Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Genes Dev ; 35(17-18): 1304-1323, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34413138

RESUMEN

Piwi-interacting RNAs (piRNAs) constitute a class of small RNAs that bind PIWI proteins and are essential to repress transposable elements in the animal germline, thereby promoting genome stability and maintaining fertility. C. elegans piRNAs (21U RNAs) are transcribed individually from minigenes as precursors that require 5' and 3' processing. This process depends on the PETISCO complex, consisting of four proteins: IFE-3, TOFU-6, PID-3, and ERH-2. We used biochemical and structural biology approaches to characterize the PETISCO architecture and its interaction with RNA, together with its effector proteins TOST-1 and PID-1. These two proteins define different PETISCO functions: PID-1 governs 21U processing, whereas TOST-1 links PETISCO to an unknown process essential for early embryogenesis. Here, we show that PETISCO forms an octameric assembly with each subunit present in two copies. Determination of structures of the TOFU-6/PID-3 and PID-3/ERH-2 subcomplexes, supported by in vivo studies of subunit interaction mutants, allows us to propose a model for the formation of the TOFU-6/PID-3/ERH-2 core complex and its functionality in germ cells and early embryos. Using NMR spectroscopy, we demonstrate that TOST-1 and PID-1 bind to a common surface on ERH-2, located opposite its PID-3 binding site, explaining how PETISCO can mediate different cellular roles.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Elementos Transponibles de ADN , Células Germinativas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo
2.
Biochemistry ; 60(2): 104-117, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33398994

RESUMEN

The eukaryotic transcription factor Pax5 has a DNA-binding Paired domain composed of two independent helical bundle subdomains joined by a flexible linker. Previously, we showed distinct biophysical properties of the N-terminal (NTD) and C-terminal (CTD) subdomains, with implications for how these two regions cooperate to distinguish nonspecific and cognate DNA sites [Perez-Borrajero, C., et al. (2016) J. Mol. Biol. 428, 2372-2391]. In this study, we combined experimental methods and molecular dynamics (MD) simulations to dissect the mechanisms underlying the functional differences between the Pax5 subdomains. Both subdomains showed a similar dependence of DNA-binding affinity on ionic strength. However, due to a greater contribution of non-ionic interactions, the NTD bound its cognate DNA half-site with an affinity approximately 10-fold higher than that of the CTD with its half-site. These interactions involve base-mediated contacts as evidenced by nuclear magnetic resonance spectroscopy-monitored chemical shift perturbations. Isothermal titration calorimetry revealed that favorable enthalpic and compensating unfavorable entropic changes were substantially larger for DNA binding by the NTD than by the CTD. Complementary MD simulations indicated that the DNA recognition helix H3 of the NTD is particularly flexible in the absence of DNA and undergoes the largest changes in conformational dynamics upon binding. Overall, these data suggest that the differences observed for the subdomains of Pax5 are due to the coupling of DNA binding with dampening of motions in the NTD required for specific base contacts. Thus, the conformational plasticity of the Pax5 Paired domain underpins the differing roles of its subdomains in association with nonspecific versus cognate DNA sites.


Asunto(s)
ADN/química , ADN/metabolismo , Simulación de Dinámica Molecular , Factor de Transcripción PAX5/química , Factor de Transcripción PAX5/metabolismo , Sitios de Unión , Humanos , Unión Proteica , Conformación Proteica
3.
J Biol Chem ; 293(16): 6147-6160, 2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29483190

RESUMEN

Staphyloferrin B (SB) is an iron-chelating siderophore produced by Staphylococcus aureus in invasive infections. Proteins for SB biosynthesis and export are encoded by the sbnABCDEFGHI gene cluster, in which SbnI, a member of the ParB/Srx superfamily, acts as a heme-dependent transcriptional regulator of the sbn locus. However, no structural or functional information about SbnI is available. Here, a crystal structure of SbnI revealed striking structural similarity to an ADP-dependent free serine kinase, SerK, from the archaea Thermococcus kodakarensis We found that features of the active sites are conserved, and biochemical assays and 31P NMR and HPLC analyses indicated that SbnI is also a free serine kinase but uses ATP rather than ADP as phosphate donor to generate the SB precursor O-phospho-l-serine (OPS). SbnI consists of two domains, and elevated B-factors in domain II were consistent with the open-close reaction mechanism previously reported for SerK. Mutagenesis of Glu20 and Asp58 in SbnI disclosed that they are required for kinase activity. The only known OPS source in bacteria is through the phosphoserine aminotransferase activity of SerC within the serine biosynthesis pathway, and we demonstrate that an S. aureus serC mutant is a serine auxotroph, consistent with a function in l-serine biosynthesis. However, the serC mutant strain could produce SB when provided l-serine, suggesting that SbnI produces OPS for SB biosynthesis in vivo These findings indicate that besides transcriptionally regulating the sbn locus, SbnI also has an enzymatic role in the SB biosynthetic pathway.


Asunto(s)
Proteínas Bacterianas/metabolismo , Citratos/biosíntesis , Fosfoserina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Staphylococcus aureus/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Asparaginasa/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Dominio Catalítico , Cromatografía Líquida de Alta Presión , Cristalografía por Rayos X , Dimerización , Genes Bacterianos , Ácido Glutámico/genética , Cinética , Espectroscopía de Resonancia Magnética , Mutagénesis , Conformación Proteica , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Staphylococcus aureus/enzimología , Thermococcus/enzimología , Transaminasas/metabolismo
4.
Biol Chem ; 400(11): 1443-1464, 2019 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-31120853

RESUMEN

TRIM proteins constitute a large, diverse and ancient protein family which play a key role in processes including cellular differentiation, autophagy, apoptosis, DNA repair, and tumour suppression. Mostly known and studied through the lens of their ubiquitination activity as E3 ligases, it has recently emerged that many of these proteins are involved in direct RNA binding through their NHL or PRY/SPRY domains. We summarise the current knowledge concerning the mechanism of RNA binding by TRIM proteins and its biological role. We discuss how RNA-binding relates to their previously described functions such as E3 ubiquitin ligase activity, and we will consider the potential role of enrichment in membrane-less organelles.


Asunto(s)
ARN/metabolismo , Ubiquitina-Proteína Ligasas/clasificación , Ubiquitina-Proteína Ligasas/metabolismo , Sitios de Unión , Humanos , ARN/química , Ubiquitina-Proteína Ligasas/química
5.
J Mol Biol ; 431(3): 593-614, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30597162

RESUMEN

The eukaryotic transcription factor ETS1 is regulated by an intrinsically disordered serine-rich region (SRR) that transiently associates with the adjacent ETS domain to inhibit DNA binding. In this study, we further elucidated the physicochemical basis for ETS1 autoinhibition by characterizing the interaction of its ETS domain with a series of synthetic peptides corresponding to the SRR. Binding is driven by the hydrophobic effect and enhanced electrostatically by phosphorylation of serines adjacent to aromatic residues in the amphipathic SRR. Structural characterization of the dynamic peptide/protein complex by NMR spectroscopy and X-ray crystallography revealed multiple modes of binding that lead to autoinhibition by synergistically blocking the DNA-binding interface of the ETS domain and stabilizing an appended helical inhibitory module against allosterically induced unfolding. Consistent with these conclusions, the SRR peptide does not interact with DNA-bound ETS1. In addition, we found that the ETS1 SRR phosphopeptide binds to distantly related PU.1 in vitro, indicating that autoinhibition exploits features of the ETS domain that are conserved across this family of transcription factors.


Asunto(s)
ADN/metabolismo , Unión Proteica/fisiología , Proteína Proto-Oncogénica c-ets-1/metabolismo , Factores de Transcripción/metabolismo , Sitios de Unión/fisiología , Biofisica/métodos , Cristalografía por Rayos X/métodos , Espectroscopía de Resonancia Magnética/métodos , Modelos Moleculares , Fosforilación , Conformación Proteica , Dominios Proteicos/fisiología , Serina/metabolismo
6.
J Mol Biol ; 428(11): 2372-2391, 2016 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-27067111

RESUMEN

The eukaryotic transcription factor Pax5 or B-cell specific activator protein (BSAP) is central to B-cell development and has been implicated in a large number of cellular malignancies resulting from loss- or gain-of-function mutations. In this study, we characterized the DNA-binding Paired domain (PD) of Pax5 in its free and DNA-bound forms using NMR spectroscopy. In isolation, the PD folds as two independent helical bundle subdomains separated by a conformationally disordered linker. The two subdomains differ in stability, with the C-terminal subdomain (CTD) being ~10-fold more protected from amide hydrogen exchange (HX) than the N-terminal subdomain (NTD). Upon binding DNA, the linker and an induced N-terminal ß-hairpin become ordered with significantly dampened motions and increased HX protection. Both subdomains of the PD contribute to specific DNA binding, resulting in an equilibrium dissociation constant more than three orders of magnitude lower than exhibited by the separate subdomains for their respective half-sites (nM versus µM). The isolated CTD binds non-specific DNA sequences with only ~10-fold weaker affinity than cognate sequences. In contrast, the NTD associates very poorly with non-specific DNA. We propose that the more stable CTD has evolved to provide relatively low affinity non-specific contacts with DNA. In contrast, the more dynamic NTD discriminates between cognate and non-specific sites. The distinct roles of the PD subdomains may enable efficient searching of genomic DNA by Pax5 while retaining specificity for functional regulatory sites.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Factor de Transcripción PAX5/metabolismo , Dominios Proteicos/fisiología , Linfocitos B/metabolismo , Sitios de Unión/fisiología , Espectroscopía de Resonancia Magnética/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA