Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 344
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Neurogenetics ; 25(2): 131-139, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38460076

RESUMEN

Twin and family studies have established the genetic contribution to idiopathic generalized epilepsy (IGE). The genetic architecture of IGE is generally complex and heterogeneous, and the majority of the genetic burden in IGE remains unsolved. We hypothesize that gene-gene interactions contribute to the complex inheritance of IGE. CNTN2 (OMIM* 615,400) variants have been identified in cases with familial adult myoclonic epilepsy and other epilepsies. To explore the gene-gene interaction network in IGE, we took the CNTN2 gene as an example and investigated its co-occurrent genetic variants in IGE cases. We performed whole-exome sequencing in 114 unrelated IGE cases and 296 healthy controls. Variants were qualified with sequencing quality, minor allele frequency, in silico prediction, genetic phenotype, and recurrent case numbers. The STRING_TOP25 gene interaction network analysis was introduced with the bait gene CNTN2 (denoted as A). The gene-gene interaction pair mode was presumed to be A + c, A + d, A + e, with a leading gene A, or A + B + f, A + B + g, A + B + h, with a double-gene A + B, or other combinations. We compared the number of gene interaction pairs between the case and control groups. We identified three pairs in the case group, CNTN2 + PTPN18, CNTN2 + CNTN1 + ANK2 + ANK3 + SNTG2, and CNTN2 + PTPRZ1, while we did not discover any pairs in the control group. The number of gene interaction pairs in the case group was much more than in the control group (p = 0.021). Taking together the genetic bioinformatics, reported epilepsy cases, and statistical evidence in the study, we supposed CNTN2 as a candidate pathogenic gene for IGE. The gene interaction network analysis might help screen candidate genes for IGE or other complex genetic disorders.


Asunto(s)
Contactinas , Epilepsia Generalizada , Epistasis Genética , Redes Reguladoras de Genes , Predisposición Genética a la Enfermedad , Adolescente , Adulto , Niño , Femenino , Humanos , Masculino , Adulto Joven , Estudios de Casos y Controles , Contactinas/genética , Epilepsia Generalizada/genética , Secuenciación del Exoma , Frecuencia de los Genes
2.
Bioorg Chem ; 145: 107253, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38452588

RESUMEN

Phytochemical study on Euphorbia milii, a common ornamental plant, resulted in the identification of thirteen new ent-rosane diterpenoids (1-13), three new ent-atisane diterpenoids (14-16), and a known ent-rosane (17). Their structures were delineated using spectroscopic data, quantum chemical calculations, and X-ray diffraction experiments. Euphomilone F (1) represented a rare ent-rosane-type diterpenoid with a 5/7/6 skeleton. Euphoainoid G (8) was a rare rosane diterpenic acid. Compounds 9 and 10 carried infrequent tetrahydrofuran rings, and compounds 11-13 was 18-nor-ent-rosane diterpenoids. All isolates were evaluated for their inhibitory effects on RANKL-induced osteoclasts. Notably, compounds with aromatic ester groups (2-7) showed promising activities (IC50 < 10 µM), underscoring the significance of acylated A-ring moieties in the ent-rosane skeleton for anti-osteoclastogenesis. Thirteen synthetic derivatives were obtained through esterification of 17. Of these, compound 27 exhibited remarkable improvement, with an IC50 of 0.8 µM, more than a 12-fold increase in potency compared to the parent compound 17 (IC50 > 10 µM). This work presents a series of new ent-rosane diterpenoids with potential antiosteoporosis agents.


Asunto(s)
Diterpenos , Euphorbia , Osteogénesis , Euphorbia/química , Extractos Vegetales/química , Osteoclastos , Diterpenos/farmacología , Diterpenos/química , Estructura Molecular
3.
Mol Ther ; 31(10): 3015-3033, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37641404

RESUMEN

Pirfenidone and nintedanib are only anti-pulmonary fibrosis (PF) drugs approved by the FDA. However, they are not target specific, and unable to modify the disease status. Therefore, it is still desirable to discover more effective agents against PF. Vimentin (VIM) plays key roles in tissue regeneration and wound healing, but its molecular mechanism remains unknown. In this work, we demonstrated that atractylodinol (ATD) significantly inhibits TGF-ß1-induced epithelial-mesenchymal transition and fibroblast-to-myofibroblast transition in vitro. ATD also reduces bleomycin-induced lung injury and fibrosis in mice models. Mechanistically, ATD inhibited TGF-ß receptor I recycling by binding to VIM (KD = 454 nM) and inducing the formation of filamentous aggregates. In conclusion, we proved that ATD (derived from Atractylodes lancea) modified PF by targeting VIM and inhibiting the TGF-ß/Smad signaling pathway. Therefore, VIM is a druggable target and ATD is a proper drug candidate against PF. We prove a novel VIM function that TGF-ß receptor I recycling. These findings paved the way to develop new targeted therapeutics against PF.


Asunto(s)
Fibrosis Pulmonar , Animales , Ratones , Bleomicina , Transición Epitelial-Mesenquimal , Pulmón/metabolismo , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/prevención & control , Receptor Tipo I de Factor de Crecimiento Transformador beta , Factor de Crecimiento Transformador beta1/metabolismo , Vimentina/antagonistas & inhibidores , Vimentina/metabolismo
4.
Phytother Res ; 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38761036

RESUMEN

Enhancement of malignant cell immunogenicity to relieve immunosuppression of lung cancer microenvironment is essential in lung cancer treatment. In previous study, we have demonstrated that dihydroartemisinin (DHA), a kind of phytopharmaceutical, is effective in inhibiting lung cancer cells and boosting their immunogenicity, while the initial target of DHA's intracellular action is poorly understood. The present in-depth analysis aims to reveal the influence of DHA on the highly expressed TOM70 in the mitochondrial membrane of lung cancer. The affinity of DHA and TOM70 was analyzed by microscale thermophoresis (MST), pronase stability, and thermal stability. The functions and underlying mechanism were investigated using western blots, qRT-PCR, flow cytometry, and rescue experiments. TOM70 inhibition resulted in mtDNA damage and translocation to the cytoplasm from mitochondria due to the disruption of mitochondrial homeostasis. Further ex and in vivo findings also showed that the cGAS/STING/NLRP3 signaling pathway was activated by mtDNA and thereby malignant cells underwent pyroptosis, leading to enhanced immunogenicity of lung cancer cells in the presence of DHA. Nevertheless, DHA-induced mtDNA translocation and cGAS/STING/NLRP3 mobilization were synchronously attenuated when TOM70 was replenished. Finally, DHA was demonstrated to possess potent anti-lung cancer efficacy in vitro and in vivo. Taken together, these data confirm that TOM70 is an important target for DHA to disturb mitochondria homeostasis, which further activates STING and arouses pyroptosis to strengthen immunogenicity against lung cancer thereupon. The present study provides vital clues for phytomedicine-mediated anti-tumor therapy.

5.
Chem Biodivers ; 21(4): e202400244, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38426640

RESUMEN

Five new compounds (1, 2, 7, 12, and 16), along with fifteen known ones, were isolated from Ajuga lupulina Maxim. Their structures were revealed by analysing spectroscopic data (MS, NMR), and experimental and calculated ECD spectra was used to deduce the absolute configuration. Compound 16, with eight carbon atoms, was firstly isolated from the nature. All the isolates were evaluated for their inhibitory effect on RSL3-induced ferroptosis in HT22 mouse hippocampal neuronal cells. Among them, the abietane-type diterpenoids (7-11) significantly inhibited ferroptosis with EC50 values of 0.83 µM, 2.05 µM, 0.96 µM, 1.47 µM, and 1.19 µM, respectively.


Asunto(s)
Ajuga , Ferroptosis , Animales , Ratones , Estructura Molecular , Ajuga/química , Abietanos/química , Espectroscopía de Resonancia Magnética
6.
Neurogenetics ; 24(3): 161-169, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37022522

RESUMEN

Gene sub-region encoded protein domain is the basic unit for protein structure and function. The DMD gene is the largest coding gene in humans, with its phenotype relevant to idiopathic generalized epilepsy. We hypothesized variants clustered in sub-regions of idiopathic generalized epilepsy genes and investigated the relationship between the DMD gene and idiopathic generalized epilepsy. Whole exome sequencing was performed in 106 idiopathic generalized epilepsy individuals. DMD variants were filtered with variant type, allele frequency, in silico prediction, hemizygous or homozygous status in the population, inheritance mode, and domain location. Variants located at the sub-regions were selected by the subRVIS software. The pathogenicity of variants was evaluated by the American College of Medical Genetics and Genomics criteria. Articles on functional studies related to epilepsy for variants clustered protein domains were reviewed. In sub-regions of the DMD gene, two variants were identified in two unrelated cases with juvenile absence epilepsy or juvenile myoclonic epilepsy. The pathogenicity of both variants was uncertain significance. Allele frequency of both variants in probands with idiopathic generalized epilepsy reached statistical significance compared with the population (Fisher's test, p = 2.02 × 10-6, adjusted α = 4.52 × 10-6). The variants clustered in the spectrin domain of dystrophin, which binds to glycoprotein complexes and indirectly affects ion channels contributing to epileptogenesis. Gene sub-region analysis suggests a weak association between the DMD gene and idiopathic generalized epilepsy. Functional analysis of gene sub-region helps infer the pathogenesis of idiopathic generalized epilepsy.


Asunto(s)
Epilepsia Generalizada , Epilepsia , Humanos , Epilepsia Generalizada/genética , Frecuencia de los Genes , Fenotipo
7.
Nat Prod Rep ; 40(8): 1354-1392, 2023 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-37051770

RESUMEN

Covering: 2018 to 2022Meroterpenoids found in fungal species of the genus Ganoderma and known as Ganoderma meroterpenoids (GMs) are substances composed of a 1,2,4-trisubstituted benzene and a polyunsaturated side chain. These substances have attracted the attention of chemists and pharmacologists due to their diverse structures and significant bioactivity. In this review, we present the structures and possible biosynthesis of representative GMs newly found from 2018 to 2022, as well as chemical synthesis and biological activity of some interesting GMs. We propose for the first time a plausible biosynthetic pathway for GMs, which will certainly motivate further research on the biosynthetic pathway in Ganoderma species, as well as on chemical synthesis of GMs as important bioactive compounds for the purpose of drug development.


Asunto(s)
Ganoderma , Estructura Molecular , Ganoderma/química , Terpenos/farmacología , Terpenos/química
8.
Hum Brain Mapp ; 44(10): 4152-4164, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37195056

RESUMEN

Visual inhibition of return (IOR) is a mechanism for preventing attention from returning to previously examined spatial locations. Previous studies have found that auditory stimuli presented simultaneously with a visual target can reduce or even eliminate the visual IOR. However, the mechanism responsible for decreased visual IOR accompanied by auditory stimuli is unclear. Using functional magnetic resonance imaging, we aimed to investigate how auditory stimuli reduce visual IOR. Behaviorally, we found that the visual IOR accompanying auditory stimuli was significant but smaller than the visual IOR. Neurally, only in the validly cued trials, the superior temporal gyrus showed increased neural coupling with the intraparietal sulcus, presupplementary motor area, and some other areas in audiovisual conditions compared with visual conditions. These results suggest that the reduction in visual IOR by the simultaneous auditory stimuli may be due to a dual mechanism: rescuing the suppressed visual salience and facilitating response initiation. Our results support crossmodal interactions can occur across multiple neural levels and cognitive processing stages. This study provides a new perspective for understanding attention-orienting networks and response initiation based on crossmodal information.


Asunto(s)
Psicofisiología , Percepción Visual , Humanos , Percepción Visual/fisiología , Tiempo de Reacción/fisiología , Señales (Psicología) , Cognición
9.
Mol Biol Rep ; 50(1): 507-516, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36352181

RESUMEN

AIM: Lysine-Specific Demethylase 1 (LSD1) inhibitors have been developed and reached the clinic, but its effect in combination with cytotoxic chemotherapy is unclear. Here, we investigated the anti-tumor effect of LSD1 inhibitor GSK-LSD1 and its anti-tumor effect with the DNA damage drug doxorubicin (DOX) in gastric cancer (GC) cells. METHODS: Cells were treated with different concentrations of GSK-LSD1 to examine the anti-tumor effect versus cell viability by MTT and cell cycle arrest by flow cytometry. To explore whether LSD1 inhibitors can increase the anti-tumor effect of DNA damage drugs, cells were treated with DOX for 48 h after pretreatment with GSK-LSD1 for 48 h. Cell viability was detected by MTT and apoptosis-related proteins were examined by Western blot. Furthermore, anti-tumor efficacy of combination GSK-LSD1 with DOX was also measured in MGC-803 xenografts model in nude mice. RESULTS: The results showed that LSD1 was highly expressed in GC cell lines. Inhibition of LSD1 has a weak effect on cell viability and cell cycle. Moreover, LSD1 inhibitors pretreatment could significantly increase the anti-tumor effect of DOX. Further study found that inhibition of LSD1 can significantly enhance DOX-induced the apoptosis, accompanied by down-regulation of antiapoptotic Bcl-2 expression and up-regulation of proapoptotic Bax expression. We also confirmed that inhibition of LSD1 can sensitize the anti-tumor effect of DOX in vivo. CONCLUSION: Our findings suggest that the LSD1 inhibitor GSK-LSD1 has a weak inhibitory effect on the viability and cell cycle of GC cells, but can enhance the sensitivity of DOX.


Asunto(s)
Neoplasias Gástricas , Animales , Ratones , Humanos , Neoplasias Gástricas/tratamiento farmacológico , Lisina/farmacología , Ratones Desnudos , Doxorrubicina/farmacología , Apoptosis , Histona Demetilasas/metabolismo , Histona Demetilasas/farmacología , Línea Celular Tumoral , Proliferación Celular
10.
Eur J Clin Pharmacol ; 79(5): 663-670, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36976322

RESUMEN

OBJECTIVE: Sacubitril/valsartan is a commonly used medicine for treating heart failure (HF) patients, but the treatment effects significantly vary. Neprilysin (NEP) and carboxylesterase 1 (CES1) play an important role in the efficacy of sacubitril/valsartan. The purpose of this study was to explore the relationship between NEP and CES1 gene polymorphisms and the efficacy and safety of sacubitril/valsartan treatment in HF patients. METHODS: Genotyping of 10 single nucleotide polymorphisms (SNPs) of the NEP and CES1 genes in 116 HF patients was performed by the Sequenom MassARRAY method, and logistic regression and haplotype analysis were used to evaluate the associations between SNPs and the clinical efficacy and safety of sacubitril/valsartan in HF patients. RESULTS: A total of 116 Chinese patients with HF completed the whole trial, and T variations in rs701109 in NEP gene were an independent risk factor (P = 0.013, OR = 3.292, 95% CI:1.287-8.422) for the clinical efficacy of sacubitril/valsartan. Furthermore, haplotype analysis of 6 NEP SNPs (including rs701109) was performed and showed that the CGTACC and TGTACC haplotypes were significantly associated with clinical efficacy (OR = 0.095, 95%CI: 0.012-0.723, P = 0.003; OR = 5.586, 95% CI: 1.621-19.248, P = 0.005). Moreover, no association was found between SNPs of other selected genes in terms of efficacy in HF patients, and no association was observed between SNPs and symptomatic hypotension. CONCLUSION: Our results suggest an association between rs701109 and sacubitril/valsartan response in HF patients. Symptomatic hypotension is not associated with the presence of NEP polymorphisms.


Asunto(s)
Insuficiencia Cardíaca , Hipotensión , Neprilisina , Humanos , Aminobutiratos/uso terapéutico , Antagonistas de Receptores de Angiotensina/uso terapéutico , Compuestos de Bifenilo/uso terapéutico , Combinación de Medicamentos , Pueblos del Este de Asia , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/genética , Hipotensión/inducido químicamente , Hipotensión/genética , Neprilisina/genética , Polimorfismo Genético , Volumen Sistólico , Tetrazoles/uso terapéutico , Resultado del Tratamiento , Valsartán/uso terapéutico
11.
J Nat Prod ; 86(8): 2006-2021, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37566645

RESUMEN

Twelve new neo-clerodane diterpenoids, eight undescribed methoxy/ethoxy acetal analogues, and one new nor-iridane monoterpenoid were isolated from Ajuga campylantha. Their structures were elucidated using a combination of spectroscopic data, quantum chemical calculations, and X-ray crystallography. This research reveals the distinctive structural features of A. campylantha diterpenes, including distinct C rings and 4,18-double bonds, distinguishing them from diterpenes of other plants in the Ajuga genus. Compound 2 represents the first example of a 19(5→6)-abeo-clerodane formed through a Wagner-Meerwein rearrangement. The isolated compounds were assessed for their neuroprotective effects against RSL3-induced ferroptosis in HT22 cells and LPS-induced neuroinflammation in BV-2 cells. Notably, compound 7 inhibits ferroptosis (EC50 = 10 µM) with a potentially new mechanism of action. The preliminary structure-activity relationship studies revealed that the furan-clerodane diterpenoids possess potential ferroptosis inhibitory activity, while the lactone-clerodanes do not. This study represents the first report of furan-containing clerodanes within the Ajuga genus, providing fresh insights into the phytochemistry and pharmacological potential of A. campylantha.


Asunto(s)
Ajuga , Diterpenos de Tipo Clerodano , Ferroptosis , Fármacos Neuroprotectores , Diterpenos de Tipo Clerodano/farmacología , Diterpenos de Tipo Clerodano/química , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Ajuga/química , Enfermedades Neuroinflamatorias , Estructura Molecular
12.
Bioorg Chem ; 135: 106523, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37027949

RESUMEN

To further explore the binding properties of Ru(Ⅱ) polypyridine complexes with RNA, three Ru(Ⅱ) complexes [Ru(phen)2(PIP)]2+ (Ru1), [Ru(phen)2(p-HPIP)]2+ (Ru2), and [Ru(phen)2(m- HPIP)]2+ (Ru3) have been synthesized and characterized in this work. The binding properties of three Ru(Ⅱ) complexes with RNA duplex poly(A)•poly(U) have been investigated by spectral and viscosity experiments. These studies all support that these three Ru(Ⅱ) complexes bind to poly RNA duplex poly(A)•poly(U) by intercalation, and Ru1 without substituents has a stronger binding affinity for poly(A)•poly(U). Interestingly, the thermal melting experiments show that these three Ru(Ⅱ) complexes all destabilize RNA duplex poly(A)•poly(U), and the destabilizing effect can be explained by the conformational changes of duplex structure induced by intercalating agents. To the best of our knowledge, this work report for the first time a small molecule capable of destabilizing an RNA duplex, which reflects that the substitution effect of intercalated ligands has an important influence on the affinity of Ru(Ⅱ) complexes to RNA duplex, and that not all Ru(Ⅱ) complexes show thermal stability effects on an RNA duplex.


Asunto(s)
Poli A , Rutenio , Poli A/química , Rutenio/farmacología , Rutenio/química , ARN/química
13.
Environ Res ; 231(Pt 3): 116299, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37268211

RESUMEN

Bio-drying is a practical approach for treating food waste (FW). However, microbial ecological processes during treatment are essential for improving the dry efficiency, and have not been stressed enough. This study analyzed the microbial community succession and two critical periods of interdomain ecological networks (IDENs) during FW bio-drying inoculated with thermophiles (TB), to determine how TB affects FW bio-drying efficiency. The results showed that TB could rapidly colonize in the FW bio-drying, with the highest relative abundance of 5.13%. Inoculating TB increased the maximum temperature, temperature integrated index and moisture removal rate of FW bio-drying (55.7 °C, 219.5 °C, and 86.11% vs. 52.1 °C, 159.1 °C, and 56.02%), thereby accelerating the FW bio-drying efficiency by altering the succession of microbial communities. The structural equation model and IDEN analysis demonstrated that TB inoculation complicated the IDENs between bacterial and fungal communities by significantly and positively affecting bacterial communities (b = 0.39, p < 0.001) and fungal communities (b = 0.32, p < 0.01), thereby enhancing interdomain interactions between bacteria and fungi. Additionally, inoculation TB significantly increased the relative abundance of keystone taxa, including Clostridium sensu stricto, Ochrobactrum, Phenylobacterium, Microvirga and Candida. In conclusion, the inoculation of TB could effectively improve FW bio-drying, which is a promising technology for rapidly reducing FW with high moisture content and recovering resources from it.


Asunto(s)
Micobioma , Eliminación de Residuos , Alimentos , Bacterias , Temperatura
14.
An Acad Bras Cienc ; 95(1): e20220596, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37132750

RESUMEN

Preeclampsia is associated with the insufficient invasion of trophoblasts. NF-κB is a transcription factor in almost all mammalian cells and has been validated to be upregulated in the maternal circulation and placenta of women with preeclampsia. MiR-518a-5p is also overexpressed in pre-eclamptic placenta. The present study was designed to explore whether NF-κB can transcriptionally activate miR-518a-5p and investigate the influences of miR-518a-5p on the viability, apoptosis, migration, and invasion of HTR8/SVneo trophoblast. In situ hybridization and real time polymerase chain reaction were used to reveal miR-518a-5p expression in placenta tissues and HTR8/SVneo cells, respectively. Cell migration and invasion were detected using Transwell inserts. Our findings indicated that NF-κB p52, p50, and p65 can bind to miR-518a-5p gene promoter. MiR-518a-5p further influences the levels of p50 and p65 but not p52. HTR8/SVneo cell viability and apoptosis were not influenced by miR-518a-5p. However, miR-518a-5p represses the migratory/invasive capacities of HTR8/SVneo cell and decreased gelatinolytic activity of MMP2 and MMP9, which was reversed by an NF-κB inhibitor. To sum up, miR-518a-5p is induced by NF-κB and represses trophoblast cell migration and invasion by the NF-κB pathway.


Asunto(s)
MicroARNs , Preeclampsia , Embarazo , Animales , Humanos , Femenino , MicroARNs/genética , MicroARNs/metabolismo , Trofoblastos/metabolismo , FN-kappa B/metabolismo , Preeclampsia/genética , Línea Celular , Movimiento Celular/genética , Proliferación Celular , Mamíferos/genética
15.
Sensors (Basel) ; 23(16)2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37631649

RESUMEN

Existing pavement defect detection models face challenges in balancing detection accuracy and speed while being constrained by large parameter sizes, hindering deployment on edge terminal devices with limited computing resources. To address these issues, this paper proposes a lightweight pavement defect detection model based on an improved YOLOv7 architecture. The model introduces four key enhancements: first, the incorporation of the SPPCSPC_Group grouped space pyramid pooling module to reduce the parameter load and computational complexity; second, the utilization of the K-means clustering algorithm for generating anchors, accelerating model convergence; third, the integration of the Ghost Conv module, enhancing feature extraction while minimizing the parameters and calculations; fourth, introduction of the CBAM convolution module to enrich the semantic information in the last layer of the backbone network. The experimental results demonstrate that the improved model achieved an average accuracy of 91%, and the accuracy in detecting broken plates and repaired models increased by 9% and 8%, respectively, compared to the original model. Moreover, the improved model exhibited reductions of 14.4% and 29.3% in the calculations and parameters, respectively, and a 29.1% decrease in the model size, resulting in an impressive 80 FPS (frames per second). The enhanced YOLOv7 successfully balances parameter reduction and computation while maintaining high accuracy, making it a more suitable choice for pavement defect detection compared with other algorithms.

16.
Drug Dev Res ; 84(7): 1468-1481, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37534761

RESUMEN

Distant metastasis is the primary reason for treatment failure in patients with nasopharyngeal carcinoma (NPC). In this study, we investigated the effect of ulinastatin (UTI) on NPC metastasis and its underlying mechanism. Highly-metastatic NPC cell lines S18 and 58F were treated with UTI and the effect on cell proliferation, migration, and invasion were determined by MTS and Transwell assays. S18 cells with luciferase-expressing (S18-1C3) were injected into the left hind footpad of nude mice to establish a model of spontaneous metastasis from the footpad to popliteal lymph node (LN). The luciferase messenger RNA (mRNA) was measured by quantitative polymerase chain reaction (qPCR), and the metastasis inhibition rate was calculated. Key molecular members of the UTI-related uPA, uPAR, and JAT/STAT3 signaling pathways were detected by qPCR and immunoblotting. UTI suppressed the migration and infiltration of S18 and 5-8F cells and suppressed the metastasis of S18 cells in vivo without affecting cell proliferation. uPAR expression decreased from 24 to 48 h after UTI treatment. The antimetastatic effect of UTI is partly due to the suppression of uPA and uPAR. UTI partially suppresses NPC metastasis by downregulating the expression of uPA and uPAR.


Asunto(s)
Neoplasias Nasofaríngeas , Animales , Ratones , Humanos , Carcinoma Nasofaríngeo/tratamiento farmacológico , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patología , Ratones Desnudos , Línea Celular Tumoral , Neoplasias Nasofaríngeas/tratamiento farmacológico , Neoplasias Nasofaríngeas/patología , Luciferasas , Movimiento Celular , Invasividad Neoplásica , Metástasis de la Neoplasia
17.
Int J Mol Sci ; 24(17)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37686225

RESUMEN

Cell-to-cell communication must occur through molecular transport in the intercellular fluid space. Nanoparticles, such as exosomes, diffuse or move more slowly in fluids than small molecules. To find a microfluidic technology for real-time exosome experiments on intercellular communication between living cells, we use the microfluidic culture dish's quaternary ultra-slow microcirculation flow field to accumulate nanoparticles in a specific area. Taking stem cell-tumor cell interaction as an example, the ultra-slow microcirculatory flow field controls stem cell exosomes to interfere with tumor cells remotely. Under static coculture conditions (without microfluidics), the tumor cells near stem cells (<200 µm) show quick breaking through from its Matrigel drop to meet stem cells, but this 'breaking through' quickly disappears with increasing distance. In programmed ultra-slow microcirculation, stem cells induce tumor cells 5000 µm far at the site of exosome deposition (according to nanoparticle simulations). After 14 days of programmed coculture, the glomeration and migration of tumor cells were observed in the exosome deposition area. This example shows that the ultra-slow microcirculation of the microfluidic culture dish has good prospects in quantitative experiments to study exosome communication between living cells and drug development of cancer metastasis.


Asunto(s)
Exosomas , Microfluídica , Microcirculación , Células Madre , Comunicación Celular
18.
J Environ Manage ; 348: 119492, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37922748

RESUMEN

Advanced oxidation processes (AOPs), based on sulfate radical (SO4·-) produced by peroxymonosulfate (PMS), can effectively mineralize refractory organic pollutants. However, the coexistence of anions and natural organic matters in actual wastewater prevents the application of AOPs. A simple one-step method was used to prepare FeS/Fe3O4 co-modified biochar materials (FFB) that could activate PMS to degrade quinclorac (QNC) with a removal rate of 100%, even exhibiting optimum degradation of QNC reached 99.31% in irrigation water, demonstrating excellent anti-interference performance for co-existing anions and natural organic matter. Meanwhile, ecotoxicity analysis showed that the toxicity of degradation intermediates was lower than that of QNC. Characterization results demonstrated the even distribution of FeS and Fe3O4 onto biochar, supplying abundant Fe2+ to activate PMS producing reactive oxygen species (ROS), while the generated Fe3+ after reactive continue to be reduced with sulfur species to promote the cycle of Fe2+/Fe3+. The coexistence of ·OH, SO4·-, 1O2, and O2·- in the FFB/PMS-QNC system suggest the possession of two pathway with free radical and non-free radical pathways to degrade QNC. The density functional theory (DFT) was used to analyze the adsorption sites and adsorption energy of PMS, as well as the differential charge density, which further proved the generation of SO4·-, O2·- and 1O2. In addition, the electrochemical test results showed that electron transfer also played an important role in the degradation of QNC. This study provides a feasible approach for the removal of organic pollutants in actual water.


Asunto(s)
Contaminantes Ambientales , Peróxidos , Peróxidos/química , Agua
19.
Molecules ; 28(6)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36985677

RESUMEN

The ethnobotanical plant Marsdenia tenacissima has been used for hundreds of years for Dai people in Yunnan Province, China. Previously, chemical investigations on this plant have revealed that pregnane glycosides were the main biological constituents. Nine new pregnane glycosides, marsdeosides A-I (1-9), were isolated from cultivated dried stems of the medicinal plant Marsdenia tenacissima in this study. The structures were analyzed by extensive spectroscopic analysis, including 1D, 2D NMR, HRESIMS, and IR spectroscopic analysis. The absolute configurations of the sugar moieties were identified by comparing the Rf values and specific optical rotations with those of the commercially available standard samples and the data reported in the literature. Marsdeosides A (1) featured an unusual 8,14-seco-pregnane skeleton. Compounds 1, 8, and 9 showed activity against nitric oxide production in lipopolysaccharide-activated macrophage RAW264.7, with IC50 values of 37.5, 38.8, and 42.8 µM (L-NMMA was used as a positive control, IC50 39.3 µM), respectively. This study puts the knowledge of the chemical profile of the botanical plant M. tenacissima one step forward and, thereby, promotes the sustainable utilization of the resources of traditional folk medicinal plants.


Asunto(s)
Marsdenia , Plantas Medicinales , Humanos , Plantas Medicinales/química , Marsdenia/química , China , Pregnanos/química , Glicósidos/química
20.
Opt Express ; 30(17): 30640-30665, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36242164

RESUMEN

Defects detection technology is essential for monitoring and hence maintaining the product quality of additive manufacturing (AM) processes; however, traditional detection methods based on single sensor have great limitations such as low accuracy and scarce information. In this study, a multi-sensor defect detection system (MSDDS) was proposed and developed for defect detection with the fusion of visible, infrared, and polarization detection information. The assessment criteria for imaging quality of the MSDDS have been optimized and evaluated. Meanwhile, the feasibility of processing and assembly of each sensor module has been demonstrated with tolerance sensitivity and the Monte Carlo analysis. Moreover, multi-sensor image fusion processing, super-resolution reconstruction, and feature extraction of defects are applied. Simulation and experimental studies indicate that the developed MSDDS can obtain high contrast and clear key information, and high-quality detected images of AM defects such as cracking, scratches, and porosity can be effectively extracted. The research provides a helpful and potential solution for defect detection and processing parameter optimization in AM processes such as Selective Laser Melting.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA