Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell Proteomics ; 23(1): 100690, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38065436

RESUMEN

Serum proteomics has matured and is now able to monitor hundreds of proteins quantitatively in large cohorts of patients. However, the fine characteristics of some of the most dominant proteins in serum, the immunoglobulins, are in these studies often ignored, due to their vast, and highly personalized, diversity in sequences. Here, we focus exclusively on these personalized features in the serum proteome and distinctively chose to study individual samples from a low diversity population: elderly donors infected by severe acute respiratory syndrome corona virus 2 (SARS-CoV-2). By using mass spectrometry-based methods, immunoglobulin IgG1 and IgA1 clonal repertoires were monitored quantitatively and longitudinally in more than 50 individual serum samples obtained from 17 Corona virus disease 2019 patients admitted to intensive care units. These clonal profiles were used to examine how each patient reacted to a severe SARS-CoV-2 infection. All 17 donors revealed unique polyclonal repertoires and substantial changes over time, with several new clones appearing following the infection, in a few cases leading to a few, very high, abundant clones dominating their repertoire. Several of these clones were de novo sequenced through combinations of top-down, middle-down, and bottom-up proteomics approaches. This revealed sequence features in line with sequences deposited in the SARS-CoV-specific antibody database. In other patients, the serological Ig profiles revealed the treatment with tocilizumab, that subsequently dominated their serological IgG1 repertoire. Tocilizumab clearance could be monitored, and a half-life of approximately 6 days was established. Overall, our longitudinal monitoring of IgG1 and IgA1 repertoires of individual donors reveals that antibody responses are highly personalized traits of each patient, affected by the disease and the chosen clinical treatment. The impact of these observations argues for a more personalized and longitudinal approach in patients' diagnostics, both in serum proteomics as well as in monitoring immune responses.


Asunto(s)
COVID-19 , Humanos , Anciano , SARS-CoV-2 , Proteoma , Inmunoglobulina G , Inmunoglobulina A , Anticuerpos Antivirales
2.
Eur Radiol ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570381

RESUMEN

OBJECTIVES: The preoperative classification of pleomorphic adenomas (PMA) and Warthin tumors (WT) in the parotid gland plays an essential role in determining therapeutic strategies. This study aims to develop and validate an ultrasound-based ensemble machine learning (USEML) model, employing nonradiative and noninvasive features to differentiate PMA from WT. METHODS: A total of 203 patients with histologically confirmed PMA or WT who underwent parotidectomy from two centers were enrolled. Clinical factors, ultrasound (US) features, and radiomic features were extracted to develop three types of machine learning model: clinical models, US models, and USEML models. The diagnostic performance of the USEML model, as well as that of physicians based on experience, was evaluated and validated using receiver operating characteristic (ROC) curves in internal and external validation cohorts. DeLong's test was used for comparisons of AUCs. SHAP values were also utilized to explain the classification model. RESULTS: The USEML model achieved the highest AUC of 0.891 (95% CI, 0.774-0.961), surpassing the AUCs of both the US (0.847; 95% CI, 0.720-0.932) and clinical (0.814; 95% CI, 0.682-0.908) models. The USEML model also outperformed physicians in both internal and external validation datasets (both p < 0.05). The sensitivity, specificity, negative predictive value, and positive predictive value of the USEML model and physician experience were 89.3%/75.0%, 87.5%/54.2%, 87.5%/65.6%, and 89.3%/65.0%, respectively. CONCLUSIONS: The USEML model, incorporating clinical factors, ultrasound factors, and radiomic features, demonstrated efficient performance in distinguishing PMA from WT in the parotid gland. CLINICAL RELEVANCE STATEMENT: This study developed a machine learning model for preoperative diagnosis of pleomorphic adenoma and Warthin tumor in the parotid gland based on clinical, ultrasound, and radiomic features. Furthermore, it outperformed physicians in an external validation dataset, indicating its potential for clinical application. KEY POINTS: • Differentiating pleomorphic adenoma (PMA) and Warthin tumor (WT) affects management decisions and is currently done by invasive biopsy. • Integration of US-radiomic, clinical, and ultrasound findings in a machine learning model results in improved diagnostic accuracy. • The ultrasound-based ensemble machine learning (USEML) model consistently outperforms physicians, suggesting its potential applicability in clinical settings.

3.
Macromol Rapid Commun ; 45(4): e2300585, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37931222

RESUMEN

Flexible dielectrics with large dielectric constant (ε') coupled with low loss are highly pursued in many applications. To bolster the ε' of raw Zn (zinc)/poly(vinylidene fluoride, PVDF) while maintaining pimping dielectric loss, in this study, the core@double-shell structured Zn@zinc carbonate (ZnCH)@polystyrene (PS) particles are first synthesized through a suspension polymerization of styrene, and then composited with PVDF to elevate the ε' and keep low loss of the composites. By optimizing the PS shells' thickness and tailoring the electrical resistivity of Zn@ZnCH@PS particles, both the slow inter-particle polarization and fast intra-particle polarization in the composites can be decoupled and synergistically tuned, thus, the Zn@ZnCH@PS/PVDF achieves a much higher ε' and lower dielectric loss, simultaneously, which far exceed the unmodified Zn/PVDF. Both experiment and theoretic calculation reveal that the double-shell ZnCH@PS not only induces and promotes multiple polarizations enhancing the composites' ε', especially at the optimized PS's thickness, but also maintains suppressed loss and conductivity thanks to their obvious barrier effect on long-range charge migration. The core@double-shell filler design strategy facilitates the development of polymer composites with desirable dielectric properties for applications in electronic and electrical power systems.


Asunto(s)
Polímeros de Fluorocarbono , Poliestirenos , Polivinilos , Conductividad Eléctrica , Zinc
4.
Cereb Cortex ; 33(5): 1941-1954, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-35567793

RESUMEN

Reduced empathy and elevated alexithymia are observed in autism spectrum disorder (ASD), which has been linked to altered asymmetry in brain morphology. Here, we investigated whether trait autism, empathy, and alexithymia in the general population is associated with brain morphological asymmetry. We determined left-right asymmetry indexes for cortical thickness and cortical surface area (CSA) and applied these features to a support-vector regression model that predicted trait autism, empathy, and alexithymia. Results showed that less leftward asymmetry of CSA in the gyrus rectus (a subregion of the orbitofrontal cortex) predicted more difficulties in social functioning, as well as reduced cognitive empathy and elevated trait alexithymia. Meta-analytic decoding of the left gyrus rectus annotated functional items related to social cognition. Furthermore, the link between gyrus rectus asymmetry and social difficulties was accounted by trait alexithymia and cognitive empathy. These results suggest that gyrus rectus asymmetry could be a shared neural correlate among trait alexithymia, cognitive empathy, and social functioning in neurotypical adults. Left-right asymmetry of gyrus rectus influenced social functioning by affecting the cognitive processes of emotions in the self and others. Interventions that increase leftward asymmetry of the gyrus rectus might improve social functioning for individuals with ASD.


Asunto(s)
Trastorno del Espectro Autista , Empatía , Humanos , Adulto , Síntomas Afectivos/epidemiología , Síntomas Afectivos/psicología , Cognición , Corteza Prefrontal
5.
Cereb Cortex ; 33(13): 8594-8604, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37106566

RESUMEN

Brain dynamics can be modeled by a sequence of transient, nonoverlapping patterns of quasi-stable electrical potentials named "microstates." While electroencephalographic (EEG) microstates among patients with chronic pain remained inconsistent in the literature, this study characterizes the temporal dynamics of EEG microstates among healthy individuals during experimental sustained pain. We applied capsaicin (pain condition) or control (no-pain condition) cream to 58 healthy participants in different sessions and recorded resting-state EEG 15 min after application. We identified 4 canonical microstates (A-D) that are related to auditory, visual, salience, and attentional networks. Microstate C had less occurrence, as were bidirectional transitions between microstate C and microstates A and B during sustained pain. In contrast, sustained pain was associated with more frequent and longer duration of microsite D, as well as more bidirectional transitions between microstate D and microstates A and B. Microstate D duration positively correlated with intensity of ongoing pain. Sustained pain improved global integration within microstate C functional network, but weakened global integration and efficiency within microstate D functional network. These results suggest that sustained pain leads to an imbalance between processes that load on saliency (microstate C) and processes related to switching and reorientation of attention (microstate D).


Asunto(s)
Encéfalo , Electroencefalografía , Humanos , Mapeo Encefálico/métodos , Atención , Dolor
6.
Cereb Cortex ; 33(3): 634-650, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-35244170

RESUMEN

Tracking and predicting the temporal structure of nociceptive inputs is crucial to promote survival, as proper and immediate reactions are necessary to avoid actual or potential bodily injury. Neural activities elicited by nociceptive stimuli with different temporal structures have been described, but the neural processes responsible for translating nociception into pain perception are not fully elucidated. To tap into this issue, we recorded electroencephalographic signals from 48 healthy participants receiving thermo-nociceptive stimuli with 3 different durations and 2 different intensities. We observed that pain perception and several brain responses are modulated by stimulus duration and intensity. Crucially, we identified 2 sustained brain responses that were related to the emergence of painful percepts: a low-frequency component (LFC, < 1 Hz) originated from the insula and anterior cingulate cortex, and an alpha-band event-related desynchronization (α-ERD, 8-13 Hz) generated from the sensorimotor cortex. These 2 sustained brain responses were highly coupled, with the α-oscillation amplitude that fluctuated with the LFC phase. Furthermore, the translation of stimulus duration into pain perception was serially mediated by α-ERD and LFC. The present study reveals how brain responses elicited by nociceptive stimulation reflect the complex processes occurring during the translation of nociceptive information into pain perception.


Asunto(s)
Nocicepción , Dolor , Humanos , Nocicepción/fisiología , Percepción del Dolor/fisiología , Electroencefalografía , Giro del Cíngulo/fisiología
7.
J Proteome Res ; 22(9): 3022-3028, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37499263

RESUMEN

Monoclonal gammopathy of undetermined significance (MGUS) is a plasma cell disorder characterized by the presence of a predominant monoclonal antibody (i.e., M-protein) in serum, without clinical symptoms. Here we present a case study in which we detect MGUS by liquid-chromatography coupled with mass spectrometry (LC-MS) profiling of IgG1 in human serum. We detected a Fab-glycosylated M-protein and determined the full heavy and light chain sequences by bottom-up proteomics techniques using multiple proteases, further validated by top-down LC-MS. Moreover, the composition and location of the Fab-glycan could be determined in CDR1 of the heavy chain. The outlined approach adds to an expanding mass spectrometry-based toolkit to characterize monoclonal gammopathies such as MGUS and multiple myeloma, with fine molecular detail. The ability to detect monoclonal gammopathies and determine M-protein sequences straight from blood samples by mass spectrometry provides new opportunities to understand the molecular mechanisms of such diseases.


Asunto(s)
Gammopatía Monoclonal de Relevancia Indeterminada , Mieloma Múltiple , Paraproteinemias , Humanos , Gammopatía Monoclonal de Relevancia Indeterminada/diagnóstico , Paraproteinemias/diagnóstico , Mieloma Múltiple/diagnóstico , Mieloma Múltiple/genética , Espectrometría de Masas , Inmunoglobulina G
8.
Opt Express ; 31(15): 25230-25244, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37475333

RESUMEN

Surface-enhanced Raman scattering (SERS) is a powerful technique for detection and identification of trace amounts of molecules with high specificity. A variety of two- and three-dimensional (3D) SERS substrates have been developed. Among these SERS substrates, to further develop new morphology of 3D SERS-active substrate with robust SERS functionality is still desired and necessary. In this paper, what we believe to be a novel and effective SERS-active substrate based on large-scale 3D Si hierarchical nanoarrays in conjunction with homogeneous Au nanoparticles (AuNPs) was proposed. Its building block shaped like the umbrella-frame structure was fabricated by a simple and cost-effective top-down nanofabrication method. Such umbrella-frame structure achieved excellent SERS performance with high sensitivity and spatial uniformity. For R6G molecules, the detection limit can be as low as 10-14 M, with an enhancement factor of up to 107. The relative standard deviation can reach about 11% above 30 positions across an area of 100×100 µm2. This is mainly attributed to much more active-sites provided by the umbrella-frame structure for adsorption of target molecules and AuNPs, and sufficient 3D hotspots generated by the coupling between the SiNRs guided mode and AuNPs localized surface plasmon resonance (LSPR), as well as that between AuNPs LSPR. Especially by introducing the umbrella-ribs SiNRs and AuNPs, the light field can be greatly confined to the structure surface, creating strongly enhanced and even zero-gap fields in 3D space. Moreover, the proposed SERS-active substrate can be erased and reused multiple times by plasma cleaning and exhibits typically excellent recyclability and stability for robust SERS activity. The experimental results demonstrate the proposed substrate may serve as a promising SERS platform for trace detection of chemical and biological molecules.

9.
BMC Pulm Med ; 23(1): 348, 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37710221

RESUMEN

BACKGROUND: Some research found that elevated plasma cell-free DNA (cfDNA) concentrations and poor prognosis are associated in non-small cell lung cancer (NSCLC). However, more studies need to be carried out to verify this conclusion. Therefore, this study investigated the relationship between cfDNA concentration and treatment outcomes including prognosis in patients with advanced NSCLC. METHODS: We retrospectively collected medical records and cfDNA data from 160 patients with advanced NSCLC. Progression-free survival (PFS) were calculated using the Kaplan-Meier method and were compared between groups using the log rank test. Cox regression analysis was used for estimating the independent predictors of PFS. And we used logistic regression to evaluate the relationship between baseline biomarkers and efficacy. In our study, BT1 cfDNA, BT2 cfDNA, and BT3 cfDNA were defined as cfDNA concentration before the first treatment (baseline cfDNA concentration), cfDNA concentration before the second treatment, and cfDNA concentration before the third treatment, respectively. RESULTS: Patients with low cfDNA (BT1 cfDNA < 15 (ng/mL)) were reported a significantly prolonged median progression-free survival (mPFS) compared with patients with patients with high cfDNA (BT1 cfDNA ≥ 15(ng/mL)) (mPFS: 14.6 vs. 8.3 months, P = 0.002), as well as patients with neutrophil/lymphocyte ratio (NLR)<2.98 (mPFS: 13.1 vs. 7.9 months, P = 0.023). In addition, Cox proportional hazards regression analysis identified independent indicators associated with PFS including BT1 cfDNA ≥ 15 (ng/mL), NLR ≥ 2.98 and extrapulmonary metastasis. The best cut-off value for BT3 cfDNA for predicting disease progression is 41.46 (ng/mL) (Area Under the Curve (AUC): 0.652, 95%CI: 0.516-0.788), achieving 90.7% sensitivity and 37.5% specificity for the prediction of disease progression. BT3 cfDNA (OR = 6.08, 95% CI: 1.94-19.57, P = 0.002) was an independent factor for disease progression in patients with advanced NSCLC. CONCLUSIONS: BT1 cfDNA may be a biomarker to assess the prognosis of advanced NSCLC. Patients with advanced NSCLC with lower cfDNA and NLR before treatment had a better prognosis. Increased BT3 cfDNA concentration was an independent factor of disease progression in advanced NSCLC patients. These findings may assist in identifying high-risk patients and guiding treatment strategies.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Ácidos Nucleicos Libres de Células , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Estudios Retrospectivos , Neoplasias Pulmonares/genética , Pronóstico , Resultado del Tratamiento , Progresión de la Enfermedad
10.
Molecules ; 28(23)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38067579

RESUMEN

Koninginins X-Z (1-3), three novel polyketides, were isolated from the solid fermentation of the endophytic fungus Trichoderma koningiopsis SC-5. Their structures, including the absolute configurations, were comprehensively characterized by a combination of NMR spectroscopic methods, HRESIMS, 13C NMR, DFT GIAO 13C NMR, and electronic circular dichroism calculations as well as single crystal X-ray diffraction. In addition, all the compounds were evaluated for antifungal activity against Candida albicans.


Asunto(s)
Policétidos , Trichoderma , Policétidos/química , Estructura Molecular , Trichoderma/química , Antifúngicos/química
11.
J Cell Mol Med ; 26(4): 977-989, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35014178

RESUMEN

MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression at the post-transcriptional level. MiRNAs are involved in the development and progression of a wide range of cancers. Among such cancer-associated miRNAs, miR-381 has been a major focus of research. The expression pattern and role of miR-381 vary among different cancer types. MiR-381 modulates various cellular behaviours in cancer, including proliferation, apoptosis, cell cycle progression, migration and invasion. MiR-381 is also involved in angiogenesis and lymphangiogenesis, as well as in the resistance to chemotherapy and radiotherapy. MiR-381 itself is regulated by several factors, such as long noncoding RNAs, circular RNAs and cytokines. Aberrant expression of miR-381 in blood samples indicates that it can be used as a diagnostic marker in cancer. Tissue miR-381 expression may serve as a prognostic factor for the clinicopathological characteristics of cancers and survival of patients. Metformin and icaritin regulate miR-381 expression and present anticancer properties. This review comprehensively summarizes the effect of miR-381 on tumour biological behaviours, as well as the clinical application potential of miR-381 for the treatment of cancer.


Asunto(s)
MicroARNs , Neoplasias , ARN Largo no Codificante , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/metabolismo , Neoplasias/patología , ARN Circular
12.
Neuroimage ; 263: 119599, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36049698

RESUMEN

Alterations of empathy for others' pain among patients with chronic pain remained inconsistent. Here, applying a capsaicin-based ongoing pain model on healthy participants, this study investigated how ongoing first-hand pain influences empathic reactions to vicarious pain stimuli. Healthy participants were randomly treated with topical capsaicin cream (capsaicin group) or hand cream (control group) on the left forearm. Video clips showing limbs in painful and non-painful situations were used to induce empathic responses. The capsaicin group showed greater empathic neural responses in the right primary somatosensory cortex (S1) than the control group but smaller responses in the left anterior insula (AI) accompanied with smaller empathic pain-intensity ratings. Notably, the intensity of ongoing pain negatively correlated with empathy-related neural responses in the left AI. Inter-subject phase synchronization analysis was used to assess stimulus-dependent dynamic functional connectivity within or between brain regions engaged in pain empathy. The capsaicin group showed greater empathy-related neural synchronization within S1 and between S1 and AI, but less synchronization within AI and between AI and MCC. Behaviorally, the differential inter-subject pain-intensity rating alignment between painful and non-painful videos was more positive for the capsaicin group than for the control group, and this effect was partially mediated by the inter-subject neural synchronization between S1 and AI. These results suggest that ongoing first-hand pain facilitates neural activation and synchronization within brain regions associated with empathy-related somatosensory resonance at the cost of inhibiting activation and synchronization within brain regions engaged in empathy-related affective sharing.


Asunto(s)
Capsaicina , Empatía , Humanos , Capsaicina/farmacología , Imagen por Resonancia Magnética/métodos , Dolor , Encéfalo/fisiología , Mapeo Encefálico
13.
Anal Chem ; 94(29): 10391-10399, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35834437

RESUMEN

Antibodies can target a vast molecular diversity of antigens. This is achieved by generating a complementary diversity of antibody sequences through somatic recombination and hypermutation. A full understanding of the antibody repertoire in health and disease therefore requires dedicated de novo sequencing methods. Next-generation cDNA sequencing methods have laid the foundation of our current understanding of the antibody repertoire, but these methods share one major limitation in that they target the antibody-producing B-cells, rather than the functional secreted product in bodily fluids. Mass spectrometry-based methods offer an opportunity to bridge this gap between antibody repertoire profiling and bulk serological assays, as they can access antibody sequence information straight from the secreted polypeptide products. In a step to meeting the challenge of mass spectrometry (MS)-based antibody sequencing, we present a fast and simple software tool (Stitch) to map proteomic short reads to user-defined templates with dedicated features for both monoclonal antibody sequencing and profiling of polyclonal antibody repertoires. We demonstrate the use of Stitch by fully reconstructing two monoclonal antibody sequences with >98% accuracy (including I/L assignment); sequencing a Fab from patient serum isolated by reversed-phase liquid chromatography (LC) fractionation against a high background of homologous antibody sequences; sequencing antibody light chains from the urine of multiple-myeloma patients; and profiling the IgG repertoire in sera from patients hospitalized with COVID-19. We demonstrate that Stitch assembles a comprehensive overview of the antibody sequences that are represented in the dataset and provides an important first step toward analyzing polyclonal antibodies and repertoire profiling.


Asunto(s)
COVID-19 , Proteómica , Anticuerpos Monoclonales , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Cadenas Ligeras de Inmunoglobulina/genética
14.
BMC Cancer ; 22(1): 193, 2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35184748

RESUMEN

BACKGROUND: Lung cancer is among the major diseases threatening human health. Although the immune response plays an important role in tumor development, its exact mechanisms are unclear. MATERIALS AND METHODS: Here, we used CIBERSORT and ESTIMATE algorithms to determine the proportion of tumor-infiltrating immune cells (TICs) as well as the number of immune and mesenchymal components from the data of 474 lung cancer patients from the Gene Expression Omnibus database. And we used data from The Cancer Genome Atlas database (TCGA) for validation. RESULTS: We observed that immune, stromal, and assessment scores were only somewhat related to survival with no statistically significant differences. Further investigations revealed these scores to be associated with different pathology types. GO and KEGG analyses of differentially expressed genes revealed that they were strongly associated with immunity in lung cancer. In order to determine whether the signaling pathways identified by GO and KEGG signaling pathway enrichment analyses were up- or down-regulated, we performed a gene set enrichment analysis using the entire matrix of differentially expressed genes. We found that signaling pathways involved in hallmark allograft rejection, hallmark apical junction, hallmark interferon gamma response, the hallmark P53 pathway, and the hallmark TNF-α signaling via NF-ĸB were up-regulated in the high-ESTIMATE-score group. CIBERSORT analysis for the proportion of TICs revealed that different immune cells were positively correlated with the ESTIMATE score. Cox regression analysis of the differentially expressed genes revealed that CPA3, C15orf48, FCGR1B, and GNG4 were associated with patient prognosis. A prognostic model was constructed wherein patients with high-risk scores had a worse prognosis (p < 0.001 using the log-rank test). The Area Under Curve (AUC)value for the risk model in predicting the survival was 0.666. The validation set C index was 0.631 (95% CI: 0.580-0.652). The AUC for the risk formula in the validation set was 0.560 that confirmed predictivity of the signature. CONCLUSION: We found that immune-related gene expression models could predict patient prognosis. Moreover, high- and low-ESTIMATE-score groups had different types of immune cell infiltration.


Asunto(s)
Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Algoritmos , Área Bajo la Curva , Biomarcadores de Tumor/genética , Carboxipeptidasas A/genética , Bases de Datos Genéticas , Subunidades gamma de la Proteína de Unión al GTP/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Pronóstico , Modelos de Riesgos Proporcionales , Receptores Fc/genética , Factores de Riesgo
15.
J Proteome Res ; 20(7): 3559-3566, 2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-34121409

RESUMEN

Antibody sequence information is crucial to understanding the structural basis for antigen binding and enables the use of antibodies as therapeutics and research tools. Here, we demonstrate a method for direct de novo sequencing of monoclonal IgG from the purified antibody products. The method uses a panel of multiple complementary proteases to generate suitable peptides for de novo sequencing by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in a bottom-up fashion. Furthermore, we apply a dual fragmentation scheme, using both stepped high-energy collision dissociation (stepped HCD) and electron-transfer high-energy collision dissociation (EThcD), on all peptide precursors. The method achieves full sequence coverage of the monoclonal antibody herceptin, with an accuracy of 99% in the variable regions. We applied the method to sequence the widely used anti-FLAG-M2 mouse monoclonal antibody, which we successfully validated by remodeling a high-resolution crystal structure of the Fab and demonstrating binding to a FLAG-tagged target protein in Western blot analysis. The method thus offers robust and reliable sequences of monoclonal antibodies.


Asunto(s)
Análisis de Secuencia de Proteína , Espectrometría de Masas en Tándem , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales , Cromatografía Liquida , Ratones , Péptido Hidrolasas
16.
Neuroimage ; 238: 118249, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34116146

RESUMEN

Previous behavioral studies have shown that sharing painful experiences can strengthen social bonds and promote mutual prosociality, yet the neural mechanisms underlying this phenomenon remain unclear. We hypothesized that sharing a painful experience induces brain-to-brain synchronization and mutual empathy for each other's pain between pain-takers and pain-observers, which then leads to enhanced social bonding. To test this hypothesis, we adopted an electroencephalographic (EEG) hyper-scanning technique to assess neuronal and behavioral activity during a Pain-Sharing task in which high- or low-intensity pain stimulation was randomly delivered to one participant of a dyad on different experimental trials. Single-brain analysis showed that sensorimotor α-oscillation power was suppressed more when expecting high-intensity pain than when expecting low-intensity pain similarly for self-directed or partner-directed pain. Dual-brain analysis revealed that expecting high-intensity pain induced greater brain-to-brain synchronization of sensorimotor α-oscillation phases between pain-takers and pain-observers than did expecting low-intensity pain. Mediation analysis further revealed that brain-to-brain synchronization of sensorimotor α-oscillations mediated the effects of pain-stimulation intensity on mutual affective sharing for partner-directed pain. This mutual affective empathy during the task predicted the social bonding, as indexed by prosocial inclinations measured after the task. These results support the hypothesis that sharing a painful experience triggers emotional resonance between pairs of individuals through brain-to-brain synchronization of neuronal α-oscillations recorded over the sensorimotor cortex, and this emotional resonance further strengthens social bonds and motivates prosocial behavior within pairs of individuals.


Asunto(s)
Encéfalo/fisiopatología , Empatía/fisiología , Dolor/fisiopatología , Adolescente , Electroencefalografía , Emociones , Femenino , Humanos , Masculino , Dolor/psicología , Conducta Social , Adulto Joven
17.
BMC Cancer ; 21(1): 390, 2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33836683

RESUMEN

BACKGROUND: Definitive diagnosis of peripheral pulmonary lesions (PPLs) depends on the histological analysis of the pleural biopsy sample. Ultrasound (US)-guided sampling is now standard practice in the clinical setting. However, determining a suitable needle size and sampling times to improve the efficacy and safety of the biopsy remains challenging. Here, we compared the efficacy between 16- and 18-gauge core biopsy needles in US-guided percutaneous transthoracic biopsy for PPLs on histological diagnosis and procedure-related complications. MATERIALS AND METHODS: In total, 1169 patients (767 men, 402 women; mean age, 59.4 ± 13.2 years) who received biopsy for PPLs between September 2011 and February 2019 were included. The propensity score matching (PSM) analysis was performed to adjust the baseline differences, and the rate of successful specimen assessment and complications were compared between the 16-gauge (249 patients) and 18-gauge (920 patients) groups. The number of pleural surfaces crossed (NOPSC) was defined as the number of times the visceral pleural surface was transgressed. Stratified analysis was performed based on NOPSC. RESULTS: The overall success rate was 92.0% (1076/1169). The overall complication rate was 9.6%, including pneumothorax, hemorrhage, and vasovagal reaction, which occurred in 2.5% (29/1169), 6.6% (77/1169), and 0.5% (6/1169) of the patients, respectively. When NOPSC was 1 or > 2, the success and complication rates in the 16-gauge group were comparable to those of the 18-gauge group (all P > 0.05). When the NOPSC was 2, the success rate in the 16-gauge group was significantly higher than that in the 18-gauge group (P = 0.017), whereas the complication rate was comparable (P > 0.05). CONCLUSION: Higher success rate could be achieved using a 16-gauge than an 18-gauge core biopsy needle in the US-guided percutaneous transthoracic biopsy for PPLs when the NOPSC was 2. We recommend using 16-gauge needles with 2 times of needle passes in biopsy for PPLs in clinical practice.


Asunto(s)
Biopsia con Aguja Gruesa/métodos , Biopsia Guiada por Imagen/métodos , Enfermedades Pulmonares/diagnóstico por imagen , Enfermedades Pulmonares/patología , Ultrasonografía , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Biopsia con Aguja Gruesa/efectos adversos , Femenino , Humanos , Biopsia Guiada por Imagen/efectos adversos , Pulmón/diagnóstico por imagen , Pulmón/patología , Masculino , Persona de Mediana Edad , Puntaje de Propensión , Estudios Retrospectivos , Tomografía Computarizada por Rayos X , Ultrasonografía/métodos , Adulto Joven
18.
Horm Behav ; 131: 104963, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33711638

RESUMEN

The role of testosterone in sensory perception suggests that testosterone likely regulates adaptive responses to sensory changes, including habituation to repeated events and responsiveness to novel events. To test this hypothesis, we investigated how testosterone modulates brain responses to rapid changes in sensory inputs. Using a double-blind, placebo-controlled, within-participant design, each participant received a single dose of either testosterone or placebo, and then completed a passive auditory oddball task in which infrequent deviant tones were embedded in a series of frequent standard tones. Analysis of novelty-evoked potentials revealed smaller Mismatch Negativity (MMN) responses, but larger P3a responses in the testosterone session than in the placebo session. This suggests testosterone attenuates MMN responses that are associated with pre-attentive novelty detection and enhances P3a responses that are associated with involuntary attentional orientation toward novelty. Along with the repetition of standard tones, P2 responses on the auditory evoked potentials became significantly attenuated in the testosterone session, but not in the placebo session. This suggests testosterone enhances short-term habituation of P2 responses to recurring sensory events, which has been associated with bottom-up attention allocation. Mediation analysis further revealed that the role of testosterone in promoting attentional orientation toward novelty could be explained by the influence it exerts on short-term habituation and pre-attentive novelty detection. Overall, testosterone facilitated involuntary attention switching-withdrawal of attention from repeated sensory events and orientation toward novel sensory events-at the cost of attenuated pre-attentive novelty detection. This finding provides insight into the interplay between endocrinology and involuntary attentional processes.


Asunto(s)
Habituación Psicofisiológica , Testosterona , Estimulación Acústica , Electroencefalografía , Potenciales Evocados Auditivos , Humanos , Masculino , Tiempo de Reacción
19.
Org Biomol Chem ; 19(23): 5077-5081, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-34032260

RESUMEN

A remarkable base-promoted methodology for the rapid construction of the (E)- and (Z)-γ-oxo-α,ß-alkenoic ester skeletons from readily accessible vinyl propargylic alcohols through modified redox isomerization was uncovered. This approach manifested its high simplicity and efficiency with excellent tolerance of functional substituents, which led to the straightforward structural modifications of various natural products and efficient total syntheses of melodienone, homomelodienone, isomelodienone, and homoisomelodienone within 4 linear steps.

20.
Molecules ; 26(20)2021 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-34684677

RESUMEN

Two new phthalide derivatives, rhytidhylides A (1) and B (2), together with ten known compounds (3-12) were isolated from cultures of Rhytidhysteron sp. BZM-9, an endophyte isolated from the leaves of Leptospermum brachyandrum. Their structures were identified by an extensive analysis of NMR, HRESIMS, ECD, and through comparison with data reported in the literature. In addition, the cytotoxic activities against two human hepatoma cell lines (HepG2 and SMMC7721) and antibacterial activities against MRSA and E. coli were evaluated.


Asunto(s)
Ascomicetos/química , Benzofuranos/aislamiento & purificación , Benzofuranos/efectos adversos , Benzofuranos/farmacología , Línea Celular Tumoral/efectos de los fármacos , Endófitos/química , Escherichia coli/efectos de los fármacos , Humanos , Leptospermum/microbiología , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA