, cellular apoptosis and cell cycle distribution were evaluated flow-cytometrically. The protein levels of apoptotic effectors were examined by Western blot. We found that the photocytotoxicity of MPPa showed both drug- and light- dose dependent characteristics in A549 cells. Additionally, MPPa-PDT caused cell apoptosis by reducing mitochondrial membrane potential, increasing reactive oxygen species (ROS) production, inducing caspase-9/caspase-3 signaling activation as well as cell cycle arrest at G0 /G1 phase. These results suggested that MPPa-PDT mainly kills cells by apoptotic mechanisms, with overt curative effects, indicating that MPPa should be considered a potent photosensitizer for lung carcinoma treatment.


Asunto(s)
Caspasa 3/metabolismo , Caspasa 9/metabolismo , Neoplasias Pulmonares/metabolismo , Fármacos Fotosensibilizantes/farmacología , Porfirinas/farmacología , Células A549 , Ciclo Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Fotoquimioterapia , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA